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The lconic Connection

At the Quark Matter 1984, Helsinki.
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The Iconic Connection

CERN-TH.7526/94
BLTT 63/94

QUARKONIUM PRODUCTION IN HADRONIC COLLISIONS

R. Gavei'l, D. Kharzeev?, H. Satz??
G. A. Schuler?, K. Sridhar?, R. Vogi!

Abstract:

We summerize the theoreticel deseription of charmenium and bottonivm produe-
tiocn in hadrenie collisions and compare it to the aveilable date from hedren-nucleen
interpetions. With the parameters of the theory established by these data, we chinin
predietions for quarkonium preduction at RHIC and LHC energies.

Collective Dynamics in High Energy Collisions, Lawrence Berkeley National Laboratory, USA, May 17, 2012 R. V. Gavai Top



The Berkeley Connection
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Introduction : Anisotropic Flow

e Exciting results
from RHIC
on the elliptic
flow, a measure
of azimuthal
anisotropy.
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Introduction : Anisotropic Flow

e Exciting results
from RHIC
on the elliptic
flow, a measure
of azimuthal
anisotropy.

e Obtained from

asymmetric : _

. . I
collisions of two | > — P,
nuclel, with b TR, A ' FAE At \
thelr centres not Coordinate apace: Collective interaction Momentum space:
3 | lgn e d initial asymmetry pressure final asymmetry
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va(v.pr) — 149 AN/ (prdPrdédy) cos(20) 0
S [ d¢ dN/(prdPrdedy)
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va(yopg) — 99 AN/ (prdPrdgdy) cos(26)
AP =T 46 dN (prdPrdgdy)

® (STAR Collaboration, Ackermann et al., PRL 86 (2001) 402.)

0.2
o
= 0.18

L o B e LI (WL O L L e N me N D B R

]
-IIIIIIIIIlIlIIIIIIIlI]JIJII 1mlll|lll“

0.16
0.14
0.12

0.1
0.08

0.06
0.04

IIIIIIrI'lI'IIIIII[IIIIIIIllll'lrlllIII_

p.02F
i_‘L_||||J--||||-||||||
02 0 06 08 1 1.

s o by s vl owsll oy
14 1. 184 2

p, (GeV/c)

=
o

Collective Dynamics in High Energy Collisions, Lawrence Berkeley National Laboratory, USA, May 17, 2012 R. V. Gavai Top



va(v.p) — L9 AN/ (prdPrdody) cos(29) 0
S [ dé AN/ (prdPrdpdy)

® (STAR Collaboration, Ackermann et al., PRL 86 (2001) 402.) 71—
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e Good agreement with ideal hydro: Suggesting early thermalization and perfect
fluid and many more interesting things.
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flow scaled by eccentricity
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T R - 1  For hydro, need early
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(S. Voloshin, QM06, JPG 31 (2007) S883 & Hydro Curve: Kolb-Sollfrank-Heinz, PRC 62 (2000) 054909.)
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vV, at Low pr Region

Ve, = 200GeV *"Au + "*"Au at RHIC
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e

(STAR Collaboration, JPG 31 (2005) S437 & P. Huovinen.)

e Mass Pattern as expected by Hydrodynamics Models. Quantitative agreement
depends on the equation of state.
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(S. Voloshin, QM02, STAR PRL 95 (2005) & PHENIX PRL 98 (2007))

e vy scales as number of quarks. Thus, hadrons appear to follow the ‘underlying’
quark flow as Recombination Model would suggest.

Collective Dynamics in High Energy Collisions, Lawrence Berkeley National Laboratory, USA, May 17, 2012 R. V. Gavai Top



s K ® A+A o M-

Hydro calculations

o
)
|
N

o
)

1
-t

Anisotropy Parameter v,

Transverse Momentum p; (GeV/c)

(STAR Collaboration, Adams et al., PRL 92 (2004) 052302.)

O Minimum Bias Au+4Au Collisions at 200 GeV/c : Strangeness flows like normal
hadrons.
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e Naively expect heavy

w
quark relaxation time E o etv”
. L = Moore & Teaney 3/(2nT)
to be M/T times 0.2 Moore & Teaney 12/(2xT)
. : —— Armesto et al. 14 GeVZ/fm
la rger1 lead Ing to - Armesto et al. 4 GeV2/fm
the expectation of 0.15-
small/zero flow for :
charm quarks. 0.1
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- [ )
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0__ ................... It
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(PHENIX Collaboration, Adare et al., arXiv:1005.1627 & PRL 98 (2007) 172301.)
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e Naively expect heavy

quark relaxation time 0 o eyt
. L = Moore & Teaney 3/(2nT)
to be M/T times 0.2— Moore & Teaney 12/(2xT)
. : —— Armesto et al. 14 GeVZ/fm
la rger, lead Ing to - Armesto et al. 4 GeV2/fm
the expectation of 0.15-
small/zero flow for :
charm quarks. 0.1
e In models (Moore-Teaney, 0.05
PRC 71, 2005), heavy quark
diffusion coefficients o
governs its elliptic -
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(PHENIX Collaboration, Adare et al., arXiv:1005.1627 & PRL 98 (2007) 172301.)
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e Denoting by D the
heavy quark diffusion
coefficient, D = 12/2xT,
a 'perturbative’ estimate,
seems to under-predict vy
substantially.

e Smaller D ~ 3/27T
seems required by data.
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e Denoting by D the
heavy quark diffusion o
coefficient, D = 12/2xT,
a 'perturbative’ estimate,
seems to under-predict vy
substantially.

RAA

1.6

14 [ ] vanHeesetal. ()

3/(2rT) Moore &
12/(2rT) Teaney (lll)

1.2

e Smaller D ~ 3/27T
seems required by data.

e Similar value also explains
the suppression in the
PHENIX Ra4 for heavy
quarks at RHIC.

e Other models, e.g. van (PHENIX Collaboration, Adare et al., arXiv:1005.1627 & PRL 98 (2007) 172301.)
Hees-Greco-Rapp, seem

to suggest the same.
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ALICE overview at SQM11, Krakow, Poland by Francesco Prino.
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DO elliptic flow

« First direct measurement of D flow in heavy-ion collisions

» Yield extracted from invariant mass spectra of Kn candidates
in 2 bins of azimuthal angle relative fo the event plane
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ALICE overview at SQM11, Krakow, Poland by Francesco Prino.
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e Heavy Quark Diffusion coefficient is much smaller than perturbative estimates
(27 DT ~ 20 to ~ 80).

o 2r DT ~ 1.5 — 3 seems required by data.

e |s it non-perturbative ?
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e Heavy Quark Diffusion coefficient is much smaller than perturbative estimates
(27 DT ~ 20 to ~ 80).

o 2r DT ~ 1.5 — 3 seems required by data.

e |s it non-perturbative ? Strong coupling models — AdS/CFT based — do lead
to values in the desired range under “suitable” assumptions [casalderrey-Solana & Teaney
(2006), Gubser(2007)]

e Can Lattice QCD shed some light on the Charm Flow ?
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Langevin Model for Heavy Q Thermalization

e Momentum transfer from a thermal gluon is ~ T at most. It takes ~ M /T
collisions to change momentum of the heavy Q by O(1).

e |ts interaction with the medium can be modelled as uncorrelated momentum
Kicks (Moore-Teaney, PRC 71 (2005) 064904) : A Langevin Model.

Collective Dynamics in High Energy Collisions, Lawrence Berkeley National Laboratory, USA, May 17, 2012 R. V. Gavai Top 16



Langevin Model for Heavy Q Thermalization

e Momentum transfer from a thermal gluon is ~ T at most. It takes ~ M /T
collisions to change momentum of the heavy Q by O(1).

e |ts interaction with the medium can be modelled as uncorrelated momentum
kicks (Moore-Teaney, PRC 71 (2005) 064904) . A LangeVin Model.

dp;

o= o pi+ &(t) (&i(t)E;(t)) = rdsjo(t —t') (2)

e 1p — momentum drag coefficient and 3k is mean-squared momentum transfer

per unit time, k = £ [*_dt Y. (&(£)&(0)).
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Langevin Model for Heavy Q Thermalization

Momentum transfer from a thermal gluon is ~ T at most. It takes ~ M /T
collisions to change momentum of the heavy Q by O(1).

lts interaction with the medium can be modelled as uncorrelated momentum
kicks (Moore-Teaney, PRC 71 (2005) 064904) . A LangeVin Model.

dp;

7~ D Pt &i(t) (&i(t)E;(t)) = rdyjo(t —t') (2)

np — momentum drag coefficient and 3k is mean-squared momentum transfer

per unit time, k = 5 [*__dt Y. (&(£)&(0)).

Diffusion constant D can be shown to be 277 /x with np = xk/2MT.
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e Moore-Teaney assumed an initial power-law (LO pQCD) transverse momentum
distribution of a heavy Q in an expanding QGP at T, = 300 MeV. Assuming an
ideal Bjorken expansion of the plasma, they showed that by 7'y = 165 MeV the
charm distributition approximates a thermal one provided D < 3/27T.

e Their comparison, including a more realistic hydro-simulation, which | showed
earlier also, supports such a conclusion.

-~ 14
- & g BT )
E P Thermal T=165 MeV Q:< 161 (@) 0-10% central é
14 (] vanHeesetal. (Il) -
weD2rT)=3 LR T e %3/(2757) Moore & |
==D@EnT) =6 . e 12/(2nT) Teaney () .:
--D(2aT)=10 el E
0 0204 0608 1 1.2 14 1. 182 0 ope T -
pr(GeV) p, [GeVic]
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e Casalderrey-Solana & Teaney (Prp 74 (2006) 085012) suggested to obtain s from a
correlator of the (colour) force exerted on a heavy Q by the (deconfined &
coloured) medium.

e Caron-Huot, Laine & Moore (Hep 0904, 053) provided a suitable definition for « for
a lattice evaluation: The force acting on the heavy quark is given by M dJ*/dt,

where JH(Z,t) = (&, t)y*(Z, 1) is the conserved current for the heavy quark.
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e Casalderrey-Solana & Teaney (Prp 74 (2006) 085012) suggested to obtain s from a
correlator of the (colour) force exerted on a heavy Q by the (deconfined &
coloured) medium.

e Caron-Huot, Laine & Moore (Hep 0904, 053) provided a suitable definition for « for
a lattice evaluation: The force acting on the heavy quark is given by M dJ*/dt,

where JH(Z,t) = (&, t)y*1(Z, 1) is the conserved current for the heavy quark.

e Using Heavy Quark Effective Theory, they narrowed it down to studying

Glat(r) = —L 3 <Re tr [U(@,T) Ey(r,0) U(,0) EAO,@)D, where L
is the Polyakov loop.
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e Casalderrey-Solana & Teaney (Prp 74 (2006) 085012) suggested to obtain s from a
correlator of the (colour) force exerted on a heavy Q by the (deconfined &
coloured) medium.

e Caron-Huot, Laine & Moore (Hep 0904, 053) provided a suitable definition for « for
a lattice evaluation: The force acting on the heavy quark is given by M dJ*/dt,

where JH(Z,t) = (&, t)y*1(Z, 1) is the conserved current for the heavy quark.

e Using Heavy Quark Effective Theory, they narrowed it down to studying

Glat(r) = —L 3 <Re tr [U(@,T) Ey(r,0) U(,0) Ez-(o,ﬁ)b, where L
is the Polyakov loop.

e The spectral function, p(w), is obtained from the Gg(7) , as usual, by

> dw coshw (T — 5)

Gr(r) = / W o) 27) 3)

° w
T sinh T
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e Then momentum diffusion coefficient x = lim,_,o 2= p(w). where p is the
spectral function obtained from G above.

e They also suggested a suitable discrete version for LattiAce QCD :
Ez(fv 7_) — Uz(fv T) U4(f+ 7:77_) o U4(f7 T) Uz(f+ 4)
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e Then momentum diffusion coefficient x = lim,_,o 2= p(w). where p is the
spectral function obtained from G above.

e They also suggested a suitable discrete version for LattiAce QCD :
Ez(a—fa 7_) — U’L(fa T) U4(f+ 7:77_) o U4(f7 T) Uz(f—i_ 4)

e Using this, the numerator can be written as a derivative of an extended (by
spatial detour of a) Polyakov loop.
‘ (1) = CY (T +1)+C%1 —1) —2C%1)

E num

CU(r) = [Ty, 2o Uswa) - Us(t) - TIot 2y Usla) - US(t+7) - Tlo2opr Uslaa).

r4=0 lry=t Tg=t+T

— t —>

Graphical Representation of C'(7).
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Our Lattice Results

e |t is well-known that the Polyakov loop becomes exponentially small with V...
The extraction of k, on the other hand, needs large V...
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Our Lattice Results

e |t is well-known that the Polyakov loop becomes exponentially small with V..
The extraction of k, on the other hand, needs large V...

o We attempted N, = 12, 16, 20 and 24 for quenched QCD. Multilevel algorithm
(Liischer-Weisz, JHEP 0109 & 0207) Was suitably adopted.

e For the same size error on G(10)[G(3)] on N, = 20 lattices, it was found to be
~ 2500[200] times more efficient: Very crucial in getting .
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Our Lattice Results

It is well-known that the Polyakov loop becomes exponentially small with V..
The extraction of k, on the other hand, needs large V...

We attempted N, = 12, 16, 20 and 24 for quenched QCD. Multilevel algorithm
(Liischer-Weisz, JHEP 0109 & 0207) Was suitably adopted.

For the same size error on G(10)[G(3)] on N, = 20 lattices, it was found to be
~ 2500[200] times more efficient: Very crucial in getting .

Spatial volumes are such that N, > 2N,

Couplings were chosen suitably to make simulations at T'/T,. = 1.04, 1.09,
1.24, 1.5 and 1.96 for the two largest V..

Typical Statistics : Few hundred Independent Configurations, with a few
thousand multilevel updates.
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10°

10° . . .

N=12; T=20T, —5— | - ' ' " N=12; T=3.00 T, —F—
A N=16;T=15T, —6 ] Ni=16; T=2.25 T, —o—
s N=20; T=1.2 T, —a— | o A N=24; T=1.50 T, —a—
10t & 3 10% 1
B ] B
2 8
< A <
=10° | B e 1 B0’k I :
5} 4 1 O A
102 fo g, : 102 ‘o g |
© A ]
H ea & = 8
101 1 1 1 1 1 101 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
1 T
e Large 7 region shows scaling.
e Low 7 region, on the other hand, has only lattice artifacts.
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Extracting D

e Getting to the spectral function p, an ill-posed problem, has attracted a lot of
attention. Many methods can be tried.

e We use an ansatz for p, obtain G from it, and then fit in the large 7 range
[N, /4, N,/2]
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Extracting D

e Getting to the spectral function p, an ill-posed problem, has attracted a lot of
attention. Many methods can be tried.

e We use an ansatz for p, obtain G from it, and then fit in the large 7 range
[N, /4, N,/2]

¢ p(w) = awO(w —A) + buw?

First term is the due to the expected DIFFusion constant, and the second is
motivated by leading perturbation theory (LOC)

e A = 37 used; varied from 2 to oo for systematic error.
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5 Fit
ot | LOC _
= ][ = =J—
< 10° | -e B=7.192, N.=48, N:=24, 15T, -
G102 | e ;
10" } =
10° :
0.1 0.2 0.3 0.4 0.5
TT

& Contribution of the two terms shown as DIFF and LOC.
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& Comparing the DIFF fit with the data after eliminating the LOC.
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& Variation of a with the cut-off A and the temperature.
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& Our fit parameter a ~ k modulo the renormalization factor for the electric
fields.

& We use the tadpole factor. It is ~ 1.2 as evaluated from our plaquette values.
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& Our fit parameter a ~ k modulo the renormalization factor for the electric
fields.

& We use the tadpole factor. It is ~ 1.2 as evaluated from our plaquette values.
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& Multiplying by T', obtain D, the quantity used by Moore-Teaney and PHENIX.

24 .
— 0.25* LOPT
16 | o
— |
(M)
=
N : o
8T § a 1
§ J } o
PHENIX
O 1
1 1.5 2
T/T,

O In broad agreement with (preliminary) Bielefeld estimates (ping et al. 1107.0311,1204 4945,
Francis et al. 1100.3041): they get a factor ~ 2 smaller value with similar errorbars.
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® The w? term comes with g2. Use as a scheme to define oy non-perturbatively.

0.26 | _
1
5(I)
0.22 t + _
o

¢

0.18 - -

1 1.5 2

TIT,

@ In agreement with other similar estimates (Ding et al. PRD 83 (2011) 034504).
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J/v: Flows or not ?

& The diffusion coefficient D results from colour interactions. Expect it to be
zero for the colourless J/1), leading to very small flow for it due to its large mass.

¢ But the thermal charm may be in abundance and may also obey the n,-scaling.
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J/v: Flows or not ?

& The diffusion coefficient D results from colour interactions. Expect it to be
zero for the colourless J/1), leading to very small flow for it due to its large mass.

¢ But the thermal charm may be in abundance and may also obey the n,-scaling.

# If thermal charm ‘recombines’ to produce many J/v, then one expects J/1 to
flow still.

O The STAR collaboration presented results for J/v flow in the recent Quark
Matter 2011.
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Summary

e We have obtained the diffusion
constant D as a function of T/T.
in quenched QCD in the temperature
range of interest to RHIC and LHC.

e Qur results for DT are almost constant
in the range studied.
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Summary

e We have obtained the diffusion

constant D as a function of T/T, = —  0.25*LOPT
in quenched QCD in the temperature
range of interest to RHIC and LHC. 16 |
a
e Our results for DT are almost constant ~ © ol
in the range studied. i ¢ |
AN C PRENIX
e The value itself is tantalisingly close 0 > )
to what PHENIX data needs in the /T,
Moore-Teaney model.
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Summary

e We have obtained the diffusion

constant D as a function of T/T, = —  0.25*LOPT

in quenched QCD in the temperature

range of interest to RHIC and LHC. 16 |

2

e Our results for DT are almost constant < ol |

in the range studied. ‘ § i f

PHENIX

e The value itself is tantalisingly close 0 >

to what PHENIX data needs in the T/T,

Moore-Teaney model.

It would be interesting to see if DT vs. T'/T, exhibits similar
flavour independence as the pressure.
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3 676 680 690 7.192 7.255
N, 20 20 20 24 20
T/T. 104 109 124 15 196

Table 1: List of lattices on which diffusion coefficients were extracted,
and the temperatures.
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