Homework 2: DIS and QCD

4 November 2019

Problem 1: $e^-(k)\mu^-(p) \to e^-(k')\mu^-(p')$ in lab frame Using the expressions derived in class, prove that

$$L^{e}_{\mu\nu}L^{m,\mu\nu} = 8EE' \left(\cos^2\frac{\theta}{2} - \frac{q^2}{2M^2}\sin^2\frac{\theta}{2}\right)$$

Problem 2: $e^-(k)p(p) \to e^-(k')X$ in lab frame Using the expressions for $L^e_{\mu\nu}$ and $H^{\mu\nu}$ derived in class, prove that

$$L_{\mu\nu}^e H^{\mu\nu} = 4EE' \left(H_2 \cos^2 \frac{\theta}{2} - 2H_1 \sin^2 \frac{\theta}{2} \right)$$

Problem 3: $e^+e^- \rightarrow q\bar{q}g$

Complete the calculation for the process $e^+(p_1)e^-(p_2') \to \overline{q}(p_3)g(p_4)q(p_5)$ where besides a quark q and an anti-quark \overline{q} a gluon g is produced through a virtual photon.

1. Write down the amplitudes corresponding to the Feynman diagrams (see appendix for a selection of Feynman rules). Show that for each diagram n the amplitude $i\mathcal{M}_n$ can be written as contraction of a leptonic with a hadronic matrix element

$$i\mathcal{M}_n = rac{g_s Q_e Q_q}{s} \mathcal{L}_\mu \mathcal{H}_n^\mu \,.$$

- 2. Calculate the four different terms from the hadronic tensor $\mathcal{H}_i^{*\mu}\mathcal{H}_j^{\nu}$ up to the trace expression (where $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$).
- 3. We showed in class that the colour factor factorises out so that \mathcal{H} can be written as

$$H^{\mu\nu} = \sum_{s_1, s_3, \lambda} \mathcal{H}^{*\mu} \mathcal{H}^{\nu} = |C|^2 R^{\mu\nu} \,,$$

where the colour amplitude square $|\mathcal{C}|^2 = \sum \text{Tr}(t^a t^a) = C_F$ contains only fully contracted generators t^a and the tensor $R^{\mu\nu}$ is built from the hadronic Lorentz part of the amplitude. We can further write down

$$R^{\mu\nu} = \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}\right)K$$

To calculate the value of K, we can use $R_{\mu\nu}g^{\mu\nu}=\left(g^{\mu}_{\mu}-\frac{q^{\mu}q_{\mu}}{q^2}\right)K=3K$, i.e. one needs only to calculate R^{μ}_{μ} . Simplify the above trace expressions and calculate the contribution to R^{μ}_{μ} resulting from all the terms.

- 4. Sum up all contributions to R^{μ}_{μ} in order to write down the differential cross-section for the production. Use kinematic invariants (i.e. x_i 's defined in class) which are suitable for the phase space integration.
- 5. Using the expression for 3-body phase space

$$dR_3 = \frac{s}{16} \frac{1}{(2\pi)^3} dx_1 dx_2.$$

show that the cross section for N_F quarks can be written as

$$\sigma = \frac{s}{32(2\pi)^3} \int dx_1 dx_3 C_F N_F \left(\frac{g_s Q_e Q_q}{s}\right)^2 \left[\frac{8}{3} \frac{x_1^2 + x_3^2}{(x_1 - 1)(x_3 - 1)}\right].$$

Appendix A: Selected Feynman Rules in the massless limit

Appendix B: Completeness relations in the massless limit

$$\begin{split} &\sum_{s} [v_q(p,s)]^j [\overline{v}_q(p,s)]_i &= \not\!p \delta^j_{\ i} \,, \qquad \sum_{s} v_e(p,s) \overline{v}_e(p,s) = \not\!p \,, \\ &\sum_{s} [u_q(p,s)]^j [\overline{u}_q(p,s)]_i &= \not\!p \delta^j_{\ i} \,, \qquad \sum_{s} u_e(p,s) \overline{u}_e(p,s) = \not\!p \,, \\ &\sum_{\lambda} [\varepsilon(p,\lambda)]^\mu_a [\varepsilon^*(p,\lambda)]^\nu_b &= -g^{\mu\nu} \delta_{ab} \,. \end{split}$$