
Lecture 2

Groups & Representations

1 The rotation group: SO(N)

Consider rotations in x − y plane. A rotation by angle θ can be written in
the simple form (

x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
(1)

where (x′, y′) are the new co-ordinates obtained from rotating (x, y) anti-
clockwise by θ or (x, y) → (x′, y′) = R(θ)(x, y). Here, the matrix R is the
“representation” of the rotation in 2D space. The rotations themselves are a
more abstract quantity and can be represented in different ways depending
on the underlying space. For example, consider instead a close relative of the
real 2D space — the complex plane. Then each z = x+ iy is a single complex
number. The “rotation” in this case is given by z → z′ = e−iθz. For each
R(θ), there is a corresponding e−iθ. In both cases, rotation by θ1 followed by
a rotation by θ2 is also a rotation (by θ1 + θ2). Obviously, multiplication by
the unit matrix does not change the co-ordinates. And every rotation by θ
can be undone by a rotation by −θ. These are all self-evident properties for
this simple case, but can be applicable in very different situations that may
not even be rotations. Formally, rotations in 2D space or in the complex
plane form a “group” (called SO(2) or U(1) group respectively).
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Definition: Group

A group G is a collection of elements g with an operation · such that

1. If g, g′ ⊂ G, then g · g′ ⊂ G

2. (g1 · g2) · g3 = g1 · (g2 · g3)

3. There is an “identity” element e such that g · e = e · g = g for all
g ⊂ G

4. for every g, there is an inverse g−1 such that g · g−1 = e = g−1 · g

Note that elements in the group do not have to commute (even though
in the above example they did), i.e. in general g1 · g2 6= g2 · g1. If they
do commute, the group is called “Abelian”.

1.1 Defining SO(N)

Consider realN -dimensional vector space with directions given by (x̂1, x̂2, ..., x̂N).
Then each vector can be represented as a vector in N -space and a rotation
can be written as real, N× N matrices.

x′1
x′2
...
x′N

 =


R11 R12 ... R1N

R21 R22 ... R2N
...

. . .

RN1 RN2 ... RNN




x1
x2
...
xN


Firstly, rotations do not change the length of the vector (given by XTX).

Thus, if X → RX, then XT → XTRT .

XTX = X ′TX ′ ⇒ RTR = 1 (2)

This is called the orthogonality condition and corresponds to the ‘O’ in
SO(N). Secondly, this also implies R−1 = RT .

det(R) = det(RT )⇒ det(R) = 1 (3)

Which defines the ‘S’ standing for special in SO(N), meaning the determinant
is unity.
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Exercise 1.4

Find the number of independent entries in R ⊂ SO(N)

1.2 Group Representations

The 3x3 matrices of SO(3) above act on the 3D real space co-ordinates.
However, one can also ask for the action of the group on other kinds of
spaces.

Definition: Group Representation

A representation is a mapping of the action of a group G on a vector
space V where each element of g of group is mapped to a V ×V matrix
R with the following properties

1. R(g1 · g2) = R(g1) ·R(g2)

2. R(e) = 1

3. R−1(g) = R(g−1)

Note that a valid, but trivial representation can be made if all group
elements are mapped to 1. If each element of G gets a distinct V × V
matrix, the representation is called “faithful.” This implies that the
mapping is invertible i.e. it is possible to map each matrix to a unique
group element.

1.3 Lie groups and algebras

The two examples of groups given above fall into a category of groups called
“Lie groups” (after Norwegian mathematician Sophus Lie) and have the prop-
erty that one element of the group can be got from another by a continuous
change in parameters. For instance, in our SO(2) example above, each θ cor-
responds to a different matrix and one matrix can be obtained from another
by continuously changing θ. Because the elements are continuous functions of
parameters they are differentiable. The R in equation 1 can be differentiated
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at θ = 0

dR(θ)

dθ
|θ=0 =

(
0 1
−1 0

)
= iτ (4)

⇒ R(θ) = exp{−iτθ} (5)

The matrix τ is called the generator and has the property τ † = τ (i.e. it is
Hermitian).

1.3.1 SO(3) and its algebra so(3)

All elements of SO(3) can be generated by the following three matrices (cor-
responding to rotations around z, x, and y axes respectively).

R1 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 R2 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ



R3 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (6)

Differentiating with respect to θ give three generators of so(3) given by

τ1 = i

 0 1 0
−1 0 0
0 0 0

 τ2 = i

 0 0 0
0 0 1
0 −1 0

 τ3 = i

 0 0 −1
0 0 0
1 0 0

 (7)

Exercise 1.5

Check that

1. the rotation matrices are recovered by exponentiating the so(3)
generators.

2. The follow the commutation relation [τi, τj] = iεijkτk

The generators form an “algebra” and satisfy

Tr(τ) = 0 (8)

τ † = τ (9)

[τi, τj] = iεijkτk (10)
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which are generic conditions satisfied by all Lie algebras. The last of these
conditions defines the Lie bracket ([X, Y ] = XY − Y X) which is known to
us already from Quantum Mechanics as the commutator.

The algebra name is generally written with lower-case letters i.e. SO(3)
has the algebra so(3), and so on. As you will notice, each so(3) generator τk
can also be thought of as iεijk where (i, j) are the row and column of the τk
matrix. This is particularly important to keep in mind as we will see from
the next example of su(2).

1.4 Another so(3) algebra representation

A second representation, also in terms of 3x3 matrices can be constructed
to describe the “internal” angular momentum (or spin) of a spin-1 particle.
We will see further examples of describing different spins when we work with
Lorentz transformations.

Lx =
1

2

 0 1 0
1 0 1
0 1 0

 Ly =
i

2

 0 1 0
−1 0 1
0 −1 0

 Lz =

 1 0 0
0 0 0
0 0 −1

 (11)

This is a representation in the so-called “spherical basis”. The basis
vectors of the underlying space correspond to the cartesian co-ordinates as
(x+iy√

2
, z, x−iy√

2
)T . The three possible spin states of the particle are rep-

resented by (1, 0, 0)T , (0, 1, 0)T and (0, 0, 1)T . This representation is useful
in describing the polarisation of a spin-1 particle. For example, note that
for longitudinal polarisation along the z-axis (x,y components are zero), the
eigenvalue of Lz operator is zero. Whereas for circular polarisation, the eigen-
values are ±1 based on whether it is polarised anti-clockwise or clockwise.

2 Representations of SU(N)

2.1 The special unitary group: SU(N)

As the SO(N) group describes transformations that do not change the length
of the vector in a real vector space, the SU(N) describes transformations
that do not change the length of a complex vector given by X†X. As such
it is particularly important in describing transformations of amplitudes in
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quantum mechanics and fields in quantum field theory which are complex.
This requirement of unchanged length corresponds to the requirement that
the probability remains unchanged under a change of co-ordinates.

The N = 1 group is simply called U(1) and we have already encountered
this in our previous example as rotations in complex plane. Its elements can
be written as eiθ. The SU(N) group (the special unitary group) is simply the
group of N ×N complex matrices with the following requirements

U †U = UU † = 1⇒ U−1 = U † (12)

detU = 1 (13)

In general, the first of these equations implies | detU | = 1 which allows detU
to take all values of the form eiθ (which is the U(1) group). The choice
of detU = +1 is “special”. In general, for unitary matrices, the group is
denoted by U(N) = SU(N)× U(1).

Exercise 1.6

Show that the number of independent entries in U is N2 − 1. This
means one needs N2 − 1 generators to get all possible elements. This
is the dimension of the group.

2.2 The Lie Algebra su(N)

Similar to SO(N), SU(N) can also be described by exponentiating generators
of its algebra. In general, let us define ta as the generators of su(N) where a
runs from 1 to N2 − 1. The actual form of ta of course will depend on the
vector space on which it acts. Then we can write each element X ∈ G as

X = exp{itaxa}

where xa are continuous parameters similar to θ in the U(1) element eiθ. The
generators ta satisfy the following conditions:

• Tr(ta) = 0

• [ta, tb] = fabct
c, where fabc are called structure constants and depend

on the N in SU(N)

• [[ta, tb], tc]+ cyclic permutations = 0. (This is called the Jacobi identity)
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2.3 SU(2) representations and su(2) algebra

As you may have already encountered in describing spin angular momenta
in Quantum Mechanics, generators of su(2) are given by

τ1 =
1√
2

(
0 1
1 0

)
τ2 =

1√
2

(
0 i
−i 0

)
τ3 =

1√
2

(
1 0
0 −1

)
(14)

which means that any element of SU(2) can be represented as exp{−i∑k τkθk}.

2.4 Fundamental and Adjoint representations

When SU(N) is represented in terms of N × N complex, unitary matrices,
acting on N -dimensional vector space, it is called the “fundamental repre-
sentation”. This is sort of a circular definition, but serves to distinguish it
from other representations.

A particularly important representation, called the adjoint representation,
is obtained when the vector space on which the group acts is the one spanned
by the generators of the algebra. That means, each element in the vector
space can be written as

c1t
1 + c2t

2 + ...+ cN2−1t
N2−1

for real numbers ci. In the case of SU(2), this means that the basis vectors
{ta} are the three Pauli matrices.

In the adjoint representation, the mapping is from

Ad : G→ R(N2−1) ×R(N2−1)

i.e. to an (N2 − 1) × (N2 − 1) real matrix (the R here corresponds to the
real number line) and is denoted by Ad(U) for each element U ∈ G. The
action of the group is defined by

Ad(U)X = U †XU (15)
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