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Importance of Being Critical

Phase Diagram of Water • One, possibly two,
critical points

• Extreme density
fluctuations
=⇒ Critical
Opalescence

• Dielectric constant
& Viscosity ↓.

• Many liquid fueled
engines exploit
such supercritical
transitions.
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• Discontinuous ε – Nonzero
Latent Heat– & finite Cv
→ First order PT.
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• Discontinuous ε – Nonzero
Latent Heat– & finite Cv
→ First order PT.

• Continuous ε, & diverging
Cv → Second order PT.

• In(Finite) Correleation
Length at 2nd (1st) Order
transition.
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• Discontinuous ε – Nonzero
Latent Heat– & finite Cv
→ First order PT.

• Continuous ε, & diverging
Cv → Second order PT.

• In(Finite) Correleation
Length at 2nd (1st) Order
transition.

• “Cross-over” – mere rapid
change in ε, with maybe a
sharp peaked Cv.
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Quantum Chromo Dynamics (QCD)

• (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).
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• Unlike QED, the coupling is usually very large.
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Quantum Chromo Dynamics (QCD)

• (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).

• Many more “photons” (Eight) which carry colour charge & hence interact
amongst themselves.

• Unlike QED, the coupling is usually very large.

• Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..

• Very high interaction (binding) energies. E.g., MProton � (2mu +md), by a
factor of 100 → Understanding it is knowing where the Visible mass of
Universe comes from.
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P : A) [Sz →] along the momentum [~P =⇒]

OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].
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~P : A) [Sz →] along the momentum [~P =⇒]

OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].

• Particle in state A can be transformed to state B by a Lorentz transformation
along z-axis.

• The particle must come to rest in between : m 6= 0.
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P : A) [Sz →] along the momentum [~P =⇒]

OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].

• Particle in state A can be transformed to state B by a Lorentz transformation
along z-axis.

• The particle must come to rest in between : m 6= 0.

• For (Nf) massless particles, A or B do not change into each other: Chiral
Symmetry (SU(Nf)× SU(Nf)).
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y.
Nambu, Physics Nobel Prize 2008).
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y.
Nambu, Physics Nobel Prize 2008).

• Chiral symmetry may get restored at sufficiently high temperatures or densities.
Effective mass then ‘melts’ away, just as magnet loses its magnetic properties
on heating.

• New States at High Temperatures/Density expected on basis of models.
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y.
Nambu, Physics Nobel Prize 2008).

• Chiral symmetry may get restored at sufficiently high temperatures or densities.
Effective mass then ‘melts’ away, just as magnet loses its magnetic properties
on heating.

• New States at High Temperatures/Density expected on basis of models.

• Quark-Gluon Plasma is such a phase. It presumably filled our Universe a few
microseconds after the Big Bang & can be produced in Relativistic Heavy Ion
Collisions.

• Much richer structure in QCD : Quark Confinement, Dynamical Symmetry
Breaking.. Lattice QCD should shed light on this all.
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane;
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♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models, expected QCD Phase Diagram

From Rajagopal-Wilczek Review
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models, expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

(McLerran-

Pisarski 2007; Castorina-RVG-Satz 2010)

Constituent Q-Gas (PC-RVG-Satz)
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Basic Lattice QCD

• Discrete space-time : Lattice
spacing a UV Cut-off.

• Quark fields ψ(x), ψ̄(x) on
lattice sites.

• Gluon Fields on links : Uµ(x)
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Basic Lattice QCD

• Discrete space-time : Lattice
spacing a UV Cut-off.

• Quark fields ψ(x), ψ̄(x) on
lattice sites.

• Gluon Fields on links : Uµ(x)

• Gauge invariance : Actions
from Closed Wilson loops,
e.g., plaquette.

• Fermion Actions : Staggered,
Wilson, Overlap, Domain
Wall..
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The µ 6= 0 problem

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

∏
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
∫
DU exp(−SG) O

∏
f Det M(mf,µf )

Z .
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The µ 6= 0 problem

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

∏
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
∫
DU exp(−SG) O

∏
f Det M(mf,µf )

Z .

Simulations can be done IF Det M > 0 for any set of {U} as probabilisitc
methods are used to evaluate 〈O〉.

However, det M is a complex number for any µ 6= 0 : The Phase/sign problem

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 9



Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ; C. Allton et al., PR D68 (2003) 014507 ).

• Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)

• Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.
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exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

• Better control of systematic errors.
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

• Better control of systematic errors.

T

µ

V2

V1

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

These are also useful by themselves both theoretically and for Heavy Ion Physics
(Flavour correlations, λs . . .)

Denoting higher order susceptibilities by χnu,nd, the pressure P has the expansion
in µ:

∆P

T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1

nu!

(µu
T

)nu 1

nd!

(µd
T

)nd
(1)
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

or

(
n!

χ
(2)
B

χ
(n+2)
B

)1/n

. We use both definitions and look for

consistency.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.

• We (Gavai-Gupta ’05, ’09) use up to 8th order. B-RBC so far has up to 6th order.

• 10th & even 12th order may be possible : Ideas to extend to higher orders are
emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.
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The Susceptibilities

All susceptibilities can be written as traces of products of M−1 and various
derivatives of M .

At leading order,

χ20 =

(
T

V

)
[〈O2 +O11〉], χ11 =

(
T

V

)
[〈O11〉]

Here O2 = Tr M−1M ′′−Tr M−1M ′M−1M ′, and O11 = (Tr M−1M ′)2, and the
traces are estimated by a stochastic method (Gottlieb et al., PRL ’87):

Tr A =
∑Nv
i=1R

†
iARi/2Nv , and (Tr A)2 = 2

∑L
i>j=1(Tr A)i(Tr A)j/L(L− 1),

where Ri is a complex vector from a set of Nv subdivided in L independent sets.
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Higher order NLS are more involved. E.g.,

χ40 =
T

V

〈O1111 + 6O112 + 4O13 + 3O22 +O4

〉
− 3

〈
O11 +O2

〉2
 .

Here the notation Oij···l stands for the product, OiOj · · ·Ol and

O3 = 2 Tr (M−1M ′)3 − 3 Tr M−1M ′M−1M ′′ + Tr M−1M ′′′,
O4 = −6 Tr (M−1M ′)4 + 12 Tr (M−1M ′)2M−1M ′′ − 3 Tr (M−1M ′′)2 −
3 Tr M−1M ′M−1M ′′′ + Tr M−1M ′′′′.

At the 8th order, terms involve operators up to O8 which in turn have terms up to
8 quark propagators and combinations of M ′ and M ′′. In fact, the entire
evaluation of the χ80 needs 20 inversions of Dirac matrix.

This can be reduced to 8 inversions using an action linear in µ (Gavai-Sharma PRD 2012 &

PRD 2010), leading still to results in agreement with that exponential in µ.
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mπ/mρ = 0.31± 0.01 (MILC); Kept the same as a→ 0 (on all Nt).

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

Finer Lattice : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mπ/mρ = 0.31± 0.01 (MILC); Kept the same as a→ 0 (on all Nt).

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

Finer Lattice : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).

• Even finer Lattice : 8 ×323 — This Talk (Datta-RVG-Gupta, arXiv: 1210.6784)
Aspect ratio, Ns/Nt, maintained four to reduce finite volume effects.

• Simulations made at T/Tc = 0.90, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.12, 1.5
and 2.01. Typical stat. 100-200 in max autocorrelation units.

• Tc — defined by the peak of Polyakov loop susceptibility.

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 16



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.99

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 17



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.99
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.97

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 17



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.99
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.97
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.94

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 17



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.99
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3

Τ)

n

T/Tc=0.97
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

µ/
(3
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier coarser

lattice result was µEB/T
E = 1.3± 0.3. Infinite volume result: ↓ to 1.1(1)

• Critical point at µB/T ∼ 1− 2.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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♠ Use Padé approximants for the series to estimate the radius of convergence.

♥ Consistent Window with our other estimates.
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χ2 for Nt = 8, 6, and 4 lattices
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♠ Nt = 8 (Datta-Gavai-Gupta, Quark Matter 2012 & arXiv: 1210.6784) and
6 (Gavai-Gupta, PRD ’09) results agree.

♥ βc(Nt = 8) agrees with Gottlieb et al. PR D47,1993.
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Radius of Convergence result
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♠ At our (TE, µE) for Nt = 6, the ratios display constancy for Nt = 8 as well.

♥ Currently : Similar results at neighbouring T/Tc =⇒ a larger ∆T at same µEB.
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Critical Point : Inching Towards Continuum
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Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy.

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 22
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• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy. NA49 results (C. Roland NA49, J.Phys. G30 (2004) S1381-S1384 )

sqrt(s)

5 10 15 20

Dy
na

m
ic

al
 F

lu
ct

ua
tio

ns
 [%

]

0

2

4

6

8

10
)-π + +π)/(- + K+(K

Data
UrQMD v1.3 

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 22



Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy. NA49 results (C. Roland NA49, J.Phys. G30 (2004) S1381-S1384 )

sqrt(s)

5 10 15 20

Dy
na

m
ic

al
 F

lu
ct

ua
tio

ns
 [%

]

0

2

4

6

8

10
)-π + +π)/(- + K+(K

Data
UrQMD v1.3 

sqrt(s)

5 10 15 20

Dy
na

m
ic

al
 F

lu
ct

ua
tio

ns
 [%

]

-10

-8

-6

-4

-2

0
)-π + +π)/(p(p + 

Data
UrQMD v1.3 

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 22



• Fluctuations in mean pT of low pT pions.

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 23



• Fluctuations in mean pT of low pT pions. (K. Grebieszkow, CPOD workshop 2007, GSI, Darmstadt)
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Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout
curve in the T -µB plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009 ; Oeschler, Cleymans, Redlich &

Wheaton, 2009)
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Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout
curve in the T -µB plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009 ; Oeschler, Cleymans, Redlich &

Wheaton, 2009)
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• Plotting these results in the T -µB plane, one has the freezeout curve, which
was shown to correspond the 〈E〉/〈N〉 ' 1. (Cleymans and Redlich, PRL 1998)
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(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)
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(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)

• Note : Freeze-out curve is based soled on data on hadron yields, & gives the
(T, µ) accessible in heavy-ion experiments.

• Our Key Proposal : Use the freezeout curve from hadron abundances to predict
fluctuations using lattice QCD along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
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freezeout curve

t
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• Use the freezeout curve to relate (T, µB)to
√
s and employ lattice QCD

predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
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freezeout curve
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B/T

• Use the freezeout curve to relate (T, µB)to
√
s and employ lattice QCD

predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Define m1 = Tχ(3)(T,µB)

χ(2)(T,µB)
, m3 = Tχ(4)(T,µB)

χ(3)(T,µB)
, and m2 = m1m3 and use the Padè

method to construct them.
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♠ Gavai & Gupta, arXiv: 1001.3796.
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♠ Used Tc(µ = 0) = 170 MeV (Gavai & Gupta, arXiv: 1001.3796).
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♠ Marginal change if Tc = 175 MeV (Datta, Gavai & Gupta, QM ’12).
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Gavai-Gupta, ’10 & Datta-Gavai-Gupta, QM ’12
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• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.
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• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 34



• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.
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• Smooth & monotonic behaviour for large
√
s : m1 ↓ and m3 ↑.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.
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Aggarwal et al., STAR Collaboration, arXiv : 1004.4959

• Reasonable agreement with our lattice results. Where is the critical point ?
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Xiaofeng Luo, QM’12 Gavai-Gupta, ’10
From STAR Collaboration Datta-Gavai-Gupta, QM ’12
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 8 first to begin
the inching towards continuum limit.
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 8 first to begin
the inching towards continuum limit.

• We showed that Critical Point leads
to structures in mi on the Freeze-Out
Curve. Possible Signatue ?
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♥ STAR results appear to agree with our Lattice QCD predictions.
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Lattice QCD Results

• QCD defined on a space time lattice – Best and Most Reliable way to extract
non-perturbative physics: Notable successes are hadron masses & decay
constants.

• The Transition Temperature Tc, the Equation of State, Heavy flavour diffusion
coefficient D, Flavour Correlations CBS and the Wróblewski Parameter λs are
some examples for Heavy Ion Physics.
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non-perturbative physics: Notable successes are hadron masses & decay
constants.

• The Transition Temperature Tc, the Equation of State, Heavy flavour diffusion
coefficient D, Flavour Correlations CBS and the Wróblewski Parameter λs are
some examples for Heavy Ion Physics.

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice: Less Chiral Symmetry than in continuum QCD.
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Lattice QCD Results

• QCD defined on a space time lattice – Best and Most Reliable way to extract
non-perturbative physics: Notable successes are hadron masses & decay
constants.

• The Transition Temperature Tc, the Equation of State, Heavy flavour diffusion
coefficient D, Flavour Correlations CBS and the Wróblewski Parameter λs are
some examples for Heavy Ion Physics.

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice: Less Chiral Symmetry than in continuum QCD.

• Domain Wall or Overlap Fermions better. Computationally expensive and
introduction of µ without breaking chiral symmetry needs care(Banerjee, Gavai
& Sharma PRD 2008) but can be done(Gavai & Sharma PLB 2012;
Narayanan-Sharma JHEP ’11).
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• Our estimate consistent with Fodor & Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

Theory Seminar, National Taiwan University, Taipei, October 31, 2012 R. V. Gavai Top 39



0

1

2

3

4

5

5 10 15 20 25

2 4 6 8 10

/T
B

�

µ

Nsmπ

Ns

T/Tc=0.95 : 6/8 4/6

• Our estimate consistent with Fodor & Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns. A strong change around Nsmπ ∼ 6.
(Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)
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(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)
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Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

* QCD critical point

crossover 1rst
0
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Real world

X

Heavy quarks

mu,d
ms

µ

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
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For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2
− 47(20)

(
µ
πTc

)4
, i.e., mc shrinks

with µ.
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For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2
− 47(20)

(
µ
πTc

)4
, i.e., mc shrinks

with µ.

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii)
Known examples where shapes are different in real/imaginary µ,
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“The Critical line from imaginary to real baryonic chemical potentials in two-color
QCD”, P. Cea, L. Cosmai, M. D’Elia, A. Papa, PR D77, 2008
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