Dulmage-Mendelsohn percolation

Random geometry of maximum-matchings, zero modes & Majorana excitations...

Kedar Damle, Tata Institute (TIFR) India
based on: Bhola, Biswas, Islam, KD, PRX 12 021058 (June 2022)

Ritesh Bhola Sounak Biswas

Sambuddha Sanyal Lesik Motrunich



Some generalities:

* Quenched disorder matters (often)
e Particles scatter and diffuse (may be anomalously...)

« Matter-waves scatter and localise (sometimes weakly...)



Classical transport of fluid

Simplest setting: Porous random medium
Random geometry of medium determines fluid transport
Paradigm of percolation

More generally: Diffusion in presence of random potentials



Percolation

Study end-to-end connectivity of a porous medium
Can you go from one end to other?
Answer changes as function of porosity

Simplest model: Randomly diluted regular lattice (graph)

Broadbent and Hammersley, Percolation processes |, Crystals and Mazes (1957)



Precise question about the random geometry

Crossing probability?

Consider two dimensional square grid or honeycomb net or three dimensional cubic lattice of
linear size L

Remove fraction n,, . of sites and delete links to removed sites.

« P, (n,,. L) : Probability that one can ‘walk’ from left end to right end along existing sites and links.

How does this behave as a function of n,,. and L?



Sharp threshold behaviour

Property of thermodynamic limit

Ind =2andind =3, L = oo limit characterised by sharp threshold behaviour as function of n,,,.

Percolation transition

Simplest geometric example of a thermodynamic phase transition
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Approach to thermodynamic limit

Universality and scaling

[ — oo limit is approached in interesting way

e P, (n,,.,L) =f(6L") where 6 = n ,, — nc

vacC

. f(x) is the universal scaling function, v is a scaling exponent and n ™ is the critical dilution
vac

 f(x) and v believed to be universal (independent of microscopic-scale details)

 Square lattice and honeycomb net have same f(x) and v. Cubic lattice different (dimension dependent)



Scale invariance

: : : _ ,crit
- Implies different size samples have same P, for n,. = ny,.

« Scale invariance: Pictures of random geometry look same if we rescale pictures!

* Only true if we ignore lattice scale features, but amazing anyway!



Localization of matter waves

* Anderson localization of electrons in dirty metals
» Localization of quasiparticles in dirty superconductors

 Symmetries of disordered Hamiltonian matter (e.g. in random matrix theory)

Anderson, Ramakrishnan, Abrahams, Thouless, Dyson, Wegner, Mehta...



Simplest lattice model: Disordered tight-binding Hamiltonian

Z L+ Viy, = ey, foralli

JjEI
¢ is the energy of the particle described by wave function y;

l;; are ‘hopping amplitudes’ for particle to hop from site i to site |

V. are values of external potential at sites i

Allowed € : Eigenvalues of matrix of tij -+ Vlél]



Vacancy disorder

* Random dilution of the underlying lattice
* Models missing atoms in crystal structure

* Also natural if substitutional impurities correspond to missing orbital (binary alloys)



Quantum percolation

Anderson localisation meets geometric percolation (Kirkpatrick-Eggarter ’72, Shapir-Aharony-Harris ’82...)
Vacancy disorder
No external random potentials

Can the quantum electron fluid be localised even when the corresponding classical fluid diffuses from end
to end?



Simplest case: bipartite lattice with hopping and vacancy disorder

Particle hopping on a randomly diluted bipartite lattice (binary alloy)

(Possibly random) hopping amplitudes between nearest neighbour sites

Bipartite symmetry: State with energy € has partner at energy —e

Symmetry broken by random potentials, next-neighbour hopping — left out here.



The question

« ¢ = () is special

« Does anything interesting happen in the quantum mechanical spectrum of H neare = 0 ?



More precisely:

» What is the asymptotic low-energy behaviour of p(€)?
* Note: No change in symmetries

e« Some answers:
Hopping disorder: Singular tail of low-energy states. DOS has ‘modified Gade-Wegner’ scaling.

(Gade-Wegner '91, Motrunich, KD, Huse 02, Mudry-Ryu-Furusaki ’03)

Vacancy disorder: Very slow crossover to ‘modified Gade-Wegner’ scaling.

Willans-Chalker-Moessner 11, Ostrovsky et al 14, Hefner et al 14, Sanyal, KD, Motrunich 16



New ingredient: Zero modes
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For large enough lattice, almost every sample has at least one zero mode
(Sanyal, KD, Motrunich, PRL ’16)
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In fact: Nonzero density of zero modes
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(Sanyal, KD, Motrunich, PRL ’16)



Our idea: R-type regions hosting zero modes
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Example of R-type region

Rigorous lower bound on density of zero modes on diluted honeycomb lattice
(Sanyal, KD, Motrunich, PRL ’16)



Major puzzle remained:

» Actual density of zero modes much larger than lower bound

 \WWhat dominates?



Our approach

Key idea: Disorder-robust zero modes only depend on connectivity, not hopping strengths.
R-type regions rely on local imbalance between A and B type site densities.
Suggests thinking in terms of matchings a.k.a dimer covers

Places that cannot be covered by dimers host wavefunctions



Longuet-Higgins: Counting zero modes from maximum matchings

AI P ‘ The Journal of
Chemical Physics
Some Studies in Molecular Orbital Theory I. Resonance Structures and Molecular

Orbitals in Unsaturated Hydrocarbons
H. C. Longuet-Higgins

(1950)

Chemist - structure of diborane)
Physicist - (co)advisor of Peter Higgs)
Pioneer In:

Cognitive science and computer vision

‘Machine-intelligence (aka Al!)

Computer music...



Longuet-Higgins (restated)

 Number of monomers in any maximum matching of bipartite graph gives number of
topologically-protected zero modes of corresponding tight-binding model

“nonzero-defect” generalization of “Tutte’s Theorem” for bipartite graphs



Density of disorder-robust zero modes
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Equivalent to counting zero modes of a 102 x 10% matrix (!)

Also: independent confirmation at higher dilution by Evers group (Weik et al ’16)



But what do the zero modes “look” like?

What do we mean by “look” like?

Our interest: Consequences for basis invariant Green functions and for transport at particle-hole
symmetric chemical potential (e.g. undoped graphene)

What we really want: A general way of identifying “all possible” R-type regions

In other words: A choice of “maximally localised” basis for the zero-mode subspace



Partial answer from Longuet-Higgins:

Global statement from Longuet-Higgins: Set of all sites that host a monomer in at least one
maximum matching form support of all topologically-protected zero mode wavefunctions

Clearly, we want more:
General algorithm for identifying all R-type regions?

Maximally-localised basis for zero mode subspace?



Our key insight: A local statement

Brings into play classic result from graph theory

COVERINGS OF BIPARTITE GRAPHS

A. L. DULMAGE axp N. S, MENDELSOHN

Can. J. Math. 10: 517, 1958

Use structure theory of Dulmage-Mendelsohn to construct non-overlapping ‘complete’ set of R-type
regions.

‘R-type’ regions of lattice host monomers in maximum matchings and zero modes of a quantum particle

Zero temperature two-terminal conductance is zero if R-type regions don’t percolate



Matchings, augmenting paths, and alternating paths

In any maximum matching M:
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A useful version of the DM decomposition

Even, odd and unreachable sites from any one maximum matching M

Even: Reachable by even-length alternating paths from monomers of M (including
length zero)

Odd: Reachable by odd-length alternating paths from monomers of M
Unreachable: Not...

Decomposition:
Cy:E U0,
Cp: EgU Og

P:U,UUg



Key: Connected components of C, and Cy
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Connected components are R-type regions

Each RZA (RJB ) hosts Il.A (IjB ) topologically-protected zero modes with wavefunctions confined to the
region.

Provides alternate ‘local’ proof for correspondence between monomers of maximum matchings and zero
modes of adjacency matrix

Gives topologically-robust construction of a maximally-localised basis for zero modes

Standard proofs (Longuet-Higgins, Lovasz) are ‘global’—no information about maximally-localised basis.



Computational strategy

Compensated disorder (|A| = | B|)
Standard algorithms for finding any one maximum matching
Alternating path tree from each monomer to obtain DM classification

Burning algorithm to construct connected components and obtain R-type regions



Basic picture in d=2 (honeycomb lattice)

Typical R-type regions are BIG at low (~5%) dilution



Number density of R-type regions
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Total mass density of all R-type regions
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Mode density in large R-type regions looks ‘typical’
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Zero mode density dominated by large-scale structures
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Comparison of length-scales

Honeycomb (L = 26000)

Square (L = 26000)
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Size of largest R-type region is nearly system-size limited at low dilution



Zero-mode density: featureless

Honeycomb Square
0.003{ ¢ L = 10000 o
L = 14000 -0.0100
A L = 18000
1 L = 22000 o -(0.0075
00021 41 — 96000 o
4] -(.0050
7
0.001 - ‘
-(0.0025
. & 0.0000
0.00 0.08 0.00 0.0 0.10 0.15

nV&C



Q.

Incipient percolation: wrapping probabilities
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Universal scaling at zero-dilution critical point

Honeycomb (v = 5.1)
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Universal scaling at zero-dilution critical point
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Universal scaling of mass susceptibility y = (m?)/L?

Honeycomb Square
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Cubic lattice: Number density of R-type regions
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R-type regions take over lattice at low dilution
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Emergence of a large length scale




Percolation transition
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Percolation transition: scaling

Cubic (n® = (0.5956 & v = 0.87)
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Percolation transition: scaling

Cubic (n® = 0.5956, v = 0.87,d = 3 & n = 0.0)
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A second transition?
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A second transition (!)
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Sublattice symmetry breaking inside percolated phase
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Consequences

Infinitesimal dilution localises monomers of the maximally-packed dimer model in two dimensions
There is no bipartite quantum percolation transition in two dimensions (long story, starting ‘70s)
Precise determination of quantum percolation threshold in three dimensions.

Infinitesimal dilution causes sublattice symmetry breaking in the monomer gas in three dimensions.
Consequences for electronic system(?)

In corresponding Majorana network: Majorana zero modes hosted by R-type regions with odd
Imbalance undergo a percolation transition

Perhaps most directly interesting: Low energy triplet excitations in diluted quantum antiferromagnets
In the extremely low-dilution regime.
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Thermodynamic densities of number of P-type regions
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Cubic lattice: Very similar basic picture...
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Summary a la Wodehouse

* Patient perseverance produces percolative paradigms!



