Flux-fractionalization transition in anisotropic $S=1$ kagome antiferromagnets and dimer-loop models

Kedar Damle

Tata Institute, India
$\mathfrak{C}^{\text {tifr }}$

Souvik Kundu and KD, arXiv:2305.07012

Funding: DAE-India, SERB-India, Infosys-Chandrasekharan Random Geometry Center

Fully-packed configurations of loops + trivial loops (dimers)

All open strings disallowed

Half-charges (half-vortices) forbidden

Integer charges (unit-vortices) also forbidden

Two distinct objects of length 1 if half vortices allowed (quite different from variable dimer density situations)

Anisotropic $\mathrm{S}=1$ kagome 1/3-magnetization plateau

Each kagome triangle has: $\quad S_{t o t}^{z}=1$
(Large $\mathrm{O}(\mathrm{J})$ energy gap to other values)
Two ways to add up to $\quad S_{t o t}^{z}=1 \quad(1,0,0)$ or $(1,1,-1)$
(With slightly different energies)

$$
\begin{aligned}
H_{e f f}=J^{z} \sum_{r r^{\prime}} S_{r}^{z} S_{r^{\prime}}^{z}+\Delta \sum_{r}\left(S_{r}^{z}\right)^{2}-B \sum_{r} S_{r}^{z} \\
J^{z}=J, \quad \Delta=J+\mu \quad T, \mu \ll J
\end{aligned}
$$

Implicit: Quantum fluctuations negligible
$J_{\perp} \ll T$

Dimer-loop partition function

$$
\begin{aligned}
Z & =\sum_{\mathcal{C}} w^{n_{d}(\mathcal{C})} \\
w & =\exp (-2 \mu / T)
\end{aligned}
$$

Our focus: Classical phase diagram as function of w on honeycomb and square lattices
On square lattice, $Z(w)$ describes half-magnetization plateau of anisotropic $S=1$ planar pyrochlore antiferromagnet.

Tool: Classical Monte Carlo using a worm algorithm

Some theoretical perspective

- w=0 is fully-packed $O(1)$ honeycomb loops (loop fugacity is unity). Configurations in one-to-one correspondence with fully-packed dimers (empty links form loops)
- On square lattice, $Z(w=0)$ is exactly solved fully packed $O(1)$ loop model (Baxter)
- Power-law distribution of loop sizes and dipolar correlations between loop segments. (Baxter, Moessner-Tchernyshyov-Sondhi 2004, Jaubert-Haque-Moessner 2011, JacobsenKondev 1998, Saleur-Duplantier 1987)
- Limit of infinite wis usual fully-packed dimer model.
- Warning: On honeycomb: w=0 and infinity have identical configurations and relative weights, but no obvious duality between w and $1 / \mathrm{w}$ for general w .

Coarse-grained height field-theory

$$
S=\pi g \int(\nabla h)^{2}
$$

- Valid both for loop model and for dimer model (Youngblood-Axe 1980, Henley, Fradkin et al 2004, Vishwanath-Balents-Senthil 2004, Alet et al 2005, Moessner-Tchernyshyov-Sondhi 2004 ...)
- Coarse-grained height is an angle: In pure dimer limit, integer shifts of h are a redundancy of description ("compactification radius"). In pure loop limit, half integer shifts are a redundancy of description. [in our normalization]
- Might expect: Dimer-loop system would have half-integer shifts as redundancy except in pure dimer limit, because of loops being present at any finite w (??)
- Might suggest: Pure loop limit controls behavior at any finite w (??)

Two-fold motivation for detailed study

Very natural interpolation between fully-packed dimers and fully-packed loops

Also describes interesting low-temperature plateau in class of kagome magnets
Caveat: "Realizability" needs further thought

Aside: Extension that allows half-vortices but forbids unit-vortices gives description of transition to next i.e. 2/3 magnetization plateau of kagome magnet (work in progress)

Numerics:

- Classical Monte Carlo using two worm updates
- One update creates a unit-vortex antivortex pair at random location, keeps one of them fixed, while other does random walk before annihilating antipartner
- Other update does the same with a pair of half-vortices
- Allows measurement of test vortex two-point functions
- Periodic boundary conditions
- Configurations characterized by two independent fluxes of polarization field (winding numbers). These are allowed to be half-integer in general (in our normalization) except in pure dimer limit.

Measurements

$P_{l}(s, L)$

$$
S_{m}=\left\langle\sum_{j} s_{j}^{m}\right\rangle
$$

Loop size distribution and moments
$\mathcal{Q}_{2}=\left\langle\sum_{i \neq j} s_{i}^{2} s_{j}^{2}\right\rangle / S_{2}^{2}$
Convenient Binder ratio characterization of loop sizes
$P\left(\phi_{x}, \phi_{y}\right)$
Flux (winding number) distribution

$$
P_{\mathrm{frac}}=1-\sum_{\phi_{x} \in Z, \phi_{y} \in Z} P\left(\phi_{x}, \phi_{y}\right) \quad \text { Probability of having fractional fluxes }
$$

$C_{\psi}(r)$ and $C_{v}^{q}(r)$ for $q=1 / 2,1 \quad \begin{aligned} & \text { Three-sublattice spin order parameter and } \\ & \text { half/unit-vortex correlators }\end{aligned}$

short-to-long loop phase transition

$\nu \approx 1.00(2)$

Flux-fractionalization character of transition

Transition observable in kagome spin structure factor

$$
L=96
$$

$w=1.0$
Power-law feature at three sublattice wavevector absent in long-loop phase

(b)

Universal loop size distribution in long-loop phase

$$
\tau_{6 \mathrm{~V}}=\frac{15}{7} \quad \theta_{6 \mathrm{~V}}=\frac{7}{4}
$$

Note scaling relation:
$\tau_{6 \mathrm{~V}} \theta_{6 \mathrm{~V}}=\theta_{6 \mathrm{~V}}+2$
$O(1)$ loops with

$$
s \sim L^{\theta_{6 \mathrm{~V}}}
$$

Gaussian flux statistics in both phases

Can view as a "measurement" of the Gaussian action in both phases

But: In thermodynamic limit, half-integers "fall off" the Gausian in short-loop phase.

Similar picture on square lattice

Half-vortex correlators in two phases

Unit-vortex correlators in both phases

Columnar (three-sublattice) correlator in both phases

Different loop size distribution at criticality

Critical flux distribution not single Gaussian

Critical half-vortex correlators

Columnar correlator at criticality

Unit-vortex correlator at criticality

Specific heat near criticality

Stiffness extracted in multiple ways

Overall picture from numerics

- Critical long-loop phase at small w separated by second order transition from a short loop (dimer rich) phase at large w.
- Entire long-loop phase controlled by $\mathrm{w}=0$ fixed point.
- Fractional fluxes proliferate in the long-loop phase but combine into integers in short-loop phase.
- Short-loop phase has power-law three-sublattice spin order (columnar correlators of link segments/dimers), Destroyed in the long-loop phase when fractional fluxes proliferate.
- Mechanism not KT(!) . Correlation length exponent matches Ising (within errors)
- Test vortex correlators suggest: Half-vortex fugacity irrelevant perturbation in short-loop phase and relevant in long-loop phase.
- Prediction: Nonzero half-vortex fugacity destroys dipolar pinch-points in long-loop phase but not in short-loop phase.
- Interesting half-vortex driven transition out of short-loop phase as model for inter-plateau transition (ongoing work)

Acknowledgements

- Useful discussions with Fabien Alet, G. Sreejith, \& Bhupen Dabholkar on their parallel work on interacting square lattice loop models (Dabholkar et al, PRB 108125112 2023)
- Useful discussions with ZY Meng and Subir Sachdev on triangular lattice quantum dimer models with variable dimer density (Yan et al, Nature Comm. 135799 2022)
- Fundng from Infosys-Random Geometry Center, DAE-India, SERB-India

