Homework 2: DIS and QCD

4 November 2019

Problem 1: e (k)u (p) — e (K)u (p') in lab frame

Using the expressions derived in class, prove that
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Problem 2: e (k)p(p) — ¢ (K')X in lab frame

Using the expressions for Lf,, and H"” derived in class, prove that
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Problem 3: ee” — qqg

Complete the calculation for the process et (p1)e™ (ph) — G(ps3)g(pa)q(ps)
where besides a quark ¢ and an anti-quark g a gluon ¢ is produced through

a virtual photon.

1. Write down the amplitudes corresponding to the Feynman diagrams
(see appendix for a selection of Feynman rules). Show that for each di-
agram n the amplitude iM,, can be written as contraction of a leptonic

with a hadronic matrix element

iM, = gs%’%@%g.

2. Calculate the four different terms from the hadronic tensor H;*HY up

to the trace expression (where H = H; + Ha).

3. We showed in class that the colour factor factorises out so that H can

be written as
H™ = Y H*™HY =|C[’R",
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where the colour amplitude square |C|?* = 3 Tr(t*t*) = Cp contains
only fully contracted generators t* and the tensor R* is built from the
hadronic Lorentz part of the amplitude. We can further write down
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To calculate the value of K, we can use R, g"" = (gl’j — q:#) K = 3K,
i.e. one needs only to calculate R. Simplify the above trace expressions
and calculate the contribution to R/ resulting from all the terms.

. Sum up all contributions to R in order to write down the differential
cross-section for the production. Use kinematic invariants (i.e. ;’s
defined in class) which are suitable for the phase space integration.

. Using the expression for 3-body phase space
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show that the cross section for Nr quarks can be written as
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Appendix A: Selected Feynman Rules in the massless

limit
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Appendix B: Completeness relations in the massless

limit
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