### **Re-Creating the Big Bang**



Rajiv V. Gavai T. I. F. R., Mumbai

### **Re-Creating the Big Bang**



#### Rajiv V. Gavai T. I. F. R., Mumbai

What is the Big Bang ?

Why Re-Create it ?

How to do it ?

Summary

# Introduction : What is the Big Bang Theory ?



- All civilizations, Babylonian, Greek, and Indian, thought of *classic elements* as the basis of our world. Familiar concept : *Panch mahabhuta*
- Atomism world consists of atoms was also invented in India (Maharshi Kanada), & Greece (Democritus).



#### Galileo Galilei — The Father of Modern Science & his telescope.



#### Sizes shown to scale but *not* distances.



#### Our Sun in Our Milky Way Galaxy (1 light year = 9.46 $\times 10^{12}$ kilometers)



Frontiers of Physics Astronomy & Space Sciences, R.L.T. College of Science, Akola, September 24, 2010, R. V. Gavai Top 6

 Hubble's Expansion Law. ⇒
 Past : Universe was Denser, although Now : It is Rarer.

- Hubble's Expansion Law. ⇒
   Past : Universe was Denser, although Now : It is Rarer.
- Born in Hot Big Bang; Cooled by Expansion.

- Hubble's Expansion Law. ⇒
   Past : Universe was Denser, although Now : It is Rarer.
- Born in Hot Big Bang; Cooled by Expansion.
- Cosmic Microwave Background Radiation (CMBR) — Strongest Evidence. (1978 & 2006 Nobel Prizes)
  - Most perfect black body radiation spectrum.
  - $T\sim 3000^\circ$  K, red-shifted due to expansion  $T\sim 2.726^\circ$  K.



### Earliest WMAP-snap of Universe: Our Universe at the age of 380,000 years.



#### Why Re-Create the Early Universe ?



#### Why Re-Create the Early Universe ?



♡ To Establish the Physics at the earliest epoch so far, at a few microseconds.
 ♠ To extend the validity of Big Bang Theory to such epochs, OR expose its limitation.

# Strong Interactions

 Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.

# Strong Interactions

- Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.
- Rutherford's Scattering Experiment
   → Nucleus. Various layers have since
   been discovered using the same idea

(No Nobel Prize still 🤐 !).

# Strong Interactions

- Known Interactions and Particles a century ago: Electromagnetism, Gravity and Electrons, Atoms.
- Rutherford's Scattering Experiment
   → Nucleus. Various layers have since
   been discovered using the same idea

(No Nobel Prize still 😕 !).

 Quarks and Leptons – Basic building blocks : Proton (uud), Neutron (udd), Pion (ud)....





|               | No.                            |                                              |                                                       |                      |
|---------------|--------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------|
|               | Gravity                        | Weak<br>(Electro                             | Electromagnetic<br>weak)                              | Strong               |
| Carried<br>By | Graviton<br>(not yet observed) | w <sup>+</sup> w <sup>-</sup> z <sup>o</sup> | Photon                                                | Gluon                |
| Acts on       | IIA                            | Quarks and<br>Leptons                        | Quarks and<br>Charged Leptons<br>and W <sup>+</sup> W | Quarks<br>and Gluons |

Strengths in a ratio  $10^{-39}: 10^{-5}: 10^{-2}: 1$ 



#### (Anti-)Quarks come in three (anti-)colours, making gluons also coloured.

#### **Visible Mass of the Universe**

- Most visible mass of our Universe is in protons & neutrons, i.e., up & down quarks.
- Moreover, Proton or Neutron mass  $\simeq 100 \times (2 \ up + 1 \ down)$  masses: Very unusual since proton mass mostly arises from interactions.

#### **Visible Mass of the Universe**

- Most visible mass of our Universe is in protons & neutrons, i.e., *up* & *down* quarks.
- Moreover, Proton or Neutron mass  $\simeq 100 \times (2 \ up + 1 \ down)$  masses: Very unusual since proton mass mostly arises from interactions.
- Theory of quark-gluon interactions Quantum Chromo Dynamics (QCD) has to explain this factor : QCD on Space-Time Lattice does it !
- The same lattice QCD **predicts** a transition to a new state of matter Quark Gluon Plasma as well as its properties. This QGP filled our universe 10-20  $\mu$ s after the big bang.

### **Basic Lattice QCD**

Discrete space-time : Lattice X X X X X spacing *a* UV Cut-off. • Quark fields  $\psi(x)$ ,  $\psi(x)$  on X X Х lattice sites. Plaquette • Gluon Fields on links :  $U_{\mu}(x)$ X X • Gauge invariance : Actions from Closed Wilson loops, X X e.g., plaquette. u • Fermion Actions : Staggered, Wilson, Overlap..

#### **Our Workhorse**



#### CRAY X1 of I L G T I , T I F R, Mumbai

### **Our New Workhorse: IBM Blue Gene/P**



#### **Phase Diagrams of Matter**



#### Phase Diagram of Water.

#### Phase Diagram of Nuclear Matter.



- The Transition Temperature  $T_c \sim 175$  MeV (about 2 Trillion °K).
- Interaction induced mass "melts" at  $T_c$ : Chiral Symmetry Restored !
- Quarks behave as if "free" for  $T \ge T_c$ : Relevant for Heavy Ion Physics.

• Critical Point in Nuclear Matter phase diagram located (R. V. Gavai & S. Gupta, PRD 2005 i& PRD 2008)



• Critical Point in Nuclear Matter phase diagram located (R. V. Gavai & S. Gupta, PRD 2005 i& PRD 2008)



• Experimental search to test our prediction going on at RHIC, New York, USA and will be continued at FAIR, Darmstadt, Germany.

#### How to do it ?

### How to do it ? By Heavy Ion Collisions

- QGP in Early Universe About  $10 20\mu$ s after the Big Bang and in possibly Cores of Dense Neutron Stars.
- Can Quark-Gluon Plasma be produced in laboratory ?

### How to do it ? By Heavy Ion Collisions

- QGP in Early Universe About  $10 20\mu$ s after the Big Bang and in possibly Cores of Dense Neutron Stars.
- Can Quark-Gluon Plasma be produced in laboratory ?
- Necessary Conditions for QGP production :
  - High Energy Density,  $\approx$  1-3  ${\rm GeV}/{\rm fm^3}\sim 1.8-5.4\times 10^{15}~{\rm gm/cc^3}.$
  - Large System Size,  $L \gg \Lambda_{QCD}^{-1} \sim 1 \text{ fm} = 10^{-15} \text{ meter.}$
  - Many particles

#### How to do it ? By Heavy Ion Collisions

- QGP in Early Universe About  $10 20\mu$ s after the Big Bang and in possibly Cores of Dense Neutron Stars.
- Can Quark-Gluon Plasma be produced in laboratory ?
- Necessary Conditions for QGP production :
  - High Energy Density,  $\approx$  1-3  ${\rm GeV}/{\rm fm}^3 \sim 1.8-5.4 \times 10^{15}~{\rm gm/cc}^3.$
  - Large System Size,  $L \gg \Lambda_{QCD}^{-1} \sim 1 \text{ fm} = 10^{-15} \text{ meter.}$
  - Many particles
- Quark-Gluon Plasma can be, and may **indeed** have been, produced in Heavy Ion Collisions in CERN, Geneva and BNL, New York.



#### RHIC complex at Brookhaven National Laboratory, New York: Aerial view (left) and Space Shuttle view (right).



# The ring of the Large Hsdron Collider (LHC) at CERN, Geneva in Switzerland (left) and a view of the ALICE detector (right).

 $\implies$  Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.

 $\implies$  Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.



 $\implies$  Heavy Ion Collisions at 99.5-99.995 % Velocity of Light.





#### Fireball of QGP condenses into hadrons in $\approx 10^{-23}$ seconds.

#### How to look for QGP



• Jet Quenching :

### How to look for QGP



- Jet Quenching :
  - Rare, Highly Energetic Scattering produce jets of particles :  $g + g \rightarrow g + g$ .
  - Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to lose energy – Jet Quenching.

### How to look for QGP



- Jet Quenching :
  - Rare, Highly Energetic Scattering produce jets of particles :  $g + g \rightarrow g + g$ .
  - Quark-Gluon Plasma, any medium in general, interacts with a jet, causing it to lose energy – Jet Quenching.
  - On-Off test possible Compare Collisions of Heavy-Heavy nuclei with Light-Heavy or Light-Light.





• Debye Screening of Quarks  $\implies$  No binding to Hadrons — Anomalous  $J/\psi$  Suppression

### **Elliptic Flow**

 $\heartsuit$  For asymmetric collisions of two nuclei, with their centres not aligned :



### **Elliptic Flow**

 $\heartsuit$  For asymmetric collisions of two nuclei, with their centres not aligned :



♦ Anisotropic Flow & QGP as Perfect Liquid

# Summary

- The new Quark-Gluon Plasma phase filled our Universe at about 10-20  $\mu$ s.
- Theory **predicts** such new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on Critical Point have spurred its experimental search. We find that correlations of quantum numbers suggest QGP to have quark-like excitations.

# Summary

- The new Quark-Gluon Plasma phase filled our Universe at about 10-20  $\mu$ s.
- Theory **predicts** such new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
- Our results on Critical Point have spurred its experimental search. We find that correlations of quantum numbers suggest QGP to have quark-like excitations.
- Heavy Ion Collisions in CERN Geneva, and BNL, New York, have seen tell-tale signs of QGP : Jet Quenching, flow of a 'fluid'...
- Many surprises and more excitement, including Critical Point search, likely at the LHC, RHIC & FAIR.