Arithmetic of Calabi-Yau Manifolds

with
P. Candelas and F. Rodriguez Villegas

AIMS:

- To explain the fact that the periods of a Calabi-Yau manifold in terms of which we compute many observables of the effective low energy limit of string theory encode important arithmetic information about the manifold.
- To speculate about the role of 'quantum corrections' and mirror symmetry.

Periods of the Quintic

Consider for definiteness, the one parameter family of quintics in \mathbb{P}_{4}

$$
\mathcal{M}: P(x, \psi)=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}
$$

\mathcal{M} has $h^{11}=1$ and $h^{21}=101$.
In this simple case there is a simple relation between \mathcal{M} and its mirror

$$
\begin{aligned}
\mathcal{W} & =\mathcal{M} / \Gamma \\
\Gamma:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & \mapsto\left(\zeta^{n_{1}} x_{1}, \zeta^{n_{2}} x_{2}, \zeta^{n_{3}} x_{3}, \zeta^{n_{4}} x_{4}, \zeta^{n_{5}} x_{5}\right)
\end{aligned}
$$

$$
\text { where } \zeta^{5}=1 \text { and } \sum_{i} n_{i} \equiv 1 \bmod 5
$$

Parametrise the deformations of the complex structure by the periods of the holomorphic (3, 0)-form Ω

$$
\varpi_{j}(\psi)=\int_{\gamma_{j}} \Omega, \quad \forall \quad \gamma_{j} \in H_{3}(\mathcal{M})
$$

\mathcal{M} has $h^{21}=101$ and $204=2 \times 100+4$ periods while \mathcal{W} has $h^{21}=1$ and 4 periods.
These periods are (generalised) hypergeometric functions and satisfy a differential equation of order b_{3}. In the case of the principal periods

$$
\mathcal{L} \varpi(\lambda)=0 ; \quad \lambda=\frac{1}{(5 \psi)^{5}}
$$

where

$$
\mathcal{L}=\vartheta^{4}-5 \lambda \prod_{i=1}^{4}(5 \vartheta+i), \quad \text { with } \quad \vartheta=\lambda \frac{d}{d \lambda}
$$

The operator \mathcal{L} is of fourth order and $\lambda=0$ is a regular singular point with all four indices equal to zero. Thus the solutions near the origin are asymptotic to

$$
1, \log \lambda, \log ^{2} \lambda, \log ^{3} \lambda
$$

The solution that has no logarithm is the series

$$
f_{0}(\lambda)=\sum_{m=0}^{\infty} \frac{(5 m)!}{(m!)^{5}} \lambda^{m}
$$

more generally the solutions are of the form

$$
\begin{aligned}
& \varpi_{0}(\lambda)=f_{0}(\lambda) \\
& \varpi_{1}(\lambda)=f_{0}(\lambda) \log \lambda+f_{1}(\lambda) \\
& \varpi_{2}(\lambda)=f_{0}(\lambda) \log ^{2} \lambda+2 f_{1}(\lambda) \log \lambda+f_{2}(\lambda) \\
& \varpi_{3}(\lambda)=f_{0}(\lambda) \log ^{3} \lambda+3 f_{1}(\lambda) \log ^{2} \lambda+3 f_{2}(\lambda) \log \lambda+f_{3}(\lambda)
\end{aligned}
$$

where the $f_{j}(\lambda)$ are power series. These series will enter into our calculation of the number of rational points of \mathcal{M}. Recall that these solutions may be found by the method of Frobenius. That is by seeking solutions of the form

$$
\varpi(\lambda, \varepsilon)=\sum_{m=0}^{\infty} a_{m}(\varepsilon) \lambda^{m+\varepsilon} \text { to the equation } \mathcal{L} \varpi(\lambda, \varepsilon)=\varepsilon^{4} \lambda^{\varepsilon}
$$

Integral Series

We know what the integers mean for the q-expansion of the yukawa coupling:

$$
y_{t t t}=5\left(\frac{2 \pi i}{5}\right)^{3} \frac{\psi^{2}}{\varpi_{0}(\psi)^{2}\left(1-\psi^{5}\right)}\left(\frac{d \psi}{d t}\right)^{3}=5+\sum_{k=0}^{\infty} \frac{n_{k} k^{3} q^{k}}{1-q^{k}}
$$

where in this expression

$$
q=\exp (2 \pi i t) \text { and } t=\frac{1}{2 \pi i} \frac{\varpi_{1}(\lambda)}{\varpi_{0}(\lambda)}
$$

Integers however appear also in the mirror map

$$
\begin{aligned}
\lambda=q+ & 154 q^{2}+179139 q^{3}+313195944 q^{4} \\
& +657313805125 q^{5}+1531113959577750 q^{6} \\
& +3815672803541261385 q^{7} \\
& +9970002717955633142112 q^{8}+\ldots
\end{aligned}
$$

Rational Points

Now ask a very strange (for a physicist) question:
For the quintic \mathcal{M}

$$
P(x, \psi)=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}
$$

how many solutions of the equation $P(x, \psi)=0$ are there with integer x_{i} and how does this number vary with ψ ?

Since the x_{i} are coordinates in a projective space and we are free to multiply the coordinates by a common scale there is no difference between seeking an integral solution and a rational solution, $x_{i} \in \mathbb{Q}$. This formulation is better because \mathbb{Q} is a field but it is still very hard to answer in general. An easier but still interesting question is how many solutions are there over a finite field.

Field Theory While Standing on One Leg

A field \mathbb{F} is a set on which + and \times are defined and have the usual associative and distributive properties. \mathbb{F} is an abelian group with respect to addition and $\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}$ is an abelian group with respect to multiplication.

Finite fields are uniquely classified by the number of elements which is p^{N} for some prime p and integer N.

The simplest finite field is \mathbb{F}_{p} the set of integers mod p

\mathbb{F}_{7}							
x	0	1	2	3	4	5	6
x^{-1}	$*$	1	4	5	2	3	6

An old result, going back to Fermat, is $a^{p} \equiv a$ write this

$$
a\left(a^{p-1}-1\right) \equiv 0
$$

it follows that

$$
a^{p-1} \equiv\left\{\begin{array}{l}
1, \text { if } a \neq 0 \\
0, \text { if } a=0
\end{array}\right.
$$

There is another elementary fact that is also useful. Consider

$$
\sum_{a \in \mathbb{F}_{\mathfrak{p}}} a^{n}=\sum_{a \in \mathbb{F}_{\mathfrak{p}}}(b a)^{n}=b^{n} \sum_{a \in \mathbb{F}_{\mathfrak{p}}} a^{n}
$$

It follows now that

$$
\sum_{a \in \mathbb{F}_{p}} a^{n} \equiv\left\{\begin{array}{r}
0, \text { if } p-1 \text { does not divide } n \\
-1, \text { if } p-1 \text { divides } n
\end{array}\right.
$$

A Zero'th Order Result

Take now $x \in \mathbb{F}_{p}^{5}$ and $5 \psi \in \mathbb{F}_{p},(p \neq 5)$ and let

$$
\nu_{\lambda}=\#\{x \mid P(x, \psi) \equiv 0\}, \quad \lambda=\frac{1}{(5 \psi)^{5}}
$$

This number can be computed $\bmod p$ with relative ease

$$
\nu_{\lambda} \equiv \sum_{x \in \mathbb{F}_{p}^{5}}\left(1-P(x, \psi)^{p-1}\right)
$$

Expand the power and use the fact that $\sum x_{i}^{n} \equiv\left\{\begin{array}{r}0, \text { if } p-1 \text { does not divide } n \\ -1, \text { if } p-1 \text { divides } n .\end{array}\right.$
The result is that

$$
\nu_{\lambda} \equiv{ }^{[p / 5]} \varpi_{0}(\lambda)=\sum_{m=0}^{[p / 5]} \frac{(5 m)!}{(m!)^{5}} \lambda^{m}
$$

p-Adic Numbers

ν_{λ} is a definite number so we may seek to compute it exactly. We expand

$$
\nu_{\lambda}=\nu_{\lambda}^{(0)}+\nu_{\lambda}^{(1)} p+\nu_{\lambda}^{(2)} p^{2}+\nu_{\lambda}^{(3)} p^{3}+\nu_{\lambda}^{(4)} p^{4}+\ldots
$$

with $0 \leq \nu_{\lambda}^{(j)} \leq p-1$ and evaluate $\bmod p^{2}, \bmod p^{3}$, and so on.
This leads naturally into p-adic analysis. Given an $r \in \mathbb{Q}$ we write

$$
r=\frac{m}{n}=\frac{m_{0}}{n_{0}} p^{\alpha}
$$

where m_{0}, n_{0} and p have no common factor. The p-adic norm of r is defined to be

$$
\|r\|_{p}=p^{-\alpha}, \quad\|0\|_{p}=0
$$

and is a norm, that is it has the properties:

$$
\begin{aligned}
\|r\|_{p} & \geq 0 \\
\left\|r_{1} r_{2}\right\|_{p} & =\left\|r_{1}\right\|_{p}\left\|r_{2}\right\|_{p} \\
\left\|r_{1}+r_{2}\right\|_{p} & \leq\left\|r_{1}\right\|_{p}+\left\|r_{2}\right\|_{p}
\end{aligned}
$$

Counting the Number of Points Exactly

Denote by ν_{λ} the number of solutions to the equation $P(x, \psi)=0$ over \mathbb{F}_{p}.

$$
\begin{aligned}
\nu_{\lambda}= & { }^{p} f_{0}(\Lambda)+\left(\frac{p}{1-p}\right)^{p} f_{1}^{\prime}(\Lambda)+\frac{1}{2!}\left(\frac{p}{1-p}\right)^{2}{ }^{p} f_{2}^{\prime \prime}(\Lambda) \\
& +\frac{1}{3!}\left(\frac{p}{1-p}\right)^{3}{ }^{p} f_{3}^{\prime \prime \prime}(\Lambda)+\frac{1}{4!}\left(\frac{p}{1-p}\right)^{4}{ }^{p} f_{4}^{\prime \prime \prime \prime}(\Lambda)+\mathcal{O}\left(p^{5}\right) .
\end{aligned}
$$

This expression holds for $5 \not \backslash p-1$. In the expression

$$
\Lambda=\operatorname{Teich}(\lambda)=\lim _{n \rightarrow \infty} \lambda^{p^{n}} \text { and } \quad{ }^{p} f_{0}(\Lambda)=\sum_{m=0}^{p-1} \frac{(5 m)!}{(m!)^{5}} \Lambda^{m}
$$

Now, as we have said, the number of rational points is determined by the periods and there are $b^{3}=2 h^{21}+2$ of these. The Hodge number h^{21} counts the number of parameters on which the complex structure depends and, in simple cases, this corresponds to the number of ways of deforming the defining polynomial

$$
P(x, c)=\sum_{\vec{v}} c_{\vec{v}} x^{\vec{v}} ; x^{\vec{v}}=x_{1}^{v_{1}} x_{2}^{v_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} x_{5}^{v_{5}}
$$

The directions in which $P(x, c)$ can be deformed correspond to the monomials $x^{\vec{v}}$ considered subject to the ideal $\left(\partial P / \partial x_{i}\right)$. A special role is played by fundamental monomial

$$
Q=x_{1} x_{2} x_{3} x_{4} x_{5}
$$

which is related by mirror symmetry to the Kähler form of the mirror.

Return now to our special one parameter family of polynomials

$$
P(x, \psi)=\sum_{i=1}^{5} x_{i}^{5}-5 \psi x_{1} x_{2} x_{3} x_{4} x_{5}
$$

\mathcal{M} has $2 h^{21}(\mathcal{M})+2=204=2 \times 100+4$ periods while \mathcal{W} has $2 h^{21}(\mathcal{W})+2=4$.

$$
\begin{aligned}
1 \longrightarrow Q & \longrightarrow Q^{2} \longrightarrow Q^{3} \\
x^{v} & \longrightarrow Q x^{v}
\end{aligned}
$$

This leads to 1 fourth order differential operator $\mathcal{L}_{\overrightarrow{1}}$ and 100 second order operators $\mathcal{L}_{\vec{v}}$.
There are tenth order monomials that are not included in the above scheme and which require special attention. The generators of the ideal are

$$
x_{1}^{4} \simeq \psi x_{2} x_{3} x_{4} x_{5} \quad \& \text { cyclic } .
$$

Thus

$$
x^{(4,3,2,1,0)} \simeq \psi x^{(0,4,3,2,1)} \simeq \cdots \simeq \psi^{5} x^{(4,3,2,1,0)}
$$

We can also perform the sum in our expression for the number of points to give

$$
\nu_{\lambda}=\sum_{m=0}^{p-1} \beta_{m} \Lambda^{m}
$$

with coefficients

$$
\beta_{m}=\lim _{n \rightarrow \infty} \frac{a_{m\left(1+p+p^{2}+\ldots+p^{n+1}\right)}}{a_{m\left(1+p+p^{2}+\ldots+p^{n}\right)}}=(-1)^{m} G_{5 m} G_{-m}^{5}
$$

When we include the contributions of the other periods for the case $5 \mid p-1$ we find

$$
p \nu_{\lambda}^{*}=(p-1)^{5}+\sum_{\vec{v}} \sum_{m=0}^{p-2}(-1)^{m} \Lambda^{m} G_{5 m} \prod_{j=1}^{5} G_{-\left(m+k v_{j}\right)}
$$

where $k=(p-1) / 5$. The contribution of $\vec{v}=(0,0,0,0,0)$ gives our previous expression. The quintic \vec{v} 's correspond to the other 200 periods and give the extra terms that arise when $5 \mid p-1$. These terms have a natural interpretation as the exceptional divisors of the mirror manifold. The monomial of degree 10 contributes only for the conifold when $\psi^{5}=1$.

Rational Points over \mathbb{F}_{p} : Dwork's Character

Let

$$
\Theta: \mathbb{F}_{p} \longrightarrow \mathbb{C}_{p}^{*}
$$

be a non-trivial additive $(\Theta(x+y)=\Theta(x) \Theta(y))$ character of order $p\left(\Theta(x)^{p}=1\right)$. (This is a p-adic version of a character of a commutative group $G \rightarrow \mathbb{C}$.) Thus

$$
\begin{aligned}
\sum_{y \in \mathbb{F}_{p}} \Theta(y P(x, \psi)) & =p \delta(P(x, \psi)) \\
p \nu_{\lambda} & =\sum_{x \in \mathbb{F}_{p}^{5}} \sum_{y \in \mathbb{F}_{p}} \Theta(y P(x, \psi))
\end{aligned}
$$

Dwork constructed such character in terms of Gauss sums

$$
G_{n}=\sum_{x \in \mathbb{F}_{P}^{*}} \Theta(x) \operatorname{Teich}^{n}(x)
$$

and in terms of these one can expand the character in the form

$$
\Theta(x)=\frac{1}{p-1} \sum_{m=0}^{p-2} G_{-m} \operatorname{Teich}^{m}(x)
$$

Incorporating these considerations

$$
\nu_{\lambda}=p^{4}+\sum_{\vec{v}} \gamma_{\vec{v}} \sum_{m=0}^{p-2} \beta_{\vec{v}, m} \operatorname{Teich}^{m}(\Lambda)
$$

where the $\beta_{\vec{v}, m}$ are given in terms of the Gauss sums or, equivalently, in terms of \boldsymbol{p}-adic Γ functions.

- For $5 \not X(p-1)$ we only have a contribution from $\vec{v}=(0,0,0,0,0)$
- The coefficients $\beta_{\vec{v}, m}$ are closely related to the coefficients in the series expansions of the periods around the regular singular point $\lambda=0$.

Explicitly to order \boldsymbol{p} :

$$
\begin{aligned}
\nu_{\lambda}= & { }^{[p-1]} f_{0}\left(\lambda^{p}\right)+p^{[p-1]} f_{1}^{\prime}\left(\lambda^{p}\right) \\
& -\delta_{p} p \sum_{\vec{v}} \frac{\gamma_{\vec{v}}}{\prod_{i=1}^{5}\left(v_{i} k\right)!}{ }^{[p-1]}{ }_{2} F_{1}\left(a_{\vec{v}}, b_{\vec{v}} ; c_{\vec{v}} ; \lambda^{p}\right)+\ldots
\end{aligned}
$$

The tenth order polynomial $\vec{v}=(4,3,2,1,0)$, corresponds to a "period" that is zero everywhere, except when $\psi^{5}=1$. For these values of ψ the variety is not smooth anymore: it has 125 isolated singularities that are double points ("conifold" singularities). The calcualtion for the number of rational points makes sense even for these singular cases. A little simplification reveals the contribution to ν_{λ} of $\vec{v}=(4,3,2,1,0)$ as

$$
24 p^{2}(p-1) \delta\left(T e i c h(\psi)^{5}-1\right)
$$

The Zeta-Function

Consider now $N_{r}(\lambda)=\frac{\nu_{\lambda}-1}{p-1}$ which are the numbers of projective solutions of $P=0$ over $\mathbb{F}_{p^{r}}$ and form

$$
\zeta(T, \lambda)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}(\lambda) T^{r}}{r}\right)
$$

If \mathcal{M} is a point then $N_{r}=1$ for all r and

$$
\sum_{r=1}^{\infty} \frac{N_{r} T^{r}}{r}=\sum_{r=1}^{\infty} \frac{T^{r}}{r}=-\log (1-T) \Longrightarrow \zeta_{\mathrm{pt}}(T)=\frac{1}{1-T}
$$

Thus for a point

$$
\prod_{p} \zeta_{\mathrm{pt}}\left(p^{-s}\right)=\prod_{p} \frac{1}{1-p^{-s}}=\zeta_{R}(s)
$$

The Weil Conjectures

- Rationality (Dwork): $\zeta(T)$ is a rational function of T
- Functional equation (Groethendieck):

$$
\zeta\left(\frac{1}{p^{d} T}\right)= \pm p^{d \chi / 2} T^{\chi} \zeta(T)
$$

where χ is the Euler characteristic and d is the real dimension of \mathcal{M}.

- Riemann Hypothesis (Deligne):

$$
\zeta(T)=\frac{P_{1}(T) P_{3}(T) \ldots P_{2 d-1}(T)}{P_{0}(T) P_{2}(T) \ldots P_{2 d}(T)}
$$

with $P_{i}(T)$ a polynomial with coefficients in \mathbb{Z} of degree b_{i}. Furthermore

$$
P_{i}(T)=\prod_{j=1}^{b_{i}}\left(1-\alpha_{i j} T\right),\left|\alpha_{i j}\right|=p^{i / 2} \text { and } P_{0}(T)=1-T, P_{2 d}(T)=1-p^{d} T
$$

The ζ-Function

We now work over $\mathbb{F}_{p^{r}}$ and let $N_{r}(\psi)$ denote the number of projective solutions to $P(x, \psi)=0$. The ζ-function is defined by the expression

$$
\zeta(T, \psi)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}(\psi) T^{r}}{r}\right)
$$

We are led to decompose N_{r} into a sum of contributions $N_{r}=N_{r, 0}+\sum_{v} N_{r, v}$.

$$
\begin{aligned}
\zeta_{\mathcal{M}}(T, \psi) & =\frac{R_{0}(T, \psi) \prod_{v} R_{v}(T, \psi)}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)} \\
\zeta_{\mathcal{W}}(T, \psi) & =\frac{R_{0}(T, \psi)}{(1-T)(1-p T)^{101}\left(1-p^{2} T\right)^{101}\left(1-p^{3} T\right)}
\end{aligned}
$$

In all cases, apart from the conifold, R_{0} is a quartic

$$
R_{0}=1+a_{0} T+b_{0} p T^{2}+a_{0} p^{3} T^{3}+p^{6} T^{4}
$$

The Euler Curves

Classical analysis gives an expression for the hypergeometric functions in terms of Euler's integral which is of the form

$$
\int d x x^{-\alpha / 5}(1-x)^{-\beta / 5}\left(1-x / \psi^{5}\right)^{-(1-\beta / 5)}
$$

If we think of Euler's integral as $\int \frac{d x}{y}$ then we are led to curves

$$
\mathcal{E}_{\alpha \beta}(\psi): \quad y^{5}=x^{\alpha}(1-x)^{\beta}\left(1-x / \psi^{5}\right)^{5-\beta}
$$

v	α	β
$(4,1,0,0,0)$	2	3
$(3,2,0,0,0)$	1	4
$(3,1,1,0,0)$	2	4
$(2,2,1,0,0)$	4	3

$$
\mathcal{E}_{\alpha \beta}= \begin{cases}\mathcal{A} & \alpha+\beta=5 \\ \mathcal{B} & \alpha+\beta \neq 5 \text { and } \alpha \neq \beta\end{cases}
$$

For the curve \mathcal{A} there is a corresponding ζ-function

$$
\zeta_{\mathcal{A}}(T)=\frac{R_{\mathcal{A}}(T)^{2}}{(1-T)(1-p T)}
$$

Now the existence of nontrivial fifth roots of unity is important for the mirror construction. Such roots of unity exist in $\mathbb{F}_{p^{r}}$ precisely when $5 \mid p^{r}-1$. For given p let $\rho=1,2$ or 4 be the smallest r for which $5 \mid p^{r}-1$.

The $R_{\vec{v}}$ pair up in the following way:

$$
\begin{aligned}
R_{(4,1,0,0,0)}(T) R_{(3,2,0,0,0)}(T) & =R_{\mathcal{A}}\left(p^{\rho} T^{\rho}\right)^{1 / \rho} \\
R_{(3,1,1,0,0)}(T) R_{(2,2,1,0,0)}(T) & =R_{\mathcal{B}}\left(p^{\rho} T^{\rho}\right)^{1 / \rho}
\end{aligned}
$$

So the ζ-function for \mathcal{M} takes the form

$$
\zeta_{\mathcal{M}}(T, \psi)=\frac{R_{0}(T, \psi) R_{\mathcal{A}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{30}{\rho}} R_{\mathcal{B}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{20}{\rho}}}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)}
$$

The Conifold

For the conifold $\psi^{5}=1$ the ζ-function seems to be especially simple

$$
\zeta(T, 1)=\frac{(1-\epsilon p T)\left(1-a_{p} T+p^{3} T^{2}\right)(1-p T)^{100}}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)\left(1-p^{2} T\right)^{24}} ; \rho=1
$$

where $\epsilon=\left(\frac{5}{p}\right)= \pm 1$ and a_{p} is the p-th coefficient in the q-expansion of the eigenform, g, found by Schoen; it is the unique cusp form of weight 4 for the group $\Gamma_{0}(25)$.

$$
\begin{aligned}
g= & \eta\left(q^{5}\right)^{4}\left[\eta(q)^{4}+5 \eta(q)^{3} \eta\left(q^{25}\right)+20 \eta(q)^{2} \eta\left(q^{25}\right)^{2}+25 \eta(q) \eta\left(q^{25}\right)^{3}+25 \eta\left(q^{25}\right)^{4}\right] \\
= & q+q^{2}+7 q^{3}-7 q^{4}+7 q^{6}+6 q^{7}-15 q^{8}+22 q^{9}-43 q^{11}-49 q^{12} \\
& -28 q^{13}+6 q^{14}+41 q^{16}+91 q^{17}+22 q^{18}-35 q^{19}+42 q^{21}-43 q^{22} \\
& +162 q^{23}-105 q^{24}-28 q^{26}-35 q^{27}-42 q^{28}+160 q^{29}+42 q^{31}+\cdots
\end{aligned}
$$

$125 S^{3}$,s are blown down but only 101 are independent so 244 -cycles are created.

$$
\zeta(T, 1)=\frac{\left(1-a_{p} T+p^{3} T^{2}\right)(1-p T)^{100}}{(1-T)\left(1-p^{2} T\right)^{25}\left(1-p^{3} T\right)}
$$

Now we resolve 125 nodes with \mathbb{P}^{1} 's, but there are 100 relations so we destroy 100 3-cycles.

$$
\begin{aligned}
\zeta(T, 1) & =\frac{\left(1-a_{p} T+p^{3} T^{2}\right)(1-p T)^{100}}{(1-T)(1-p T)^{125}\left(1-p^{2} T\right)^{25}\left(1-p^{3} T\right)} \\
& =\frac{\left(1-a_{p} T+p^{3} T^{2}\right)}{(1-T)(1-p T)^{25}\left(1-p^{2} T\right)^{25}\left(1-p^{3} T\right)}
\end{aligned}
$$

The ζ-Function and Mirror Symmetry

We now work over $\mathbb{F}_{p^{r}}$ and let $N_{r}(\psi)$ denote the number of projective solutions to $P(x, \psi)=0$.

$$
\zeta(T, \psi)=\exp \left(\sum_{r=1}^{\infty} \frac{N_{r}(\psi) T^{r}}{r}\right)
$$

As defined the ζ-function does not respect mirror symmetry

$$
\zeta(T)=\frac{\text { Numerator of deg. } 2 h^{21}+2 \text { depending on the cpx. structure of } \mathcal{M}}{\text { Denominator of deg. } 2 h^{11}+2}
$$

Explicitly for the quintic we have

$$
\begin{aligned}
\zeta_{\mathcal{M}}(T, \psi) & =\frac{R_{0}(T, \psi) R_{\mathcal{A}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{20}{\rho}} R_{\mathcal{B}}\left(p^{\rho} T^{\rho}, \psi\right)^{\frac{30}{\rho}}}{(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)} \\
\zeta_{\mathcal{W}}(T, \psi) & =\frac{R_{0}(T, \psi)}{(1-T)(1-p T)^{101}\left(1-p^{2} T\right)^{101}\left(1-p^{3} T\right)}
\end{aligned}
$$

The 5-adic Limit

The desired relations are true in the $\mathbf{5}$-adic limit. More precisely for all p and ψ

$$
\begin{aligned}
R_{0}(T, \psi) & =(1-T)(1-p T)\left(1-p^{2} T\right)\left(1-p^{3} T\right)+\mathcal{O}\left(5^{2}\right) \\
R_{\mathcal{A}}(T, \psi)^{20} R_{\mathcal{B}}(T, \psi)^{30} & =(1-p T)^{100}\left(1-p^{2} T\right)^{100}+\mathcal{O}\left(5^{2}\right)
\end{aligned}
$$

so that

$$
\zeta_{\mathcal{W}}=\frac{1}{\zeta_{\mathcal{M}}}+\mathcal{O}\left(5^{2}\right)
$$

Compare this with the quantum corrections to the classical Yukawa coupling which we write in the form

$$
\frac{y_{t t t}}{y_{t t t}^{(0)}}=1+\frac{1}{5} \sum_{k=0}^{\infty} \frac{n_{k} k^{3} q^{k}}{1-q^{k}}=1+\mathcal{O}\left(5^{2}\right)
$$

since Lian and Yau have shown that $5^{3} \mid n_{k} k^{3}$ for each k.

