Supercomputing the Early Universe

Rajiv V. Gavai T. I. F. R., Mumbai

Supercomputing the Early Universe

Rajiv V. Gavai T. I. F. R., Mumbai

What is Big Bang Theory ?

Why Supercompute the Early Universe & How ?

Heavy Ion Collisions.

Summary.

Hubble's Expansion Law. ⇒
 Past : Universe was Denser, although
 Now : It is Rarer

- Hubble's Expansion Law. ⇒
 Past : Universe was Denser, although
 Now : It is Rarer
- Born in Hot Big Bang; Cooled by Expansion

- Hubble's Expansion Law. ⇒
 Past : Universe was Denser, although
 Now : It is Rarer
- Born in Hot Big Bang; Cooled by Expansion
- Cosmic Microwave Background Radiation (CMBR) — Strongest Evidence.
 - Most perfect black body radiation spectrum.
 - $T\sim 3000^\circ$ K, redshifted due to expansion $T\sim 2.726^\circ$ K.

Earliest WMAP-snap of Universe: Our Universe at the age of 380,000 years.

Why Supercompute the Early Universe & How ?

5

Copyright © 2004 Pearson Education, publishing as Addison Wesley.

Strong Interactions

 Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.

Strong Interactions

- Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.
- Rutherford's Scattering Experiment
 → various layers that have since been
 discovered.

Strong Interactions

- Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.
- Rutherford's Scattering Experiment
 → various layers that have since been
 discovered.
- Quarks and Leptons Basic building blocks : Proton (uud), Neutron (udd), Pion (ud)....
- A Variety of Vector Bosons : Carriers of forces.

	No.		Z	
	Gravity	Weak (Electro	Electromagnetic weak)	Strong
Carried By	Graviton (not yet observed)	w ⁺ w ⁻ z ^o	Photon	Gluon
Acts on	IIA	Quarks and Leptons	Quarks and Charged Leptons and W ⁺ W	Quarks and Gluons

Strengths in a ratio $10^{-39}: 10^{-5}: 10^{-2}: 1$

(Anti-)Quarks come in three (anti-)colours, making gluons also coloured.

Phase Diagram of Strong Matter

• Quantum Chromo Dynamics (QCD) is the (Gauge) Theory of interactions of quarks-gluons.

Phase Diagram of Strong Matter

- Quantum Chromo Dynamics (QCD) is the (Gauge) Theory of interactions of quarks-gluons.
- Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..
- New States at High Temperatures/Density expected on basis of models.

Phase Diagram of Strong Matter

- Quantum Chromo Dynamics (QCD) is the (Gauge) Theory of interactions of quarks-gluons.
- Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..
- New States at High Temperatures/Density expected on basis of models.
- Quark-Gluon Plasma, such a new phase, expected in Relativistic Heavy Ion Collisions & filled our Universe a few microseconds after the Big Bang.
- Color Superconductivity another phase, may exist in very dense stars.

Basic Lattice QCD

• Discrete space-time : Lattice spacing *a* UV Cut-off.

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\overline{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\overline{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$
- Gauge transform $V_x \in SU(3)$ $\Rightarrow \psi'(x) = V_x \psi(x),$ $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}.$
- Gauge invariance : Actions from Closed Wilson loops, e.g., plaquette.

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\overline{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$
- Gauge transform $V_x \in SU(3)$ $\Rightarrow \psi'(x) = V_x \psi(x),$ $U'_{\mu}(x) = V_x U_{\mu}(x) V_{x+\hat{\mu}}^{-1}.$
- Gauge invariance : Actions from Closed Wilson loops, e.g., plaquette.

• Fermion Actions : Staggered, Wilson, Overlap..

Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} , \qquad (1)$$

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v : 2.65 million dimensional integral ($24^3 \times 6$ lattice)!

Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} ,$$
 (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v : 2.65 million dimensional integral ($24^3 \times 6$ lattice)!

Lattice scaffolding must be removed : Continuum limit $a \to 0$. \rightsquigarrow Computer Simulations, $\langle \Theta \rangle$ is computed by averaging over a set of configurations $\{U_{\mu}(x)\}$ which occur with probability $\propto \exp(-S_G) \cdot \text{Det } M$. Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \operatorname{Det} M(m_s)}{\int DU \exp(-S_G) \operatorname{Det} M(m_s)} ,$$
 (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s , S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v : 2.65 million dimensional integral ($24^3 \times 6$ lattice)!

Lattice scaffolding must be removed : Continuum limit $a \to 0$. \rightsquigarrow Computer Simulations, $\langle \Theta \rangle$ is computed by averaging over a set of configurations $\{U_{\mu}(x)\}$ which occur with probability $\propto \exp(-S_G) \cdot \text{Det } M$.

Complexity of evaluation of Det $M \implies$ approximations : Quenched ($m_s = \infty$ limit) and Full (low $m_s = m_u = m_d$) : $\frac{1}{4}$ million dimensional M.

 $Q \rightarrow$ Full \rightsquigarrow Computer time \uparrow and Precision $\downarrow.$

Our Workhorse

CRAY X1 of I L G T I , T I F R, Mumbai

- The Transition Temperature $T_c \sim 175$ MeV (about 2 Trillion °K).
- T_c , the Equation of State (EOS) and many other properties, notably the Wróblewski Parameter λ_s and other correlations for Heavy Ion Physics have been predicted theoretically.

Gavai and Gupta, Phys Rev D65, 2002 and Phys.Rev. D73, 2006.

Gavai and Gupta, Phys Rev D65, 2002 and Phys.Rev. D73, 2006.

- λ_s Measure of Production of strange quark-antiquark pairs; Expts agree with estimates from the new state Quark-Gluon Plasma.
 - Lattice QCD suggests that strangeness carried by quark-like objects
 - Generally flavour shows quasi-quark behaviour.

QCD Critical Point

QCD Critical Point

- We (RVG & S. Gupta, PRD 2005, arXiv:0806.2233) find the Critical Point at smaller $\mu_B/T \sim$ 1 (a = 1/4T) and $\mu_B/T \sim 2$ (a =1/6T).
- Our estimate consistent with Fodor & Katz (2002) [$m_{\pi}/m_{
 ho} = 0.31$ and $N_s m_{\pi} \sim 3$ -4].

QCD Critical Point

- We (RVG & S. Gupta, PRD 2005, arXiv:0806.2233) find the Critical Point at smaller $\mu_B/T \sim$ 1 (a = 1/4T) and $\mu_B/T \sim 2$ (a =1/6T).
- Our estimate consistent with Fodor & Katz (2002) [$m_{\pi}/m_{
 ho} = 0.31$ and $N_s m_{\pi} \sim 3-4$].
- Strong finite size effects for small N_s . A strong change around $N_s m_{\pi} \sim 6$.
- RHIC, if run at lower energy, can potentially discover it.

• Where does one find these new phases ? Can they be produced in laboratory ?

- Where does one find these new phases ? Can they be produced in laboratory ?
- Early Universe About $10-20\mu{\rm s}$ after the Big Bang and in Cores of Dense Neutron Stars

- Where does one find these new phases ? Can they be produced in laboratory ?
- Early Universe About $10-20\mu{\rm s}$ after the Big Bang and in Cores of Dense Neutron Stars
- Quark-Gluon Plasma can be, and may **indeed** have been, produced in Heavy Ion Collisions in CERN, Geneva and BNL, New York.

- Where does one find these new phases ? Can they be produced in laboratory ?
- Early Universe About $10-20\mu{\rm s}$ after the Big Bang and in Cores of Dense Neutron Stars
- Quark-Gluon Plasma can be, and may indeed have been, produced in Heavy Ion Collisions in CERN, Geneva and BNL, New York.
- Necessary Conditions for QGP production :
 - High Energy Density, pprox 1-3 GeV/fm 3 .
 - Large System Size, $L \gg \Lambda_{QCD}^{-1}$.
 - Many particles

Fireball of QGP condenses into hadrons in $\approx 10^{-23}$ seconds.

How to look for QGP

• Jet Quenching :

How to look for QGP

- Jet Quenching :
 - Rare, Highly Energetic Scatterings produce jets of particles : $g + g \rightarrow g + g$.
 - Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to lose energy – Jet Quenching.

How to look for QGP

- Jet Quenching :
 - Rare, Highly Energetic Scatterings produce jets of particles : $g + g \rightarrow g + g$.
 - Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to lose energy – Jet Quenching.
 - On-Off test possible Compare Collisions of Heavy-Heavy nuclei with Light-Heavy or Light-Light.

- Anisotropic Flow & QGP as Perfect Liquid
- Debye Screening of Quarks \implies No binding to Hadrons Anomalous J/ψ Suppression

Summary

- Lattice QCD **predicts** new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on correlations of quantum numbers suggest QGP to have quarklike excitations.

Summary

- Lattice QCD **predicts** new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on correlations of quantum ≤ 0.9 30 GeV 20 GeV 20 GeV 18 quarklike excitations.
- Phase diagram in $T \mu_B$ plane has begun to emerge: Our estimate for the critical point is $\mu_B/T \sim 1-2$.

Summary

- Lattice QCD predicts new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Phase diagram in $T \mu_B$ plane has begun to emerge: Our estimate for the critical point is $\mu_B/T \sim 1-2$.

Heavy Ion Collisions in CERN Geneva, and BNL, New York, have seen tell-tale signs of QGP : Many surprises already and more excitement likely to come.