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Aims:

• To explain the fact that theperiodsof a Calabi–Yau manifold in terms of which we com-

pute many observables of the effective low energy limit of string theory encode important

arithmetic information about the manifold.

• To speculate about the role of ‘quantum corrections’ and mirror symmetry.
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Periods of the Quintic

Consider for definiteness, the one parameter family of quintics inP4

M : P (x, ψ) =

5∑
i=1

x5
i − 5ψ x1x2x3x4x5 .

M hash11 = 1 and h21 = 101.

In this simple case there is a simple relation betweenM and its mirror

W = M/Γ

Γ : (x1, x2, x3, x4, x5) �→ (ζn1x1, ζn2x2, ζn3x3, ζn4x4, ζn5x5)

whereζ5 = 1 and
∑

i ni ≡ 1 mod 5.
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Parametrise the deformations of the complex structure by theperiodsof the holomorphic

(3, 0)-form Ω

�j(ψ) =

∫
γj

Ω , ∀ γj ∈ H3(M)

M hash21 = 101 and 204 = 2×100 + 4 periods whileW hash21 = 1 and 4 periods.

These periods are (generalised) hypergeometric functions and satisfy a differential equa-

tion of order b3. In the case of theprincipal periods

L �(λ) = 0 ; λ =
1

(5ψ)5

where

L = ϑ4 − 5λ
4∏

i=1

(5ϑ + i) , with ϑ = λ
d

dλ
.

The operator L is of fourth order and λ = 0 is a regular singular point with all four

indices equal to zero. Thus the solutions near the origin are asymptotic to

1, logλ, log2λ, log3λ .
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The solution that has no logarithm is the series

f0(λ) =

∞∑
m=0

(5m)!

(m!)5
λm .

more generally the solutions are of the form

�0(λ) = f0(λ)

�1(λ) = f0(λ) logλ + f1(λ)

�2(λ) = f0(λ) log2λ + 2f1(λ) logλ + f2(λ)

�3(λ) = f0(λ) log3λ + 3f1(λ) log2λ + 3f2(λ) logλ + f3(λ)

where the fj(λ) are power series. These series will enter into our calculation of the

number of rational points of M. Recall that these solutions may be found by the method

of Frobenius. That is by seeking solutions of the form

�(λ, ε) =

∞∑
m=0

am(ε) λm+ε to the equation L �(λ, ε) = ε4λε .
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Integral Series

We know what the integers mean for theq-expansion of the yukawa coupling:

yttt = 5

(
2πi

5

)3 ψ2

�0(ψ)2(1 − ψ5)

(
dψ

dt

)3

= 5 +

∞∑
k=0

nkk3qk

1 − qk
,

where in this expression

q = exp(2πit) and t =
1

2πi

�1(λ)

�0(λ)
.

Integers however appear also in the mirror map

λ = q+154 q2 + 179139 q3 + 313195944 q4

+ 657313805125 q5 + 1531113959577750 q6

+ 3815672803541261385 q7

+ 9970002717955633142112 q8 + . . . .
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Rational Points

Now ask a very strange (for a physicist) question:

For the quintic M

P (x, ψ) =

5∑
i=1

x5
i − 5ψ x1x2x3x4x5

how many solutions of the equationP (x, ψ) = 0 are there with integer xi and how

does this number vary withψ?

Since thexi are coordinates in a projective space and we are free to multiply the coor-

dinates by a common scale there is no difference between seeking an integral solution

and a rational solution, xi ∈ Q. This formulation is better becauseQ is a field but it is

still very hard to answer in general. An easier but still interesting question is how many

solutions are there over a finite field.
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Field Theory While Standing on One Leg

A field F is a set on which+ and × are defined and have the usual associative and

distributive properties. F is an abelian group with respect to addition andF∗
= F \ {0}

is an abelian group with respect to multiplication.

Finite fields are uniquely classified by the number of elements which ispN for some

prime p and integerN .

The simplest finite field isFp the set of integersmod p

F7

x 0 1 2 3 4 5 6

x−1 * 1 4 5 2 3 6
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An old result, going back to Fermat, isap ≡ a write this

a(ap−1 − 1) ≡ 0

it follows that

ap−1 ≡
{

1, if a �= 0

0, if a = 0 .

There is another elementary fact that is also useful. Consider∑
a∈Fp

an =
∑

a∈Fp

(ba)n = bn
∑

a∈Fp

an .

It follows now that

∑
a∈Fp

an ≡
{

0, if p − 1 does not dividen

−1, if p − 1 dividesn .
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A Zero’th Order Result

Take nowx ∈ F5
p and 5ψ ∈ Fp, (p �= 5) and let

νλ = #{x | P (x, ψ) ≡ 0}, λ =
1

(5ψ)5
.

This number can be computed modp with relative ease

νλ ≡
∑

x∈F5
p

(
1 − P (x, ψ)p−1

)

Expand the power and use the fact that
∑

xn
i ≡

{
0, if p − 1 does not dividen

−1, if p − 1 dividesn .
The result is that

νλ ≡ [p/5]�0(λ) =

[p/5]∑
m=0

(5m)!

(m!)5
λm .
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p-Adic Numbers

νλ is a definite number so we may seek to compute it exactly. We expand

νλ = ν
(0)
λ + ν

(1)
λ p + ν

(2)
λ p2 + ν

(3)
λ p3 + ν

(4)
λ p4 + . . .

with 0 ≤ ν
(j)
λ ≤ p − 1 and evaluatemod p2, mod p3, and so on.

This leads naturally into p-adic analysis. Given anr ∈ Q we write

r =
m

n
=

m0

n0

pα

wherem0, n0 and p have no common factor. The p-adic norm ofr is defined to be

‖r‖p = p−α , ‖0‖p = 0

and is a norm, that is it has the properties:

‖r‖p ≥ 0,

‖r1 r2‖p = ‖r1‖p ‖r2‖p

‖r1 + r2‖p ≤ ‖r1‖p + ‖r2‖p
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Counting the Number of Points Exactly

Denote byνλ the number of solutions to the equationP (x, ψ) = 0 over Fp.

νλ = pf0(Λ) +

(
p

1 − p

)
pf ′

1(Λ) +
1

2!

(
p

1 − p

)2
pf ′′

2 (Λ)

+
1

3!

(
p

1 − p

)3
pf ′′′

3 (Λ) +
1

4!

(
p

1 − p

)4
pf ′′′′

4 (Λ) + O
(
p5

)
.

This expression holds for5� | p − 1. In the expression

Λ = Teich(λ) = lim
n→∞

λpn

and pf0(Λ) =

p−1∑
m=0

(5m)!

(m!)5
Λm .
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Now, as we have said, the number of rational points is determined by the periods and there

are b3 = 2h21 + 2 of these. The Hodge numberh21 counts the number of parameters

on which the complex structure depends and, in simple cases, this corresponds to the

number of ways of deforming the defining polynomial

P (x, c) =
∑
�v

c�v x�v ; x�v = xv1

1 xv2

2 xv3

3 xv4

4 xv5

5 .

The directions in which P (x, c) can be deformed correspond to the monomialsx�v

considered subject to the ideal(∂P/∂xi). A special role is played by fundamental

monomial

Q = x1x2x3x4x5

which is related by mirror symmetry to the K ähler form of the mirror.
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Return now to our special one parameter family of polynomials

P (x, ψ) =

5∑
i=1

x5
i − 5ψ x1x2x3x4x5 .

M has2h21(M) + 2 = 204 = 2 × 100 + 4 periods whileW has2h21(W) + 2 = 4 .

1 −→ Q −→ Q2 −→ Q3

xv −→ Q xv

This leads to 1 fourth order differential operator L�1 and 100 second order operatorsL�v.

There are tenth order monomials that are not included in the above scheme and which

require special attention. The generators of the ideal are

x4
1 
 ψ x2x3x4x5 & cyclic.

Thus

x(4,3,2,1,0) 
 ψ x(0,4,3,2,1) 
 · · · 
 ψ5 x(4,3,2,1,0) .
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We can also perform the sum in our expression for the number of points to give

νλ =

p−1∑
m=0

βm Λm

with coefficients

βm = lim
n→∞

am(1+p+p2+...+pn+1)

am(1+p+p2+...+pn)

= (−1)m G5m G5
−m

When we include the contributions of the other periods for the case5|p − 1 we find

pν∗
λ = (p − 1)5 +

∑
�v

p−2∑
m=0

(−1)m Λm G5m

5∏
j=1

G−(m+kvj)

where k = (p − 1)/5. The contribution of �v = (0, 0, 0, 0, 0) gives our previous

expression. The quintic�v’s correspond to the other 200 periods and give the extra terms

that arise when5|p − 1. These terms have a natural interpretation as the exceptional

divisors of the mirror manifold. The monomial of degree 10 contributes only for the

conifold whenψ5 = 1.
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Rational Points over Fp: Dwork’s Character

Let

Θ : Fp −→ C∗
p

be a non-trivial additive (Θ(x + y) = Θ(x)Θ(y)) character of order p (Θ(x)p = 1).

(This is ap-adic version of a character of a commutative groupG → C.) Thus∑
y∈Fp

Θ(yP (x, ψ)) = p δ(P (x, ψ))

p νλ =
∑

x∈F5

p

∑
y∈Fp

Θ(yP (x, ψ))

Dwork constructed such character in terms of Gauss sums

Gn =
∑

x∈F∗
P

Θ(x) Teichn(x)

and in terms of these one can expand the character in the form

Θ(x) =
1

p − 1

p−2∑
m=0

G−m Teichm(x) .
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Incorporating these considerations

νλ = p4 +
∑

�v γ�v

∑p−2
m=0 β�v,m Teichm(Λ) ,

where theβ�v,m are given in terms of the Gauss sums or, equivalently, in terms ofp-adic

Γ functions.

• For 5 � | (p − 1) we only have a contribution from�v = (0, 0, 0, 0, 0)

• The coefficientsβ�v,m are closely related to the coefficients in the series expansions of the

periods around the regular singular point λ = 0.

Explicitly to order p:

νλ = [p−1]f0(λ
p) + p [p−1]f ′

1(λ
p)

− δp p
∑
�v

γ�v∏5
i=1(vik)!

[p−1]
2F1(a�v, b�v; c�v; λp) + . . .
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The tenth order polynomial �v = (4, 3, 2, 1, 0), corresponds to a “period” that is zero

everywhere, except whenψ5 = 1. For these values ofψ the variety is not smooth

anymore: it has 125 isolated singularities that are double points (“conifold” singularities).

The calcualtion for the number of rational points makes sense even for these singular

cases. A little simplification reveals the contribution toνλ of �v = (4, 3, 2, 1, 0) as

24p2(p − 1)δ(Teich(ψ)5 − 1) .
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The Zeta-FunctionThe Zeta-Function

Consider nowNr(λ) = νλ−1

p−1
which are the numbers ofprojective solutions ofP = 0

over Fpr and form

ζ(T, λ) = exp

( ∞∑
r=1

Nr(λ) T r

r

)
.

If M is a point thenNr = 1 for all r and

∞∑
r=1

NrT
r

r
=

∞∑
r=1

T r

r
= −log(1 − T ) =⇒ ζpt(T ) =

1

1 − T

Thus for a point ∏
p

ζpt(p
−s) =

∏
p

1

1 − p−s
= ζR(s) .
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The Weil Conjectures

• Rationality (Dwork): ζ(T ) is a rational function of T

• Functional equation (Groethendieck):

ζ

(
1

pdT

)
= ±pdχ/2 T χ ζ(T )

whereχ is the Euler characteristic andd is the real dimension ofM.

• Riemann Hypothesis(Deligne):

ζ(T ) =
P1(T )P3(T ) . . . P2d−1(T )

P0(T )P2(T ) . . . P2d(T )

with Pi(T ) a polynomial with coefficients inZ of degreebi. Furthermore

Pi(T ) =

bi∏
j=1

(1−αij T ) , |αij| = pi/2 and P0(T ) = 1−T , P2d(T ) = 1−pdT .
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The ζ-Function

We now work over Fpr and let Nr(ψ) denote the number of projective solutions to

P (x, ψ) = 0. The ζ-function is defined by the expression

ζ(T, ψ) = exp

( ∞∑
r=1

Nr(ψ)T r

r

)

We are led to decomposeNr into a sum of contributions Nr = Nr,0 +
∑

v Nr,v .

ζM(T, ψ) =
R0(T, ψ)

∏
v Rv(T, ψ)

(1 − T )(1 − pT )(1 − p2T )(1 − p3T )

ζW(T, ψ) =
R0(T, ψ)

(1 − T )(1 − pT )101(1 − p2T )101(1 − p3T )
.

In all cases, apart from the conifold,R0 is a quartic

R0 = 1 + a0 T + b0 pT 2 + a0 p3T 3 + p6T 4 .
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The Euler Curves

Classical analysis gives an expression for the hypergeometric functions in terms of Euler’s

integral which is of the form∫
dx x−α/5(1 − x)−β/5(1 − x/ψ5)−(1−β/5) .

If we think of Euler’s integral as
∫

dx

y
then we are led to curves

Eαβ(ψ) : y5 = xα(1 − x)β(1 − x/ψ5)5−β .

v α β

(4, 1, 0, 0, 0) 2 3

(3, 2, 0, 0, 0) 1 4

(3, 1, 1, 0, 0) 2 4

(2, 2, 1, 0, 0) 4 3

Eαβ =


A α + β = 5

B α + β �= 5 and α �= β .
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(5,0,0,0,0)

(4,0,1,0,0)

(3,0,2,0,0)

(2,0,3,0,0)

(1,0,4,0,0)

(0,0,5,0,0)

(4,1,0,0,0)

(3,2,0,0,0)

(2,3,0,0,0)

(1,4,0,0,0)

(0,5,0,0,0)

(3,1,1,0,0)

(2,2,1,0,0)(2,1,2,0,0)

(1,3,1,0,0) (1,2,2,0,0)(1,1,3,0,0)

(0,4,1,0,0)(0,3,2,0,0) (0,2,3,0,0) (0,1,4,0,0)
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For the curve A there is a correspondingζ-function

ζA(T ) =
RA(T )2

(1 − T )(1 − pT )
.

Now the existence of nontrivial fifth roots of unity is important for the mirror construction.

Such roots of unity exist inFpr precisely when5|pr − 1. For given p let ρ = 1, 2 or 4

be the smallestr for which 5|pr − 1.

The R�v pair up in the following way:

R(4,1,0,0,0)(T ) R(3,2,0,0,0)(T ) = RA(pρT ρ)1/ρ

R(3,1,1,0,0)(T ) R(2,2,1,0,0)(T ) = RB(pρT ρ)1/ρ .

So theζ-function for M takes the form

ζM(T, ψ) =
R0(T, ψ) RA(pρT ρ, ψ)

30
ρ RB(pρT ρ, ψ)

20
ρ

(1 − T )(1 − pT )(1 − p2T )(1 − p3T )
.
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The Conifold

For the conifold ψ5 = 1 the ζ-function seems to be especially simple

ζ(T, 1) =
(1 − ε pT ) (1 − ap T + p3T 2) (1 − pT )100

(1 − T )(1 − pT )(1 − p2T )(1 − p3T ) (1 − p2T )24
; ρ = 1

where ε =
(

5

p

)
= ±1 and ap is the p-th coefficient in the q-expansion of the eigen-

form, g, found by Schoen; it is the unique cusp form of weight4 for the group Γ0(25).

g = η(q5)4
[
η(q)4 + 5η(q)3η(q25) + 20η(q)2η(q25)2 + 25η(q)η(q25)3 + 25η(q25)4

]
= q + q2 + 7 q3 − 7 q4 + 7 q6 + 6 q7 − 15 q8 + 22 q9 − 43 q11 − 49 q12

− 28 q13 + 6 q14 + 41 q16 + 91 q17 + 22 q18 − 35 q19 + 42 q21 − 43 q22

+ 162 q23 − 105 q24 − 28 q26 − 35 q27 − 42 q28 + 160 q29 + 42 q31 + · · ·
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125S3’s are blown down but only 101 are independent so 24 4-cycles are created.

24× 24×−→

S3

4-chain 4-cycle

ζ(T, 1) =
(1 − ap T + p3T 2) (1 − pT )100

(1 − T )(1 − p2T )25(1 − p3T )
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Now we resolve 125 nodes withP1’s, but there are 100 relations so we destroy 100 3-cycles.

100× 100×−→

S2

3-cycle 3-chain

ζ(T, 1) =
(1 − ap T + p3T 2) (1 − pT )100

(1 − T )(1 − pT )125(1 − p2T )25(1 − p3T )

=
(1 − ap T + p3T 2)

(1 − T )(1 − pT )25(1 − p2T )25(1 − p3T )
.
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The ζ-Function and Mirror Symmetry

We now work over Fpr and let Nr(ψ) denote the number of projective solutions to

P (x, ψ) = 0.

ζ(T, ψ) = exp

( ∞∑
r=1

Nr(ψ)T r

r

)
As defined theζ-function does not respect mirror symmetry

ζ(T ) =
Numerator of deg.2h21 + 2 depending on the cpx. structure ofM

Denominator of deg.2h11 + 2
.

Explicitly for the quintic we have

ζM(T, ψ) =
R0(T, ψ) RA(pρT ρ, ψ)

20
ρ RB(pρT ρ, ψ)

30
ρ

(1 − T )(1 − pT )(1 − p2T )(1 − p3T )

ζW(T, ψ) =
R0(T, ψ)

(1 − T )(1 − pT )101(1 − p2T )101(1 − p3T )
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The 5-adic Limit
The desired relations are true in the 5-adic limit. More precisely for allp and ψ

R0(T, ψ) = (1 − T )(1 − p T )(1 − p2T )(1 − p3T ) + O
(
52

)
RA(T, ψ)20RB(T, ψ)30 = (1 − p T )100(1 − p2T )100 + O

(
52

)
so that

ζW =
1

ζM
+ O

(
52

)
Compare this with the quantum corrections to the classical Yukawa coupling which we

write in the form

yttt

y
(0)
ttt

= 1 +
1

5

∞∑
k=0

nkk3qk

1 − qk
= 1 + O

(
52

)
since Lian and Yau have shown that53|nkk3 for eachk.


