Arithmetic of Calabi-Yau Manifolds

with P. Candelas and F. Rodriguez Villegas

AIMS:

- To explain the fact that the periods of a Calabi–Yau manifold in terms of which we compute many observables of the effective low energy limit of string theory encode important arithmetic information about the manifold.
- To speculate about the role of 'quantum corrections' and mirror symmetry.

Periods of the Quintic

Consider for definiteness, the one parameter family of quintics in \mathbb{P}_4

$$\mathcal{M} : P(x, \psi) = \sum_{i=1}^{5} x_{i}^{5} - 5\psi x_{1}x_{2}x_{3}x_{4}x_{5}.$$

M has $h^{11} = 1$ and $h^{21} = 101$.

In this simple case there is a simple relation between $\mathcal M$ and its mirror

 $\mathcal{W} = \mathcal{M}/\Gamma$

 $\Gamma \,:\, (x_1,\,x_2,\,x_3,\,x_4,\,x_5)\,\mapsto\, (\zeta^{n_1}x_1,\,\zeta^{n_2}x_2,\,\zeta^{n_3}x_3,\,\zeta^{n_4}x_4,\,\zeta^{n_5}x_5)$

where $\zeta^5 = 1$ and $\sum_i n_i \equiv 1 \mod 5$.

Parametrise the deformations of the complex structure by the periods of the holomorphic (3, 0)-form Ω

$$arpi_j(\psi) = \int_{\gamma_j} \Omega \,, \qquad \quad orall \ \ \gamma_j \in H_3(\mathcal{M})$$

 \mathcal{M} has $h^{21} = 101$ and $204 = 2 \times 100 + 4$ periods while \mathcal{W} has $h^{21} = 1$ and 4 periods.

These periods are (generalised) hypergeometric functions and satisfy a differential equation of order b_3 . In the case of the principal periods

$${\cal L}\,arpi(\lambda)\ =\ 0\ ; \quad \lambda\ =\ rac{1}{(5\psi)^5}$$

where

$$\mathcal{L} \;=\; artheta^4 - 5\lambda \, \prod_{i=1}^4 (5artheta + i) \;, \quad ext{with} \;\; artheta = \lambda rac{d}{d\lambda} \,.$$

The operator \mathcal{L} is of fourth order and $\lambda = 0$ is a regular singular point with all four indices equal to zero. Thus the solutions near the origin are asymptotic to

 $1, \log \lambda, \log^2 \lambda, \log^3 \lambda$.

The solution that has no logarithm is the series

$$f_0(\lambda) \; = \; \sum_{m=0}^\infty rac{(5m)!}{(m!)^5} \, \lambda^m \; .$$

more generally the solutions are of the form

$$egin{aligned} arpi_0(\lambda) &= f_0(\lambda) \ arpi_1(\lambda) &= f_0(\lambda) \log \lambda + f_1(\lambda) \ arpi_2(\lambda) &= f_0(\lambda) \log^2 \lambda + 2 f_1(\lambda) \log \lambda + f_2(\lambda) \ arpi_3(\lambda) &= f_0(\lambda) \log^3 \lambda + 3 f_1(\lambda) \log^2 \lambda + 3 f_2(\lambda) \log \lambda + f_3(\lambda) \end{aligned}$$

where the $f_j(\lambda)$ are power series. These series will enter into our calculation of the number of rational points of \mathcal{M} . Recall that these solutions may be found by the method of Frobenius. That is by seeking solutions of the form

$$\varpi(\lambda,\varepsilon) = \sum_{m=0}^{\infty} a_m(\varepsilon) \, \lambda^{m+\varepsilon}$$
 to the equation $\mathcal{L} \, \varpi(\lambda,\varepsilon) = \varepsilon^4 \lambda^{\varepsilon}$

Integral Series

We know what the integers mean for the *q*-expansion of the yukawa coupling:

$$y_{ttt} \ = \ 5 \left(rac{2\pi i}{5}
ight)^3 rac{\psi^2}{arpi_0(\psi)^2(1-\psi^5)} \left(rac{d\psi}{dt}
ight)^3 \ = \ 5 + \sum_{k=0}^\infty rac{n_k k^3 q^k}{1-q^k} \, ,$$

where in this expression

$$q \ = \ \exp(2\pi i t) \ \ ext{and} \ \ t \ = \ rac{1}{2\pi i} \ rac{arpi_1(\lambda)}{arpi_0(\lambda)} \ .$$

Integers however appear also in the mirror map

$$egin{aligned} \lambda &= q + 154 \, q^2 + 179139 \, q^3 + 313195944 \, q^4 \ &+ 657313805125 \, q^5 + 1531113959577750 \, q^6 \ &+ 3815672803541261385 \, q^7 \ &+ 9970002717955633142112 \, q^8 + \dots . \end{aligned}$$

Now ask a very strange (for a physicist) question:

For the quintic \mathcal{M}

$$P(x,\psi) = \sum_{i=1}^{5} x_{i}^{5} - 5\psi x_{1}x_{2}x_{3}x_{4}x_{5}$$

how many solutions of the equation $P(x, \psi) = 0$ are there with integer x_i and how does this number vary with ψ ?

Since the x_i are coordinates in a projective space and we are free to multiply the coordinates by a common scale there is no difference between seeking an integral solution and a rational solution, $x_i \in \mathbb{Q}$. This formulation is better because \mathbb{Q} is a field but it is still very hard to answer in general. An easier but still interesting question is how many solutions are there over a finite field.

Field Theory While Standing on One Leg

A field \mathbb{F} is a set on which + and \times are defined and have the usual associative and distributive properties. \mathbb{F} is an abelian group with respect to addition and $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$ is an abelian group with respect to multiplication.

Finite fields are uniquely classified by the number of elements which is p^N for some prime p and integer N.

The simplest finite field is \mathbb{F}_p the set of integers mod p

\mathbb{F}_7								
\boldsymbol{x}	0	1	2	3	4	5	6	
x^{-1}	*	1	4	5	2	3	6	

An old result, going back to Fermat, is $a^p \equiv a$ write this

$$a(a^{p-1}-1) \equiv 0$$

it follows that

$$a^{p-1}\equiv egin{cases} 1, ext{ if } a
eq 0 \ 0, ext{ if } a=0 \ . \end{cases}$$

There is another elementary fact that is also useful. Consider

$$\sum_{a\in\mathbb{F}_p} a^n = \sum_{a\in\mathbb{F}_p} (ba)^n = b^n \sum_{a\in\mathbb{F}_p} a^n.$$

It follows now that

$$\sum_{a\in \mathbb{F}_p}\,a^n\,\equiv\,\left\{egin{array}{c} 0,\, ext{if}\,p-1 ext{ does not divide }n\ -1,\, ext{if}\,p-1 ext{ divides }n\,. \end{array}
ight.$$

A Zero'th Order Result

Take now $x \in \mathbb{F}_p^5$ and $5\psi \in \mathbb{F}_p$, $(p \neq 5)$ and let $u_{\lambda} = \#\{x \mid P(x, \psi) \equiv 0\}, \ \lambda = \frac{1}{(5\psi)^5}.$

This number can be computed mod p with relative ease

$$u_{\lambda} \equiv \sum_{oldsymbol{x} \in \mathbb{F}_p^5} ig(1 - oldsymbol{P}(x,\psi)^{p-1}ig)$$

Expand the power and use the fact that $\sum x_i^n \equiv \begin{cases} 0, \text{ if } p-1 \text{ does not divide } n \\ -1, \text{ if } p-1 \text{ divides } n \end{cases}$. The result is that

$$u_\lambda \ \equiv \ ^{[p/5]} arpi_0(\lambda) \ = \ \sum_{m=0}^{[p/5]} rac{(5m)!}{(m!)^5} \, \lambda^m \; .$$

 ν_{λ} is a definite number so we may seek to compute it exactly. We expand

$$\nu_{\lambda} = \nu_{\lambda}^{(0)} + \nu_{\lambda}^{(1)} p + \nu_{\lambda}^{(2)} p^2 + \nu_{\lambda}^{(3)} p^3 + \nu_{\lambda}^{(4)} p^4 + \dots$$

with $0 \leq
u_{\lambda}^{(j)} \leq p-1$ and evaluate mod p^2 , mod p^3 , and so on.

This leads naturally into p-adic analysis. Given an $r \in \mathbb{Q}$ we write

$$r~=~rac{m}{n}~=~rac{m_0}{n_0}\,p^{lpha}$$

where m_0, n_0 and p have no common factor. The p-adic norm of r is defined to be

$$||r||_p = p^{-\alpha}, ||0||_p = 0$$

and is a norm, that is it has the properties:

$$egin{array}{rll} \|r\|_p &\geq 0, \ \|r_1\,r_2\|_p &= \|r_1\|_p\,\|r_2\|_p \ \|r_1+r_2\|_p &\leq \|r_1\|_p+\|r_2\|_p \end{array}$$

Counting the Number of Points Exactly

Denote by ν_{λ} the number of solutions to the equation $P(x, \psi) = 0$ over \mathbb{F}_p .

$$egin{split}
u_\lambda &= {}^p f_0(\Lambda) + \left(rac{p}{1-p}
ight) {}^p f_1'(\Lambda) + rac{1}{2!} \left(rac{p}{1-p}
ight)^2 {}^p f_2''(\Lambda) \ &+ rac{1}{3!} \left(rac{p}{1-p}
ight)^3 {}^p f_3'''(\Lambda) + rac{1}{4!} \left(rac{p}{1-p}
ight)^4 {}^p f_4'''(\Lambda) + \mathcal{O}(p^5) \; . \end{split}$$

This expression holds for $5 \not\mid p - 1$. In the expression

$$\Lambda = \operatorname{Teich}(\lambda) = \lim_{n \to \infty} \lambda^{p^n} \text{ and } {}^p f_0(\Lambda) = \sum_{m=0}^{p-1} \frac{(5m)!}{(m!)^5} \Lambda^m.$$

Now, as we have said, the number of rational points is determined by the periods and there are $b^3 = 2h^{21} + 2$ of these. The Hodge number h^{21} counts the number of parameters on which the complex structure depends and, in simple cases, this corresponds to the number of ways of deforming the defining polynomial

$$P(x,c) \ = \ \sum_{ec v} c_{ec v} \, x^{ec v} \ ; \ x^{ec v} = x_1^{ec v_1} \, x_2^{ec v_2} \, x_3^{ec v_3} \, x_4^{ec v_4} \, x_5^{ec v_5} \, .$$

The directions in which P(x, c) can be deformed correspond to the monomials $x^{\vec{v}}$ considered subject to the ideal $(\partial P/\partial x_i)$. A special role is played by fundamental monomial

$$Q = x_1x_2x_3x_4x_5$$

which is related by mirror symmetry to the Kähler form of the mirror.

Return now to our special one parameter family of polynomials

$$P(x, \psi) = \sum_{i=1}^{5} x_{i}^{5} - 5\psi x_{1}x_{2}x_{3}x_{4}x_{5}.$$

 \mathcal{M} has $2h^{21}(\mathcal{M})+2=204=2 imes 100+4$ periods while \mathcal{W} has $2h^{21}(\mathcal{W})+2=4$.

This leads to 1 fourth order differential operator $\mathcal{L}_{\vec{1}}$ and 100 second order operators $\mathcal{L}_{\vec{v}}$.

There are tenth order monomials that are not included in the above scheme and which require special attention. The generators of the ideal are

 $x_1^4 \simeq \psi \, x_2 x_3 x_4 x_5$ & cyclic.

Thus

$$x^{(4,3,2,1,0)} \, \simeq \, \psi \, x^{(0,4,3,2,1)} \, \simeq \, \cdots \, \simeq \, \psi^5 \, x^{(4,3,2,1,0)} \, .$$

We can also perform the sum in our expression for the number of points to give

$$u_{\lambda} = \sum_{m=0}^{p-1} eta_m \, \Lambda^m$$

with coefficients

$$\beta_m = \lim_{n \to \infty} \frac{a_{m(1+p+p^2+\ldots+p^{n+1})}}{a_{m(1+p+p^2+\ldots+p^n)}} = (-1)^m G_{5m} G_{-m}^5$$

When we include the contributions of the other periods for the case 5|p-1 we find

$$p
u_{\lambda}^{*} \; = \; (p-1)^{5} + \sum_{ec{v}} \sum_{m=0}^{p-2} (-1)^{m} \, \Lambda^{m} \, G_{5m} \prod_{j=1}^{5} G_{-(m+kv_{j})}$$

where k = (p - 1)/5. The contribution of $\vec{v} = (0, 0, 0, 0, 0)$ gives our previous expression. The quintic \vec{v} 's correspond to the other 200 periods and give the extra terms that arise when 5|p - 1. These terms have a natural interpretation as the exceptional divisors of the mirror manifold. The monomial of degree 10 contributes only for the conifold when $\psi^5 = 1$.

Rational Points over \mathbb{F}_p : Dwork's Character

Let

$$\Theta: \mathbb{F}_p \longrightarrow \mathbb{C}_p^*$$

be a non-trivial additive $(\Theta(x + y) = \Theta(x)\Theta(y))$ character of order p $(\Theta(x)^p = 1)$. (This is a *p*-adic version of a character of a commutative group $G \to \mathbb{C}$.) Thus

$$\sum_{\boldsymbol{y}\in\mathbb{F}_p}\Theta(\boldsymbol{y}\boldsymbol{P}(\boldsymbol{x},\boldsymbol{\psi}))\ =\ p\,\delta(\boldsymbol{P}(\boldsymbol{x},\boldsymbol{\psi}))$$

$$p \,
u_{\lambda} \; = \; \sum_{x \in \mathbb{F}_p^5} \; \sum_{y \in \mathbb{F}_p} \Theta(y P(x, \psi)) \; .$$

Dwork constructed such character in terms of Gauss sums

$$G_{oldsymbol{n}} = \sum_{oldsymbol{x} \in \mathbb{F}_P^*} \Theta(oldsymbol{x}) ext{ Teich}^{oldsymbol{n}}(oldsymbol{x})$$

and in terms of these one can expand the character in the form

$$\Theta(x) = rac{1}{p-1}\sum_{m=0}^{p-2}G_{-m}\operatorname{Teich}^m(x)$$
 .

Incorporating these considerations

$$u_\lambda = p^4 + \sum_{ec v} \gamma_{ec v} \sum_{m=0}^{p-2} eta_{ec v,m} ext{ Teich}^m(\Lambda) \ ,$$

where the $\beta_{\vec{v},m}$ are given in terms of the Gauss sums or, equivalently, in terms of *p*-adic Γ functions.

- For 5 $\not| (p-1)$ we only have a contribution from $\vec{v} = (0, 0, 0, 0, 0)$
- The coefficients $\beta_{\vec{v},m}$ are closely related to the coefficients in the series expansions of the periods around the regular singular point $\lambda = 0$.

Explicitly to order *p*:

$$egin{aligned}
u_\lambda &= {}^{[p-1]}f_0(\lambda^p) + p {}^{[p-1]}f_1'(\lambda^p) \ & & -\delta_p \, p \sum_{ec v} rac{\gamma_{ec v}}{\prod_{i=1}^5 (v_i k)!} \, {}^{[p-1]}{}_2F_1(a_{ec v}, b_{ec v}; c_{ec v}; \lambda^p) + \dots \end{aligned}$$

The tenth order polynomial $\vec{v} = (4, 3, 2, 1, 0)$, corresponds to a "period" that is zero everywhere, except when $\psi^5 = 1$. For these values of ψ the variety is not smooth anymore: it has 125 isolated singularities that are double points ("conifold" singularities). The calcualtion for the number of rational points makes sense even for these singular cases. A little simplification reveals the contribution to ν_{λ} of $\vec{v} = (4, 3, 2, 1, 0)$ as

 $24p^2(p-1)\delta(Teich(\psi)^5-1)$.

The Zeta-Function

Consider now $N_r(\lambda) = \frac{\nu_{\lambda}-1}{p-1}$ which are the numbers of projective solutions of P = 0over \mathbb{F}_{p^r} and form

$$\zeta(T,\lambda) \;=\; \exp\left(\sum_{r=1}^\infty rac{N_r(\lambda)\,T^r}{r}
ight)\;.$$

If \mathcal{M} is a point then $N_r=1$ for all r and

$$\sum_{r=1}^{\infty} \frac{N_r T^r}{r} = \sum_{r=1}^{\infty} \frac{T^r}{r} = -\log(1-T) \implies \zeta_{\rm pt}(T) = \frac{1}{1-T}$$

Thus for a point

$$\prod_{p} \zeta_{\rm pt}(p^{-s}) = \prod_{p} \frac{1}{1-p^{-s}} = \zeta_{\rm R}(s).$$

The Weil Conjectures

- Rationality (Dwork): $\zeta(T)$ is a rational function of T
- Functional equation (Groethendieck):

$$\zeta\left(rac{1}{p^d T}
ight) \ = \ \pm p^{d\chi/2} \, T^\chi \, \zeta(T)$$

where χ is the Euler characteristic and d is the real dimension of \mathcal{M} .

• Riemann Hypothesis (Deligne):

$$\zeta(T) \;=\; rac{P_1(T)P_3(T)\ldots P_{2d-1}(T)}{P_0(T)P_2(T)\ldots P_{2d}(T)}$$

with $P_i(T)$ a polynomial with coefficients in \mathbb{Z} of degree b_i . Furthermore

$$P_i(T) = \prod_{j=1}^{b_i} (1 - \alpha_{ij} T), \ |\alpha_{ij}| = p^{i/2} \ ext{and} \ P_0(T) = 1 - T, \ P_{2d}(T) = 1 - p^d T.$$

The ζ -Function

We now work over \mathbb{F}_{p^r} and let $N_r(\psi)$ denote the number of projective solutions to $P(x, \psi) = 0$. The ζ -function is defined by the expression

$$\zeta(T,\psi) = \exp\left(\sum_{r=1}^{\infty} \frac{N_r(\psi)T^r}{r}
ight)$$

We are led to decompose N_r into a sum of contributions $N_r = N_{r,0} + \sum_v N_{r,v}$.

In all cases, apart from the conifold, R_0 is a quartic

$$R_0 \;=\; 1 + a_0\,T + b_0\,pT^2 + a_0\,p^3T^3 + p^6T^4 \;.$$

The Euler Curves

Classical analysis gives an expression for the hypergeometric functions in terms of Euler's integral which is of the form

$$\int dx \, x^{-lpha/5} (1-x)^{-eta/5} (1-x/\psi^5)^{-(1-eta/5)}$$
 .

If we think of Euler's integral as $\int \frac{dx}{y}$ then we are led to curves

$$\mathcal{E}_{lphaeta}(\psi): \hspace{0.2cm} y^5 = x^{lpha}(1-x)^{eta}(1-x/\psi^5)^{5-eta}$$
 .

v	α	β		
(4, 1, 0, 0, 0)	2	3		
(3, 2, 0, 0, 0)	1	4		$\alpha + \beta = a$
(3, 1, 1, 0, 0)	2	4	$\mathcal{E}_{\alpha\beta} = \langle \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2 4
(2, 2, 1, 0, 0)	4	3	B	$\alpha + \beta \neq 5$

 $\beta \neq 5$ and $\alpha \neq \beta$.

For the curve \mathcal{A} there is a corresponding ζ -function

$$\zeta_{\mathcal{A}}(T) \;=\; rac{R_{\mathcal{A}}(T)^2}{(1-T)(1-pT)} \,.$$

Now the existence of nontrivial fifth roots of unity is important for the mirror construction. Such roots of unity exist in \mathbb{F}_{p^r} precisely when $5|p^r - 1$. For given p let $\rho = 1, 2$ or 4 be the smallest r for which $5|p^r - 1$.

The $R_{\vec{v}}$ pair up in the following way:

$$egin{aligned} R_{(4,1,0,0,0)}(T) \ R_{(3,2,0,0,0)}(T) \ &= \ R_{\mathcal{A}}(p^{
ho}T^{
ho})^{1/
ho} \ R_{(3,1,1,0,0)}(T) \ R_{(2,2,1,0,0)}(T) \ &= \ R_{\mathcal{B}}(p^{
ho}T^{
ho})^{1/
ho} \ . \end{aligned}$$

So the ζ -function for \mathcal{M} takes the form

$$\zeta_{\mathcal{M}}(T,\psi) \ = \ rac{R_0(T,\psi) \ R_{\mathcal{A}}(p^
ho T^
ho,\psi)^{rac{30}{
ho}} \ R_{\mathcal{B}}(p^
ho T^
ho,\psi)^{rac{20}{
ho}}}{(1-T)(1-pT)(1-p^2T)(1-p^3T)}$$

For the conifold $\psi^5 = 1$ the ζ -function seems to be especially simple

$$\zeta(T,1) \; = \; rac{(1-\epsilon\,pT)\,(1-a_p\,T+p^3T^2)\,(1-pT)^{100}}{(1-T)(1-pT)(1-p^2T)(1-p^3T)\,(1-p^2T)^{24}} \;\;;\;\;
ho = 1$$

where $\epsilon = \left(\frac{5}{p}\right) = \pm 1$ and a_p is the *p*-th coefficient in the *q*-expansion of the eigenform, *g*, found by Schoen; it is the unique cusp form of weight 4 for the group $\Gamma_0(25)$.

$$g = \eta(q^5)^4 ig[\eta(q)^4 + 5\eta(q)^3\eta(q^{25}) + 20\eta(q)^2\eta(q^{25})^2 + 25\eta(q)\eta(q^{25})^3 + 25\eta(q^{25})^4ig]$$

$$= q + q^2 + 7 \, q^3 - 7 \, q^4 + 7 \, q^6 + 6 \, q^7 - 15 \, q^8 + 22 \, q^9 - 43 \, q^{11} - 49 \, q^{12} \ - 28 \, q^{13} + 6 \, q^{14} + 41 \, q^{16} + 91 \, q^{17} + 22 \, q^{18} - 35 \, q^{19} + 42 \, q^{21} - 43 \, q^{22} \ + 162 \, q^{23} - 105 \, q^{24} - 28 \, q^{26} - 35 \, q^{27} - 42 \, q^{28} + 160 \, q^{29} + 42 \, q^{31} + \cdots$$

 S^3 's are blown down but only 101 are independent so 24 4-cycles are created.

$$\zeta(T,1) \ = \ rac{(1-a_p\,T+p^3T^2)\,(1-pT)^{100}}{(1-T)(1-p^2T)^{25}(1-p^3T)}$$

Now we resolve 125 nodes with \mathbb{P}^1 's, but there are 100 relations so we destroy 100 3-cycles.

$$egin{aligned} \zeta(T,1) &= & rac{(1-a_p\,T+p^3T^2)\,(1-pT)^{100}}{(1-T)(1-pT)^{125}(1-p^2T)^{25}(1-p^3T)} \ &= & rac{(1-a_p\,T+p^3T^2)}{(1-T)(1-pT)^{25}(1-p^2T)^{25}(1-p^3T)} \,. \end{aligned}$$

The ζ -Function and Mirror Symmetry

We now work over \mathbb{F}_{p^r} and let $N_r(\psi)$ denote the number of projective solutions to $P(x,\psi) = 0.$ $\zeta(T,\psi) = \exp\left(\sum_{r=1}^{\infty} \frac{N_r(\psi)T^r}{r}\right)$

As defined the ζ -function does not respect mirror symmetry

 $\zeta(T) = rac{ ext{Numerator of deg. } 2h^{21} + 2 ext{ depending on the cpx. structure of } \mathcal{M}}{ ext{Denominator of deg. } 2h^{11} + 2}$

Explicitly for the quintic we have

$$\zeta_{\mathcal{M}}(T,\psi) = \frac{R_0(T,\psi) R_{\mathcal{A}}(p^{\rho}T^{\rho},\psi)^{\frac{20}{\rho}} R_{\mathcal{B}}(p^{\rho}T^{\rho},\psi)^{\frac{30}{\rho}}}{(1-T)(1-pT)(1-p^2T)(1-p^3T)}$$

$$\zeta_{\mathcal{W}}(T,\psi) \;=\; rac{R_0(T,\psi)}{(1-T)(1-pT)^{101}(1-p^2T)^{101}(1-p^3T)}$$

The 5-adic Limit

The desired relations are true in the 5-adic limit. More precisely for all p and ψ

$$R_0(T,\psi) = (1-T)(1-p\,T)(1-p^2T)(1-p^3T) + \mathcal{O}ig(5^2ig)$$

$$R_{\mathcal{A}}(T,\psi)^{20}R_{\mathcal{B}}(T,\psi)^{30} = (1-p\,T)^{100}(1-p^2T)^{100} + \mathcal{O}ig(5^2ig)$$

so that

$$\zeta_{\mathcal{W}} \;=\; rac{1}{\zeta_{\mathcal{M}}} + \mathcal{O}ig(5^2ig)$$

Compare this with the quantum corrections to the classical Yukawa coupling which we write in the form

$$rac{y_{ttt}}{y_{ttt}^{(0)}} \;=\; 1 + rac{1}{5}\sum_{k=0}^{\infty}rac{n_kk^3q^k}{1-q^k} \;=\; 1 + \mathcal{O}ig(5^2ig)$$

since Lian and Yau have shown that $5^3 |n_k k^3$ for each k.