

Percolation in maximum-density dimer packings: implications for transport & magnetism

Kedar Damle (TIFR-Mumbai) @ Harvard (January 2026)

unpublished: Bhola, KD, arXiv:2311.05634v2 (2025) Bhola, KD, arXiv:2512.23639 Ansari, Kundu, KD (in preparation)

recent: Ansari, KD, PRL 132 226504 (2024)
Bhola, Biswas, Islam, KD, PRX 12, 021058 (2022)
KD, PRB 105 235118 (2022)

background: Sanyal, KD, Motrunich, PRL 117 116806 (2016)

Disorder

Quenched disorder: Missing atoms, adatoms, lattice imperfections...

Static on the time-scale of experiment.

Quite common in condensed matter systems.

Strong disorder: new phases of matter (e.g. spin glasses, Anderson insulator, MBL...)

Weak disorder: probe correlations of underlying state (e.g. spin textures in frustrated magnets)

“Central dogma”

In large-size limit -

Strong version:

Self-averaging of properties: Sample-to-sample fluctuations small (average = typical)

Violations exist – e.g. Disordered quantum spin chains (infinite-disorder fixed points)

Weak version:

At a minimum, two samples prepared using some protocol must be in same phase.

Violations? May exist in infinite-range spin glass models (?)

Percolation

Sharp threshold behavior (in the limit of $L \rightarrow \infty$) of the end-to-end connectivity of a random medium as a function of the density n_v of blocked pathways or vacancies.

Simplest and entirely *geometric* example of a phase transition

Mathematical model: Regular lattice with random site or bond dilution n_v (“Bernoulli percolation”)
(Broadbent and Hammersley Proc. Cam. Phil. Soc. 53, 629, 1957)

Boolean variable: Answer to YES/NO connectivity question.

$P(L, n_v)$: the probability of answering YES

Universal scaling at Bernoulli percolation transition

Scaling in the vicinity of the threshold:

$$P(L, n_v) = f((n_v - n_v^{crit})L^{1/\nu})$$

$$f(x) \rightarrow 1 \text{ as } x \rightarrow -\infty$$

$$f(x) \rightarrow 0 \text{ as } x \rightarrow +\infty$$

Critical point exhibits scale invariant behavior

$n_v < n_v^{crit}$: diluted lattice has single infinite cluster with probability 1 (in limit $L \rightarrow \infty$)

In $L \rightarrow \infty$ limit: $P(L, n_v)$ can only be 0 or 1 at any dilution.

There is only one percolated phase and one unpercolated phase
(no reentrant transitions)

Our basic message

Maximum-density dimer packings of weakly-diluted lattices have unusual percolation transitions

Some of the percolated phases show violations of (even the weak form of the) “central dogma”

Root cause: Kinematic constraints that induce long-range correlations

Consequences for transport (and magnetism):

In pinned vortex lattice state of p+ip superconductors & short-range RVB spin liquids on triangular lattice
(vacancy disorder = missing vortices in former, nonmagnetic impurities in latter)

At a minimum: Strong violations of thermodynamic self-averaging in the thermal conductivity/susceptibility

Likely for p+ip SC:

“R-type samples” have high thermal conductance but not “P-type” samples

Likely for RVB liquid:

“R-type samples” have vacancy-induced spin-glass order but not “P-type” samples

In both cases: Chaotic (deterministic but unpredictable) response to changes in disorder configuration.

Background: vacancy disorder in particle-hole symmetric systems (with random hopping)

Original motivation - A kind of side story (going back to '91) in the localization saga:

about form of density $\rho(\epsilon)$ of eigenstates as $\epsilon \rightarrow 0$ in bipartite random hopping problems in two dimensions

Without vacancies: Renormalization group predicts a certain limiting singular behavior
(Gade '91, Motrunich, KD, Huse '02, Mudry Ryu Furusaki '03)

But: some claims that $n_v > 0$ changes asymptotics
(Ostrovsky et. al. & Hafner et al '14)

Intriguing, since symmetries are unchanged...

Example: Tight-binding model for electrons in undoped graphene with vacancy defects

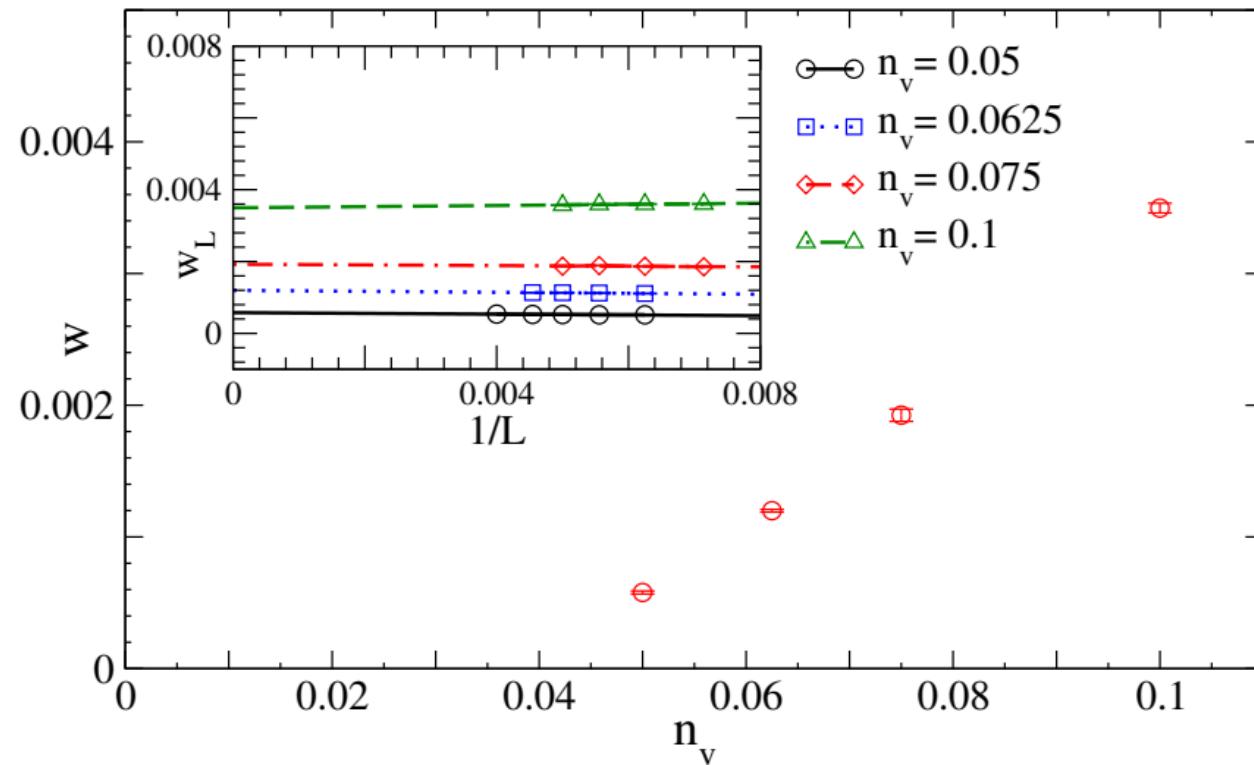
$$H = - \sum_{\langle rr' \rangle} (t_{rr'} |r\rangle\langle r'| + t_{rr'}^* |r'\rangle\langle r|)$$

r, r' Denotes sites of *diluted* honeycomb lattice (after random deletion of fraction n_v of vertices)

$\langle rr' \rangle$ Denotes *surviving* nearest-neighbor links (edges of diluted graph)

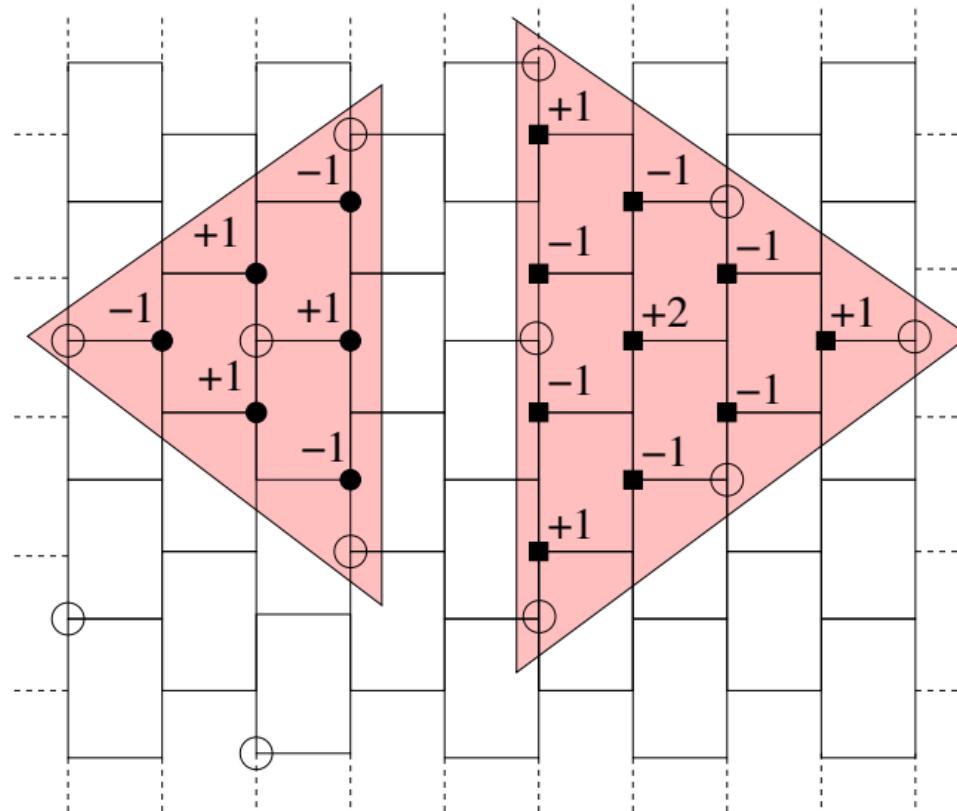
$t_{\langle rr' \rangle}$ Hopping amplitudes can vary from link to link

“Surprising” nonzero *density* w of $\epsilon = 0$ states on diluted honeycomb lattice



Aside: Turns out crossover in density of states controlled by density of these zero modes...

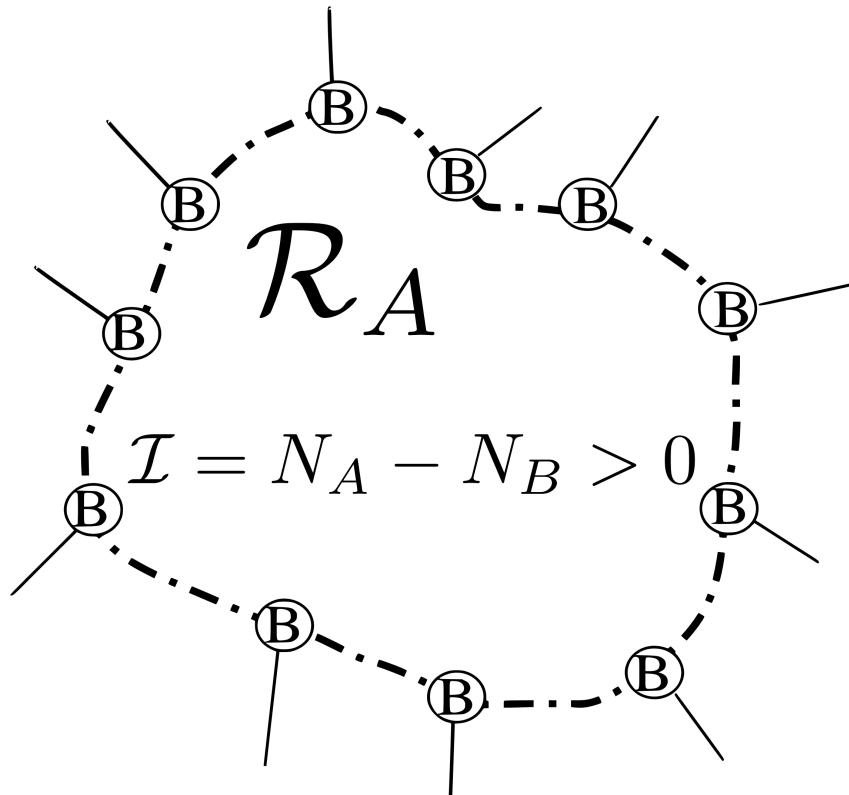
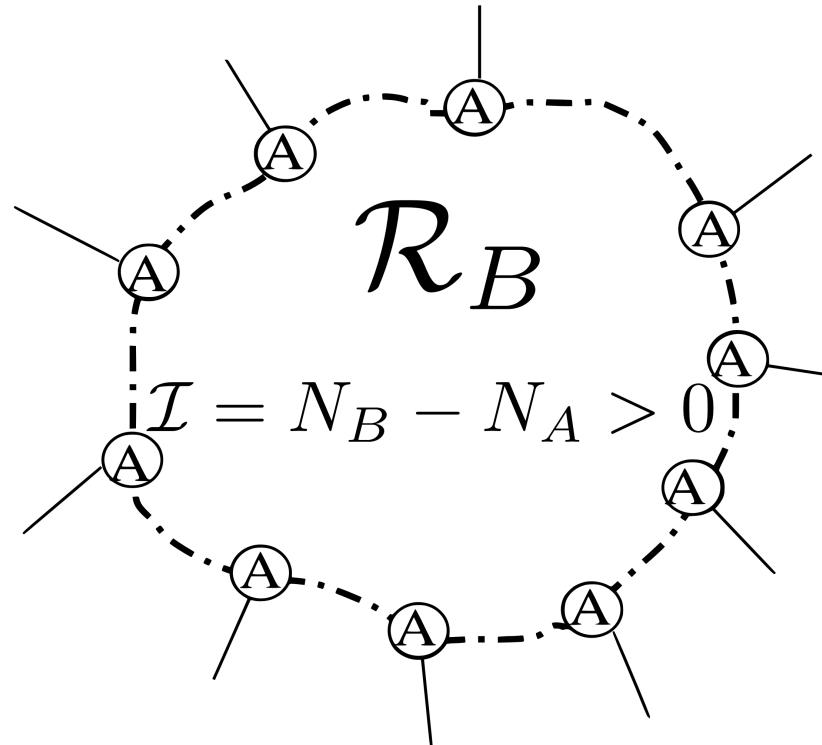
Origins: naive guesses and an important distinction



Sanyal, KD, Motrunich PRL 2016

Key distinction: On the right - *topologically protected zero mode wavefunction.*
On the left - only yields zero mode for uniform t

Conjecture: *Rare “R-type regions”:*



Key unanswered question

Hand-drawn examples provide lower bounds on DOS at $E=0$.

But computed value much greater.

What actually determines density of zero modes??

Note: zero modes are not a floating point precision artifact...

Also confirmed by Weik et. al. (2016)

Local sublattice imbalance and dimers: A first clue

Such zero modes only depend on connectivity, not hopping strengths.

R-type regions rely on local imbalance between A and B type site densities.

Suggests thinking in terms of *matchings* a.k.a *dimer covers*

Regions of lattice that cannot be covered perfectly by dimers host wavefunctions

Language primer: Fully-packed dimers (perfect matchings)

Fully-packed hard-core dimer models in stat-mech: Match **each** site to an adjacent site monogamously

In graph theory/computer science: The perfect matching problem

Easy to see (for regular lattices like square, triangular, honeycomb, kagome...):

Extensive entropy of fully-packed dimer covers (perfect matchings)

(exact computation of entropy on planar graphs: Classic papers by Kasteleyn & Fisher)

Maximum matchings of disordered lattices

Basic question: Can a diluted lattice with even number of vertices be perfectly matched?

If bipartite, need $|A| = |B|$

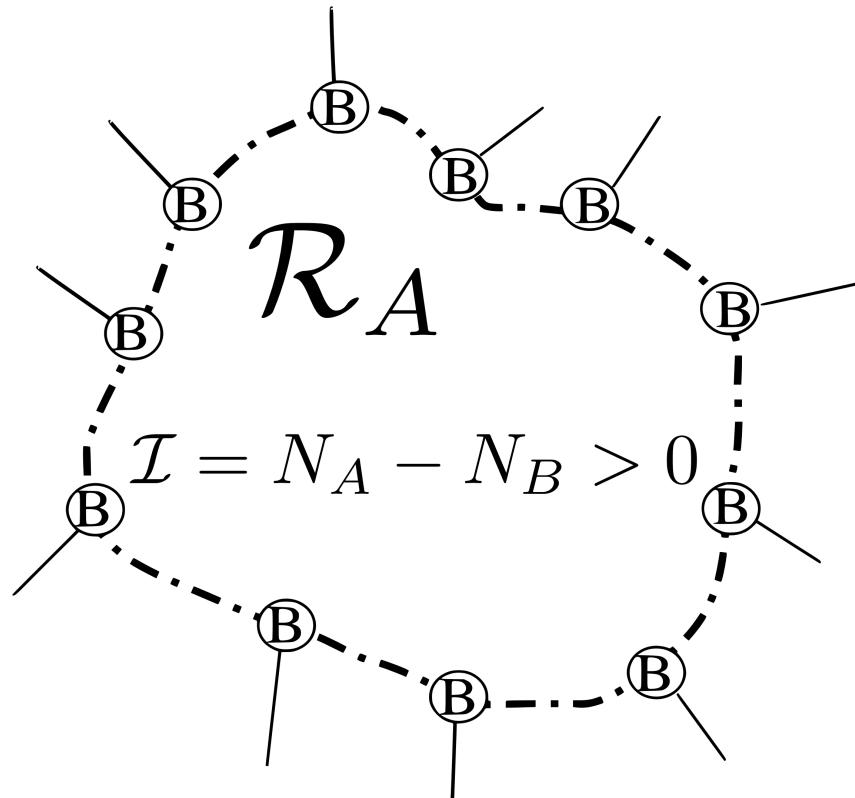
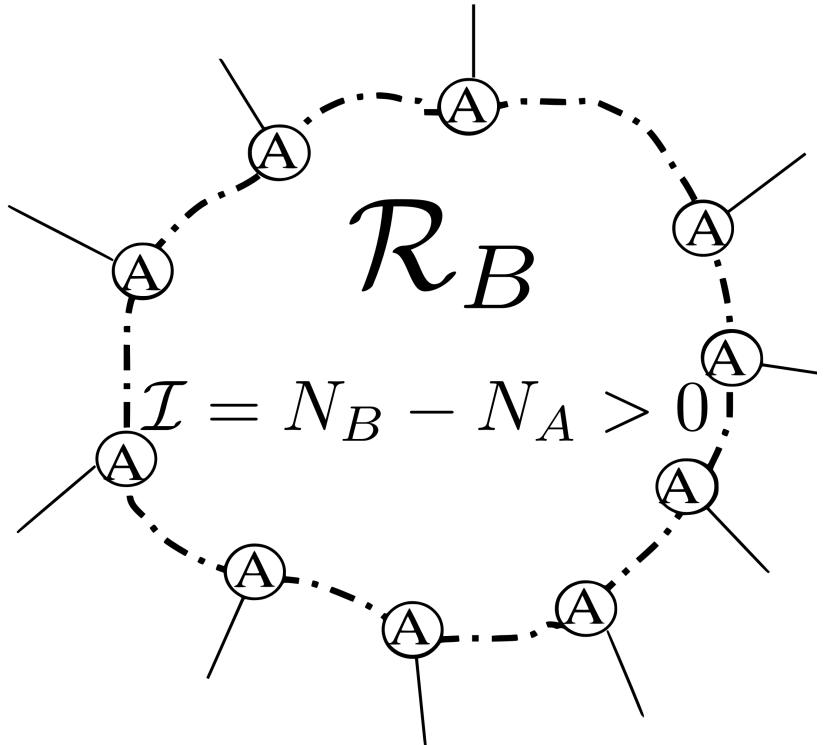
But: generally not possible even with $|A|=|B|$

Then have *maximum matchings* but not *perfect matchings*

Maximum matchings have unmatched sites that host monomers

Generically: nonzero density of vacancies implies nonzero density of monomers

Key observation: “R-type” regions trap monomers



Gels with: Longuet-Higgins on zero modes

Some Studies in Molecular Orbital Theory I. Resonance Structures and Molecular Orbitals in Unsaturated Hydrocarbons 1950

H. C. Longuet-Higgins

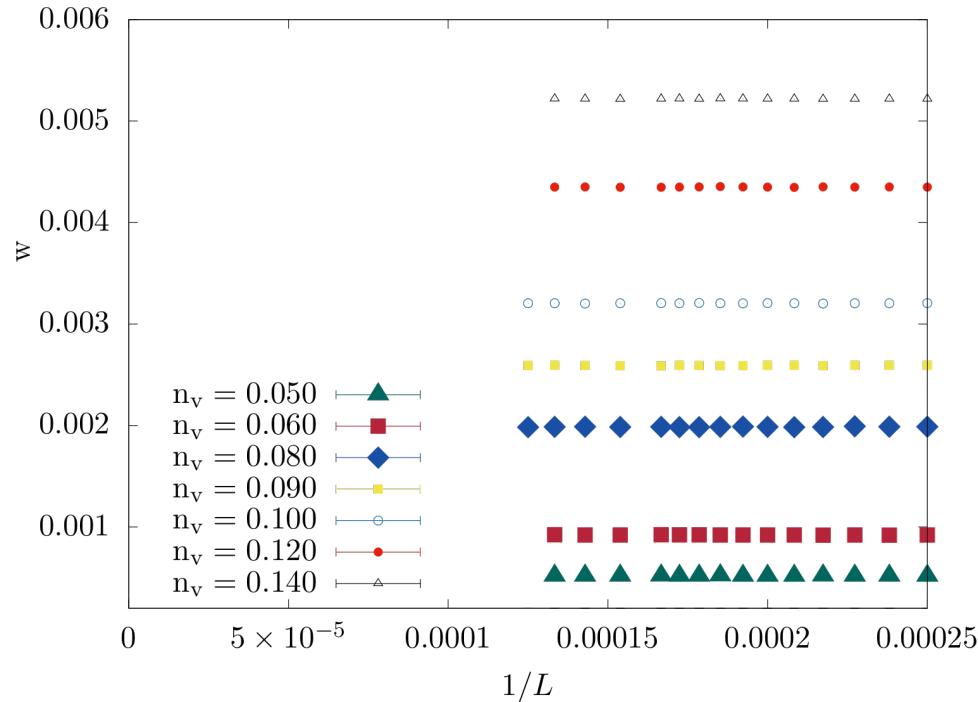
$E=0$ molecular orbitals correspond to magnetic moments in MO theory of benzenoid molecules

Effectively studying a tight-binding model and asking about $E=0$ states.

Result: (transcribed to our language)

Total number of monomers in maximum matching = Total number of topologically protected zero modes (global statement)

A first step: Check convergence to thermodynamic limit



But: we want local information (for transport etc)...

So “where” do the modes “live”?

How does one find a complete set of R-type regions?

What does this question even mean in algebraic terms??

One answer:

Identify a “maximally-localized” basis for the topologically-protected part of zero-energy subspace

Digression:
Topologically protected collective Majorana modes of Majorana tight-binding models?

$$\mathcal{H}_{\text{network}} = \frac{i}{4} \sum_{rr'} \mathcal{A}_{rr'} \eta_r \eta_{r'}$$

$\mathcal{A}_{rr'}$ Antisymmetric matrix of quantum mechanical mixing amplitudes
 η_r Majorana operators corresponding to localized Majorana modes

Zeroth order descriptions of:

Mixing of Majorana modes in vortex lattice state of topological p+ip superconductors

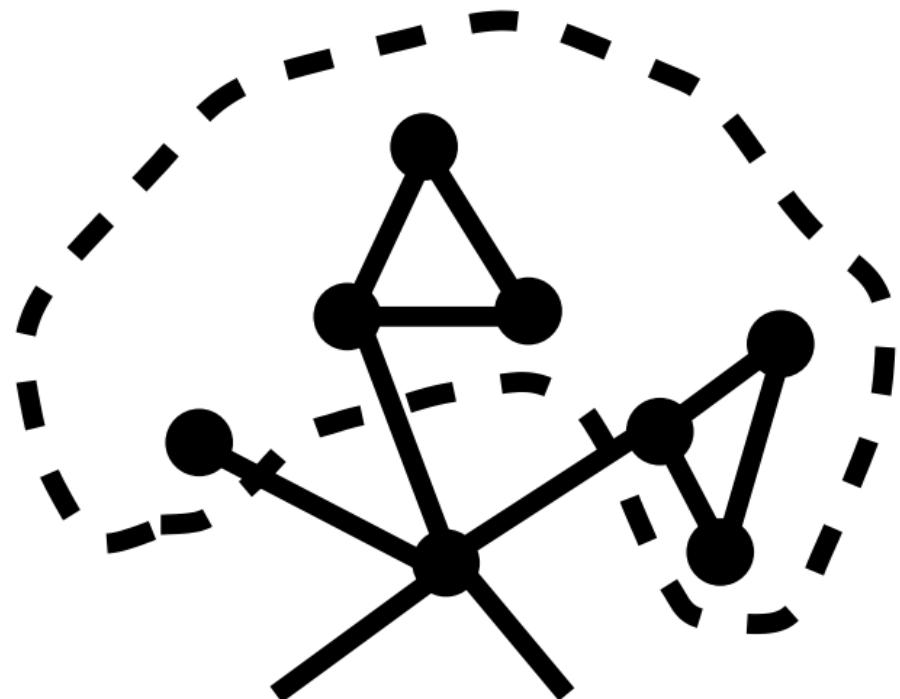
Majorana excitations of Majorana spin liquid states

Can such networks have topologically protected collective Majorana modes?

Linear algebra question : Classify/construct topologically protected null vectors of $iA_{rr'}$

Note: Bipartite random hopping special case of this

R-type regions hosting collective Majorana modes

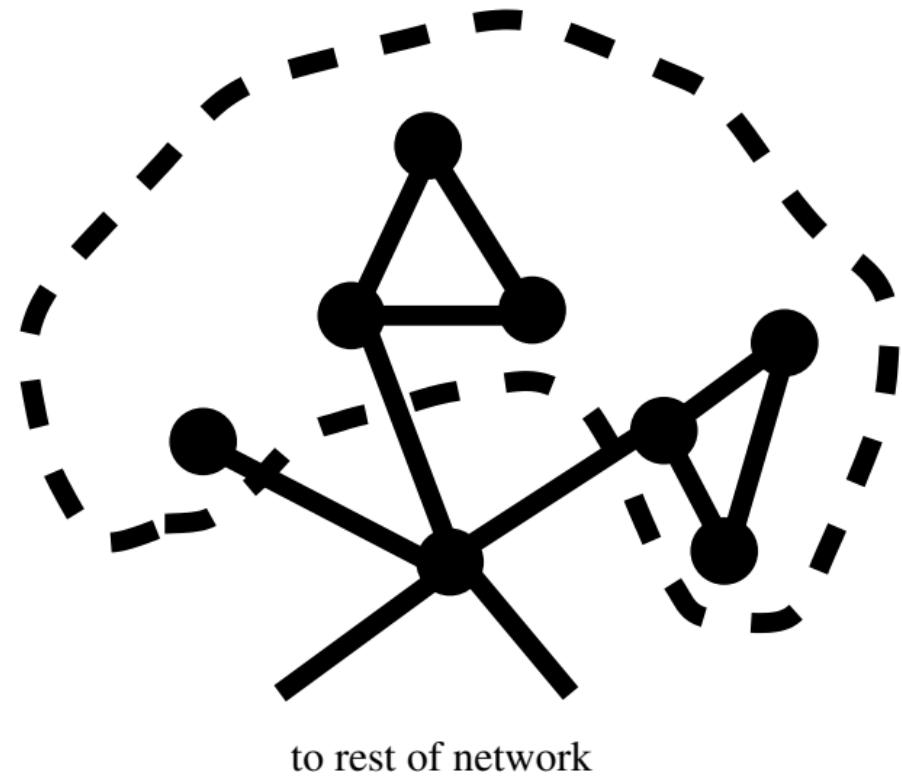


Odd cycles in isolation have a zero mode.

Generically: such modes mix and are destroyed

R-type regions host linear combinations that survive mixing

Key observation: R-type regions trap monomers



The same R-type region also traps two monomers

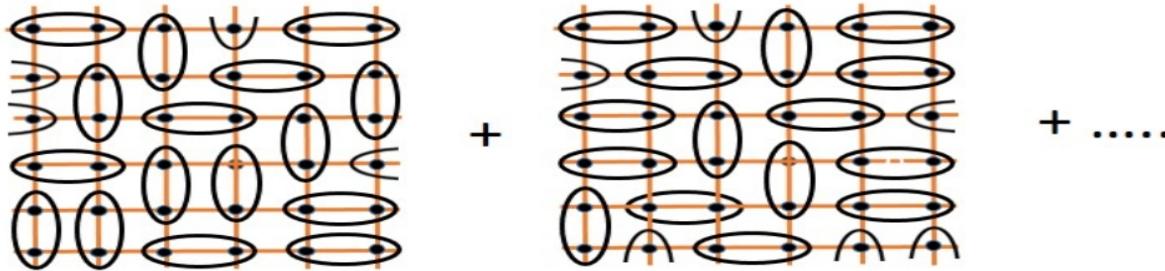
Gels with theorem of Lovasz

ON DETERMINANTS, MATCHINGS, AND RANDOM ALGORITHMS
by L. Lovász*

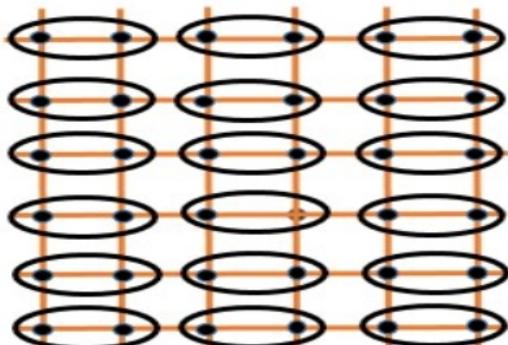
Fund. Comp. Th. 1979

Total monomer number = Total number of topologically protected zero modes of $i\mathcal{A}_{rr'}$

Digression: non-magnetic impurities in VBS and sRVB states



Short-range resonating valence bond (sRVB) spin liquid (gapped)



Valence bond solid (VBS)
(with spontaneous lattice symmetry breaking)

Quantum dimer model framework for RVB/VBS states

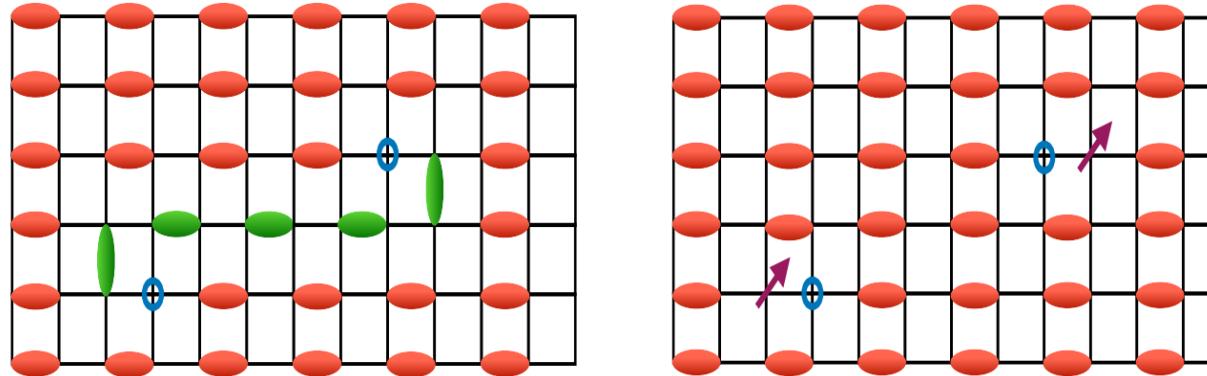
Rokhsar and Kivelson: Effective Hamiltonian living in subspace of singlets spanned by nn VB

$$H_{QDM} = -t(| = \rangle \langle \parallel | + | \parallel \rangle \langle = |) + \dots$$

More generally: Ring-exchange kinetic terms on “flippable” plaquettes, and local interactions

effect of matrix elements to further-neighbor singlet states captured in additional terms (“overlap expansion”)

Single-impurity effect in VBS state



Each vacancy, even if isolated from other vacancies, seeds a local moment in a VBS state

Signature: Large intermediate temperature range with Curie tail in susceptibility

Quenched below scale set by residual interactions

$$\begin{aligned}\chi_{\text{imp}} &\sim \frac{\mathcal{C}}{T} \quad \text{for } J_{\text{eff}} \ll T \ll J \\ \mathcal{C} &\propto n_v\end{aligned}$$

Vacancy disorder in sRVB spin liquid states: QDM framework

If disordered lattice has maximum matchings but no perfect matchings (fully-packed dimer covers):

Nonzero monomer density corresponds to density of vacancy-induced local moments

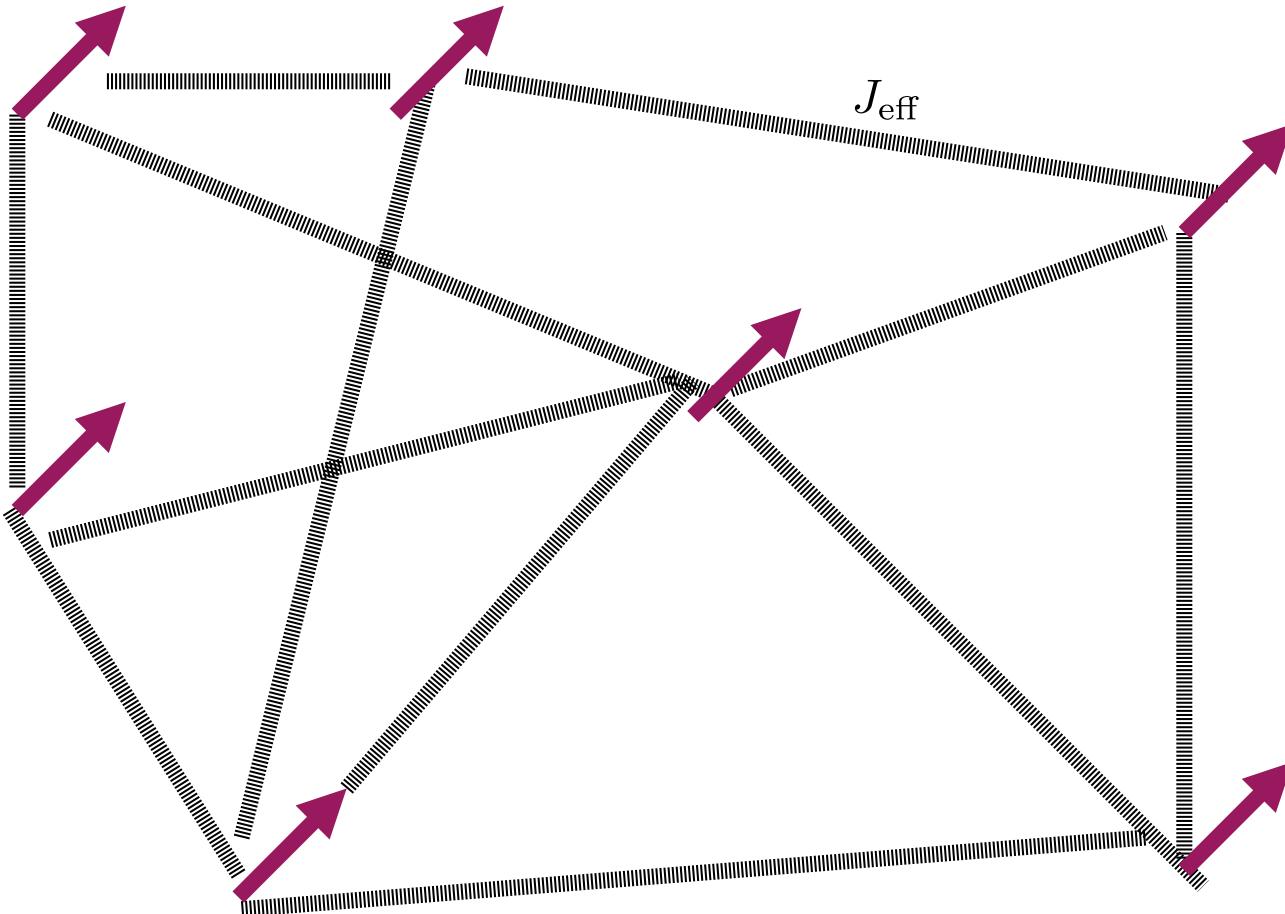
(“emergent”, at intermediate scale...)

Generally, nonzero vacancy density implies nonzero density of monomers

(effect of irregularity and local structure, true on lattices like triangular, square, honeycomb...)

$$\begin{aligned}\chi_{\text{imp}} &\sim \frac{\mathcal{C}}{T} \quad \text{for } J_{\text{eff}} \ll T \ll J \\ \mathcal{C} &\propto n_{\text{monomer}}\end{aligned}$$

Summary: Distinct vacancy-induced local moment instabilities of RVB and VBS states



In RVB case, only if

$$n_{\text{monomer}} \neq 0$$

$$(\mathcal{C} \propto n_{\text{monomer}})$$

In VBS case, even when

$$n_{\text{monomer}} = 0$$

$$(\mathcal{C} \propto n_v)$$

Second thoughts?

This conclusion seems to rely too much on having only nearest-neighbor singlets?

Does it really hold for generic short-range RVB liquid states?

To answer: large-N route to quantum dimer model

$$\begin{aligned} H &= J \sum_{\langle rr' \rangle} \vec{S}_r \cdot \vec{S}_{r'} + \dots \\ &= -J \sum_{\langle rr' \rangle} \left(\mathcal{P}_{rr'} - \frac{1}{4} \right) + \dots \end{aligned}$$

Enlarge symmetry group:

$$H = -\frac{J_m}{N} \sum_{\langle r_1 r_2 \rangle} \sum_{\alpha, \beta=1}^N |\alpha\rangle_{r_1} |\alpha\rangle_{r_2} \langle \beta|_{r_1} \langle \beta|_{r_2} + \dots ,$$

Affleck, Read, Sachdev, Auerbach, Penc, Mila, Coleman, Sandvik, Alet, Kawashima, Beach, Kaul... (1988 - now)

What's the enlarged symmetry?

$$\mathcal{A}_{\alpha\beta}(r) = -i(|\alpha\rangle_r\langle\beta|_r - |\beta\rangle_r\langle\alpha|_r) \quad \forall \text{ pairs } \alpha < \beta$$

$$\mathcal{S}_{\alpha\beta}(r) = (|\alpha\rangle_r\langle\beta|_r + |\beta\rangle_r\langle\alpha|_r) \quad \forall \text{ pairs } \alpha < \beta$$

$$\mathcal{Q}_{\alpha\alpha}(r) = (|\alpha\rangle_r\langle\alpha|_r - 1/N) \quad \forall \alpha = 1 \dots N-1$$

$$\mathcal{A}_{\alpha\beta}^{\text{tot}} = \sum_r \mathcal{A}_{\alpha\beta}(r) \quad \text{SO(N) symmetry on any arbitrary lattice}$$

$$\mathcal{S}_{\alpha\beta}^{\text{tot}} = \sum_r (-1)^r \mathcal{S}_{\alpha\beta}(r) \quad \text{Bipartite case: Enhanced "staggered" SU(N) symmetry}$$

$$\mathcal{Q}_{\alpha\beta}^{\text{tot}} = \sum_r (-1)^r \mathcal{Q}_{\alpha\beta}(r)$$

Large N limit in pure case

Any perfect (fully packed) dimer cover is a ground state (each dimer interpreted as singlet state)

Leading 1/N corrections: Captured precisely by QDM Hamiltonian with ring-exchange

Higher orders in 1/N: Additional local terms in QDM Hamiltonian

(Affleck, Read, Sachdev, Kaul...)

Recover the same QDM framework---without nearest-neighbor singlet assumption.

Disordered case: Large N limit

Any maximum matching now gives a large-N ground state.

Monomers correspond to free moments (additional degeneracy)

Leading 1/N corrections: QDM Hamiltonian with ring-exchange + monomer kinetic energy terms

Higher orders in 1/N: Additional local terms in QDM Hamiltonian

Correspond to residual interactions between local moments... (?)

These control fate of system at lowest energies

So: Large N also gives maximally-packed QDM description of disorder effects in short-range RVB liquid

Focus on random geometry of maximum-density dimer packings

We ask: Where on the lattice do the monomers live? (in the ensemble of maximum matchings)

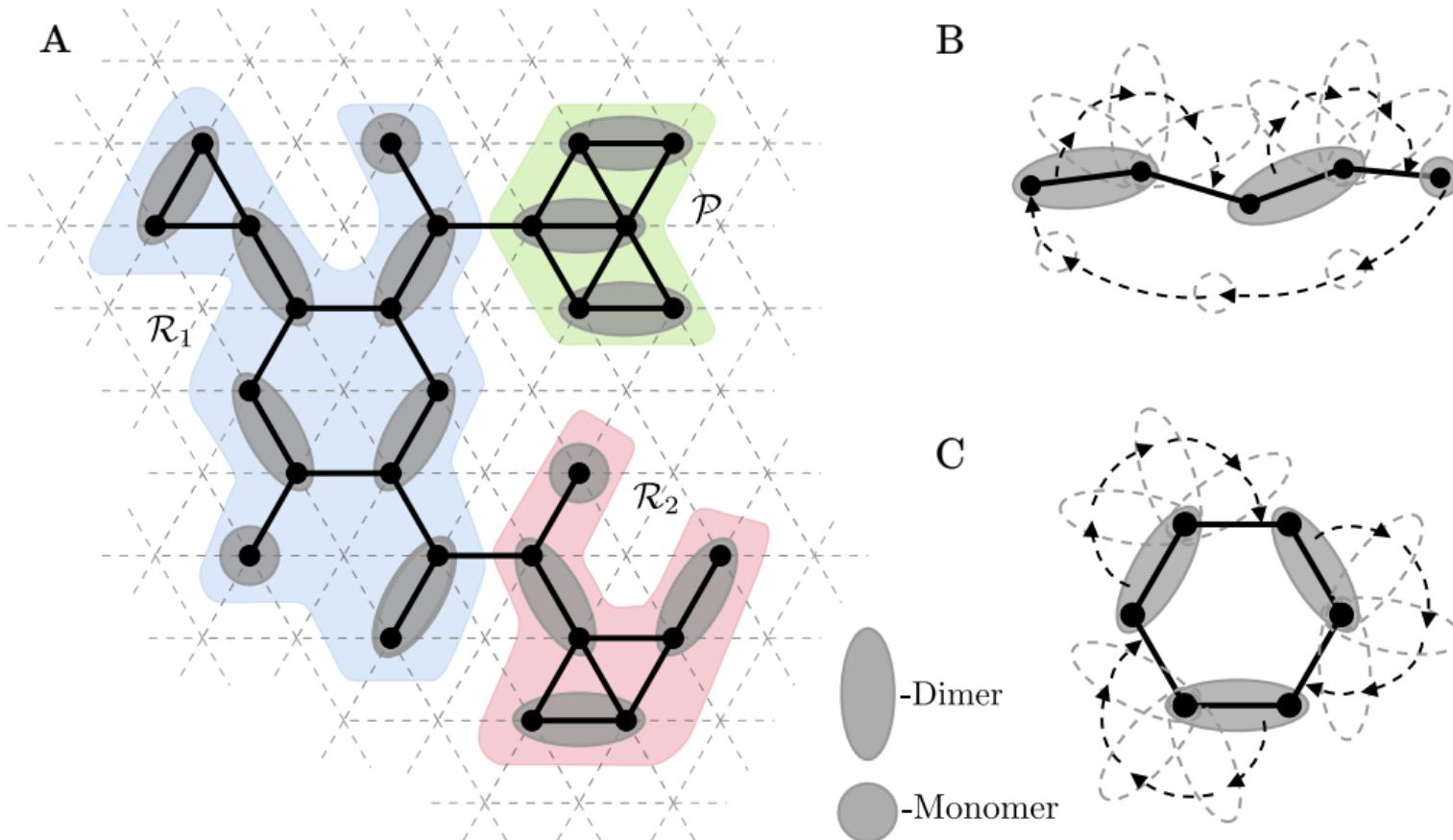
The answer should give us

partial information on zero-modes/collective Majorana modes

Vacancy-induced local moment instabilities

How does one implement this?

The setting: Maximum-density dimer packings of diluted lattices



Conclusions (from pictures):

Consequences of hard-core and maximum-density constraints:

Constrained kinematics: ring-exchange or monomer-hopping

Constraint on links of ring-exchange and monomer-hopping process paths:

Each such link must be occupied by a dimer in at least one such dimer packing

Constraint on monomer and dimer motion:

Monomers confined to well-defined regions of disordered lattice. Other regions fully-packed.

Identifying monomer-carrying and perfectly-matched regions:

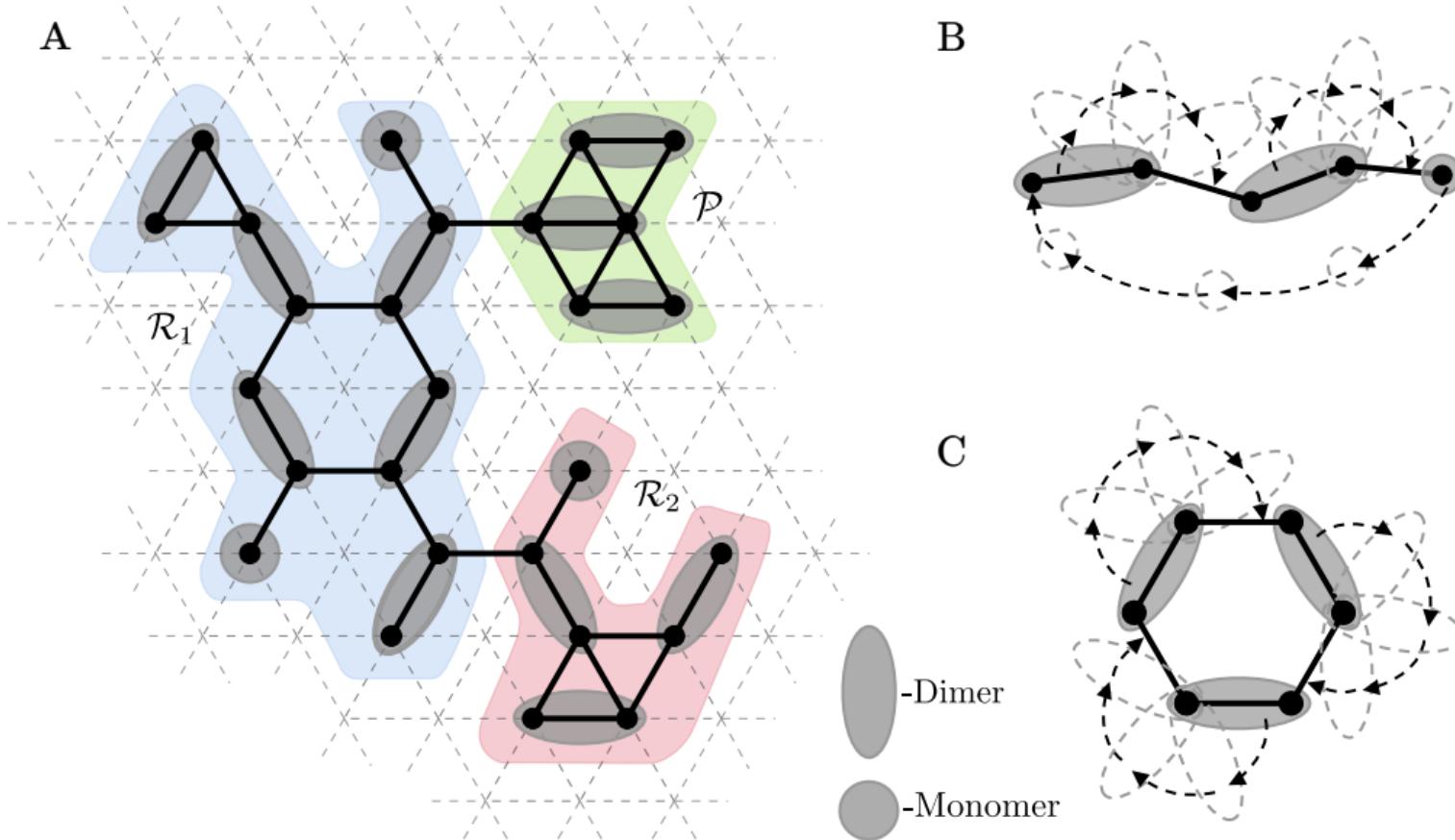
Boundaries of monomer-carrying \mathcal{R} -type, fully-packed \mathcal{P} -type regions:

Some “forbidden” links of disordered lattice can never be occupied by a dimer in any such packing

Boundaries of these regions demarcated by the “forbidden” links

Question becomes: Can we identify the forbidden links in a systematic way given a disordered sample?

Geometry of monomer-carrying and fully-packed regions



Math to the rescue: Gallai-Edmonds & Dulmage-Mendelsohn theory

Definitions:

Pick favorite maximum-density dimer packing

Explore forest of alternating paths starting from all monomers

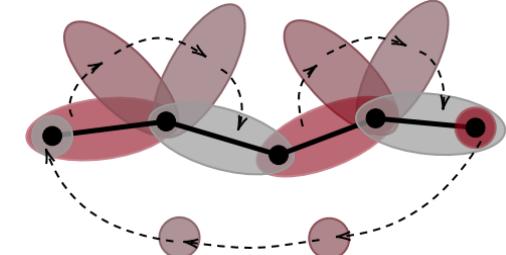
Label vertices e (even) if they can be reached along an even-length path of this forest

Label vertices u (unreachable) if they cannot be reached along any paths of this forest

Label vertices o (odd) otherwise (i.e. can be reached by odd-length path but not even-length path)

Theorem of Gallai-Edmonds (general case) & Dulmage-Mendelsohn (bipartite case):

Labeling is property of disordered lattice, not of your favorite maximum-density dimer packing.



COVERINGS OF BIPARTITE GRAPHS

A. L. DULMAGE AND N. S. MENDELSON

Dulmage & Mendelsohn, Canadian J. Math 1958

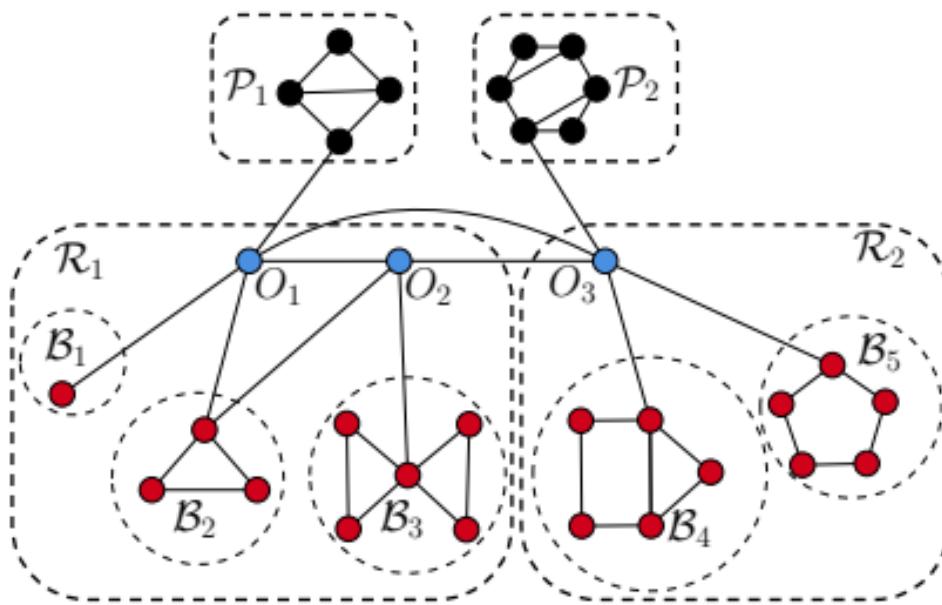
PATHS, TREES, AND FLOWERS

JACK EDMONDS

T. Gallai 1963,'64

J. Edmonds, 1965

Our answer

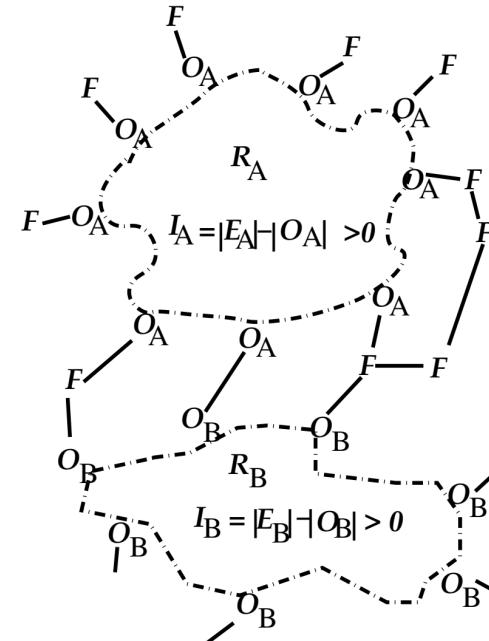


KD, PRB 105 235118 (2022)

Key observation: $o - o$ and $o - u$ links are the “forbidden” links. Delete!

Gives us an alternate local proof of Longuet-Higgins & Lovasz results.

Number of monomers in an R-type region = Number of zero modes localized in same region.
(adding contributions from all regions gives older global statements of Longuet-Higgins and Lovasz)



In any maximum matching:

$$O_A \text{---} E_A$$

$$O_B \text{---} E_B$$

$$F \text{---} F$$

$$\textcircled{m} \text{---} E_A$$

$$\textcircled{m} \text{---} E_B$$

Bhola, Biswas, Islam, KD, PRX 2022

Striking theorem on kagome lattice

$$n_{\text{monomer}} = 0$$

in (infinite connected cluster of) the diluted kagome lattice with nonzero vacancy density

Short-range RVB state has no vacancy-induced local moment instability on kagome lattice (!)

Theorem generally true on all “claw-free lattices” (pyrochlore lattice, star lattice etc)

More generally: tractable computations(!)

*Can obtain complete set of R -type and P -type regions from one maximum matching of diluted lattice
via BFS for augmenting alternating paths (Blossoms in non-bipartite case)*

Opens door to detailed computational study of random geometry of \mathcal{R} -type and \mathcal{P} -type regions

(..and thence, (hopefully) to deductions about the physics...)

Bhola, KD, arXiv:2311.05634v2 (2025)

KD, PRB 105 235118 (2022)

Bhola, Biswas, Islam, KD, PRX 2022

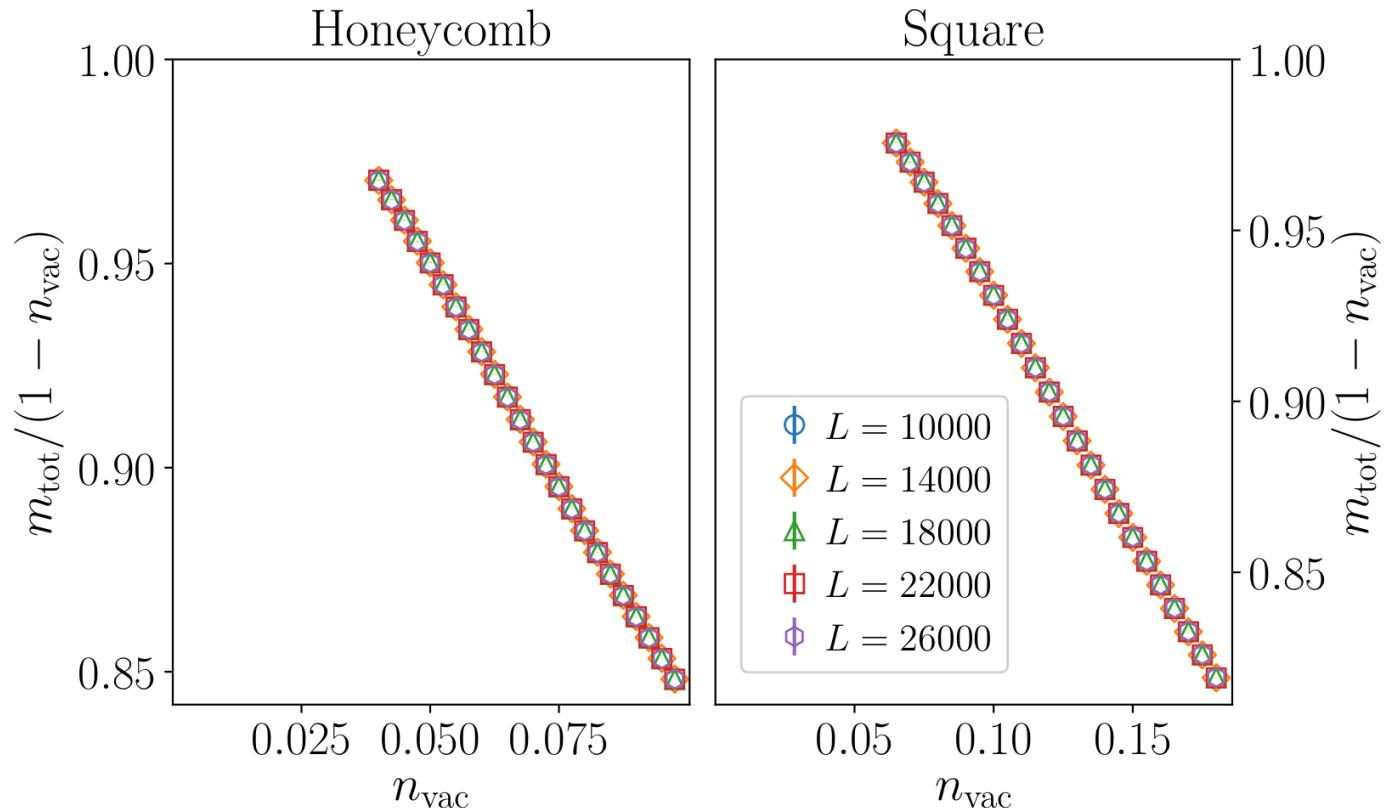
Enter: Percolation...

Typical regions are large at low dilution: Think in terms of percolation

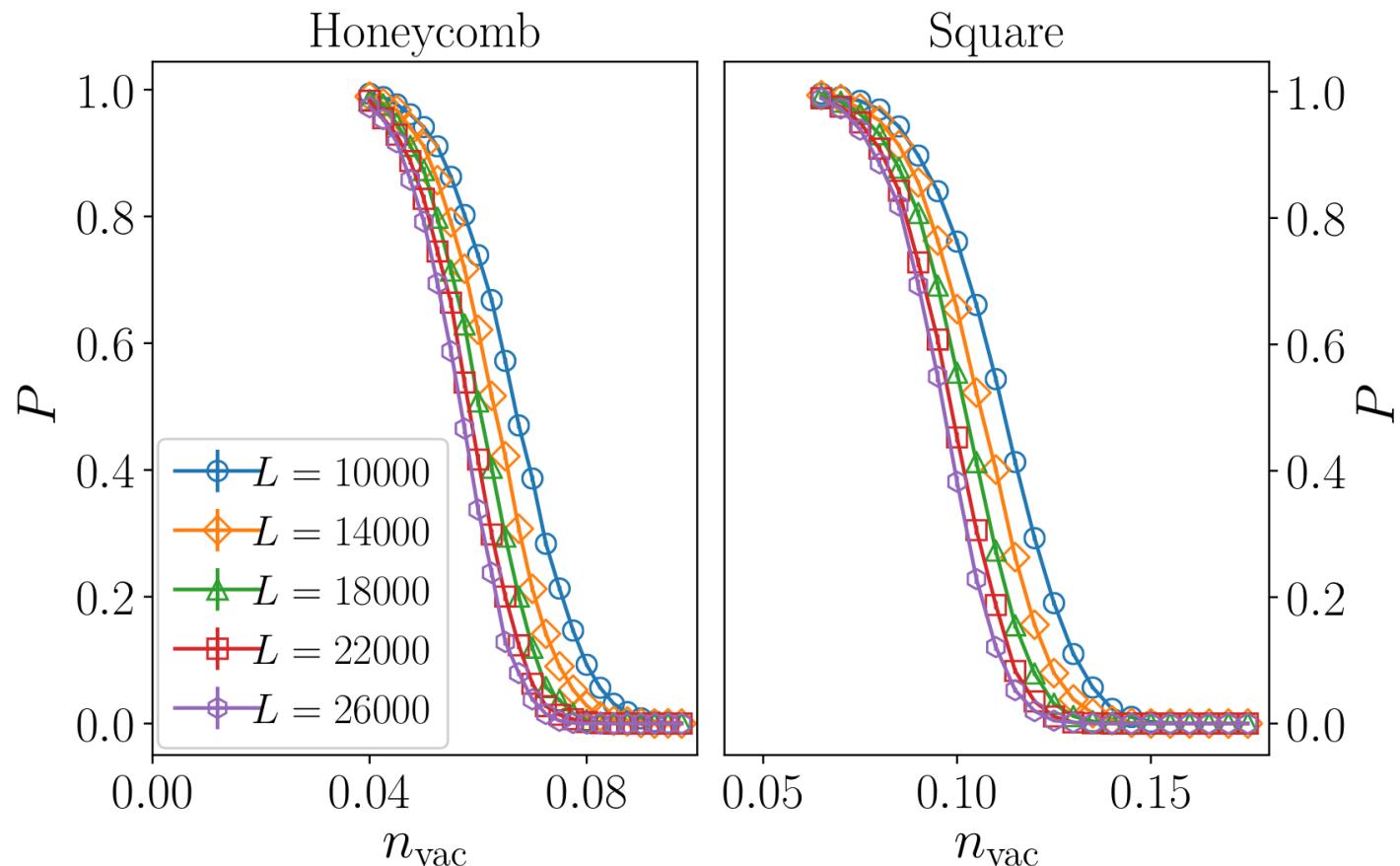
The “right” yes/no question to ask: Can one walk from one end of a sample, staying within a single region?

Bipartite case

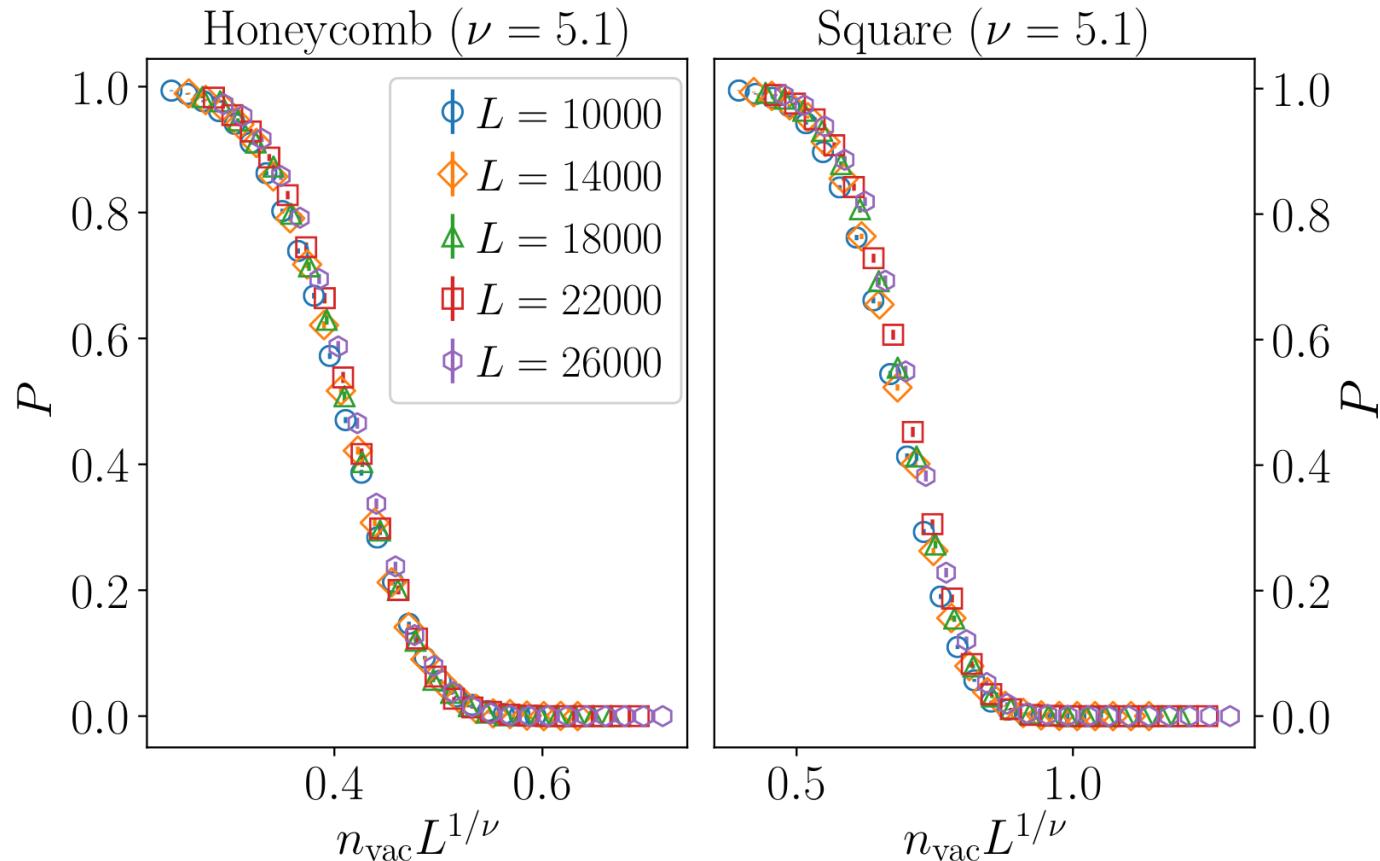
\mathcal{R} -type regions take over lattice



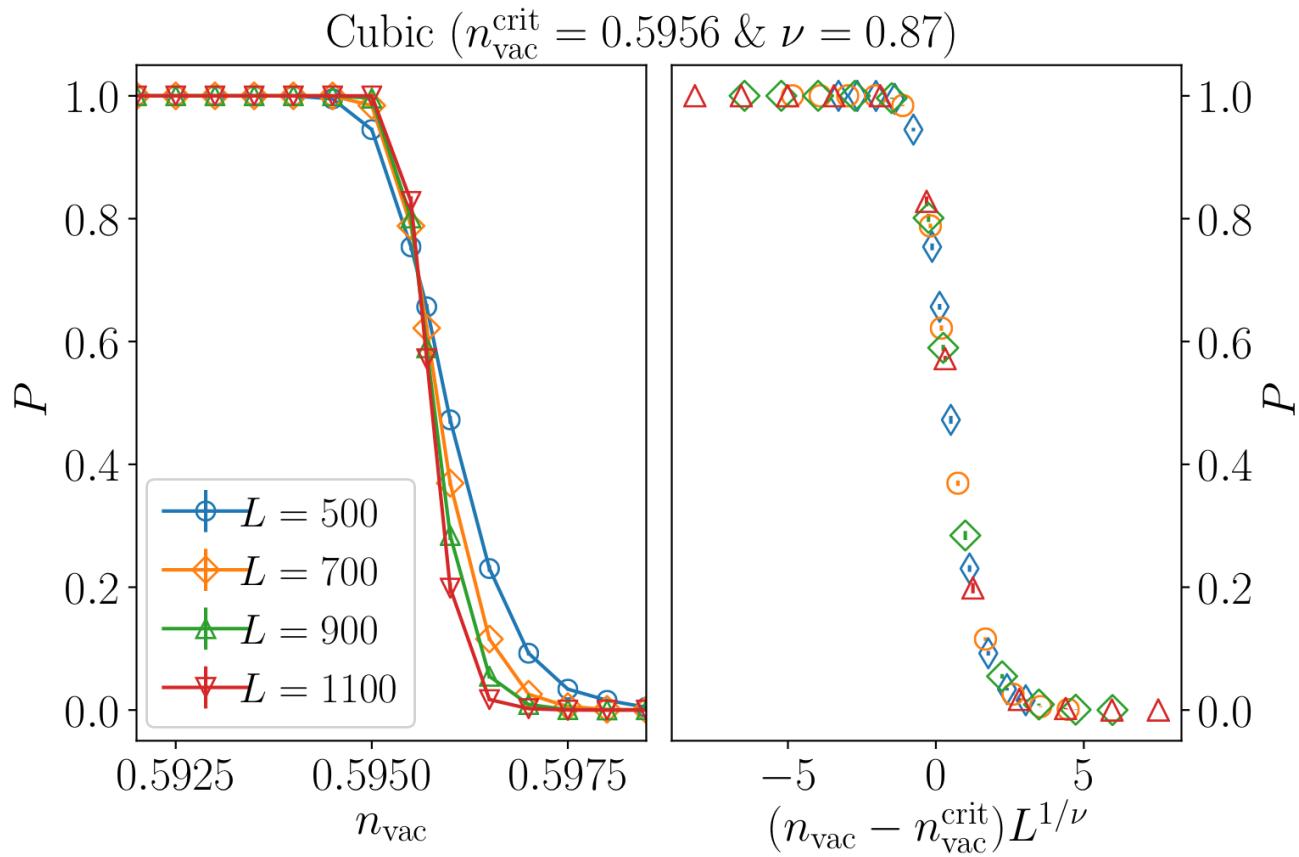
Incipient percolation at $n_v=0$ (?)



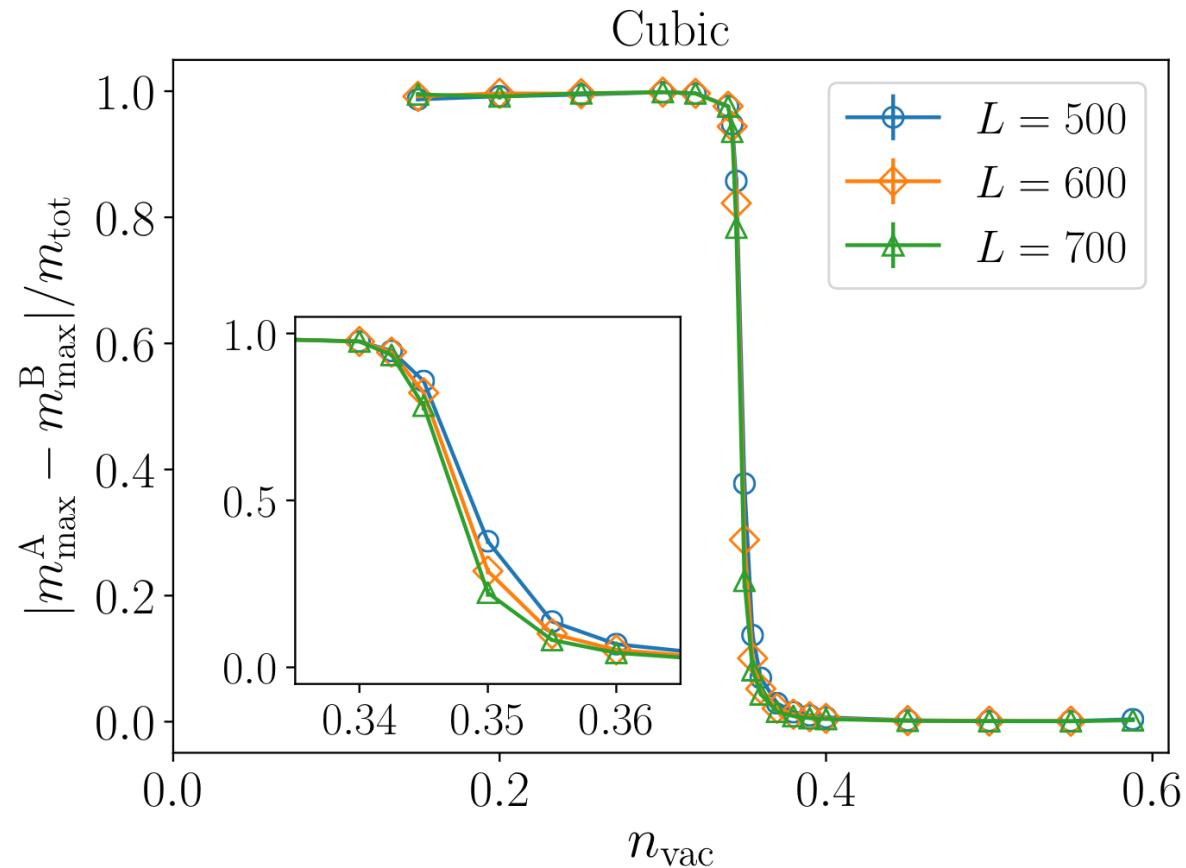
Universal scaling at $n_v=0$ critical point



Percolation transition on cubic lattice



Spontaneous sublattice symmetry breaking deep inside percolated phase



Consequences for “quantum percolation” and Kitaev systems...

*No quantum percolation transitions on the square or honeycomb lattices at half-filling
(very large crossover length scale)*

*Quantum percolation transition on diluted cubic lattices understood in terms of monomer percolation
(With interactions: sublattice symmetry breaking transition could have implications for magnetic response)*

Bhola, Biswas, Islam, KD, PRX 2022

(obvious) spin-off: Kitaev magnets have vacancy-induced Curie tails with Curie constant $\mathcal{C} \propto w$

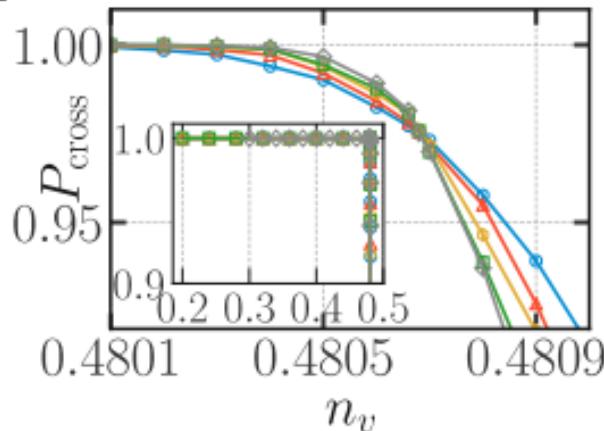
Sanyal, KD, Chalker, Moessner PRL 127 127201 (2021)

Nonbipartite case

Bhola, KD, arXiv:2311.05634v2 (2025)

On the diluted triangular lattice

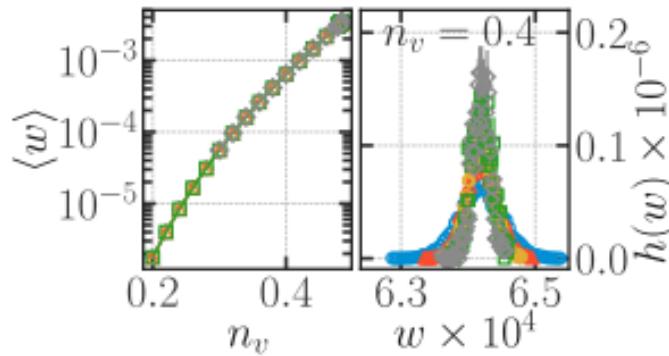
A



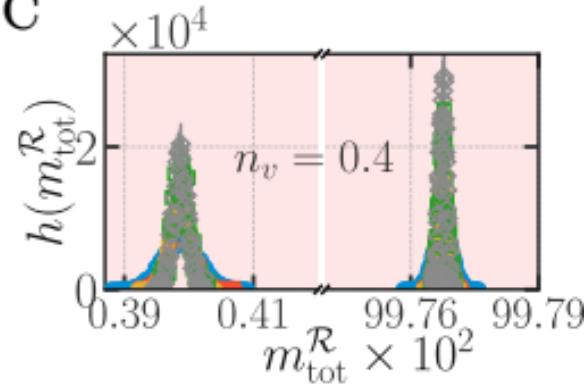
B



D



C



$\text{---} \circ \text{---} L=10000$
 $\text{---} \star \text{---} L=14000$

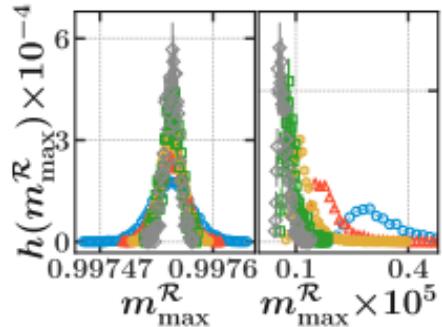
$\text{---} \diamond \text{---} L=18000$
 $\text{---} \boxplus \text{---} L=22000$

$\text{---} \diamond \text{---} L=26000$

On the diluted triangular lattice

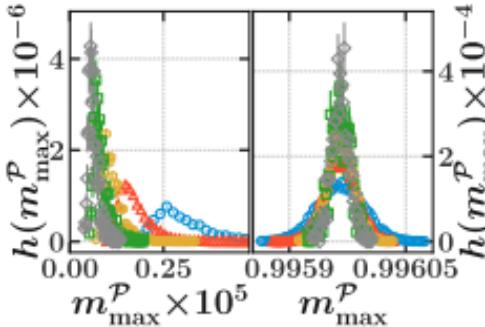
A

\mathcal{R} -type sample \mathcal{P} -type sample



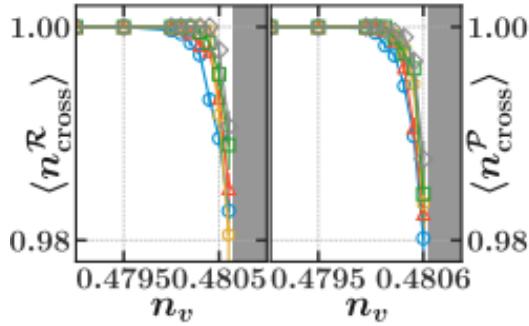
B

\mathcal{R} -type sample \mathcal{P} -type sample

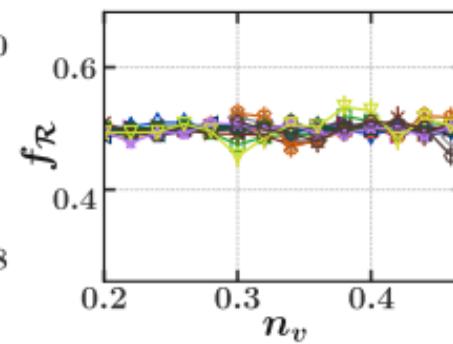
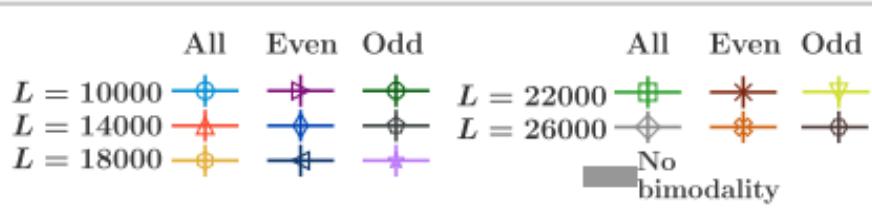


C

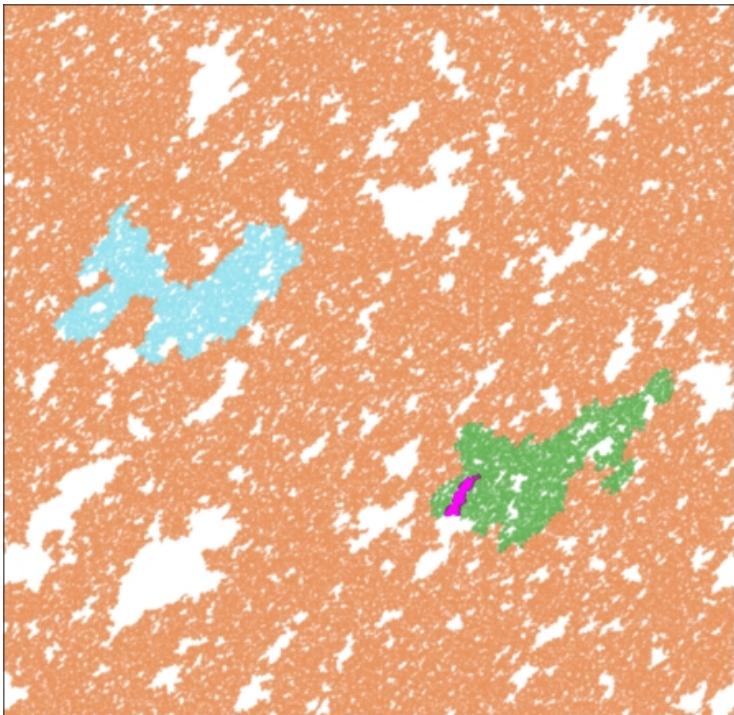
\mathcal{R} -type sample \mathcal{P} -type sample



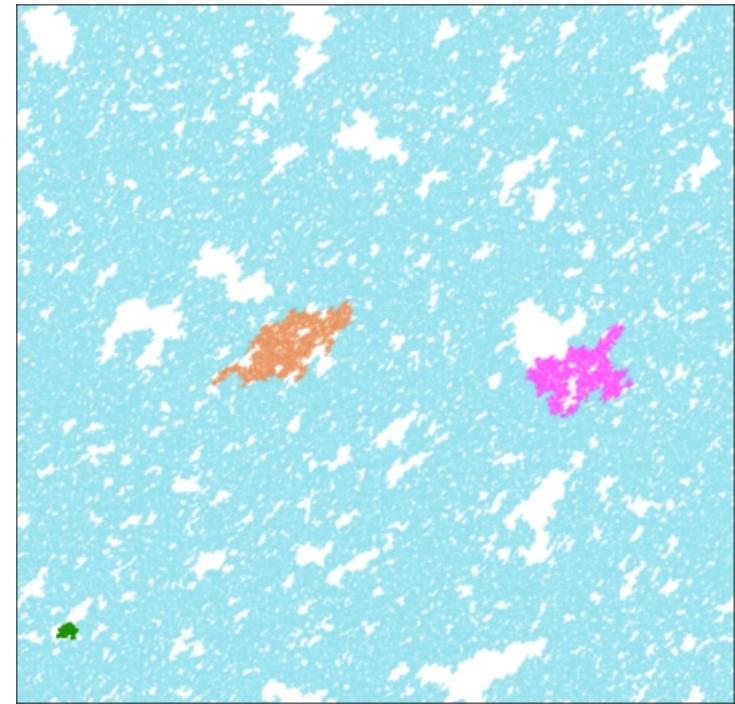
D



Pictorially on the diluted triangular lattice



R-type sample



P-type sample

On the diluted triangular lattice

$$f_{\mathcal{R}} = 1/2$$

Why???

Does this suggest some emergent symmetry between monomer-carrying and fully-packed regions

Again: Parity of largest geometric cluster plays no role!

On the diluted triangular lattice

Violation of even the weak form of “central dogma” at low vacancy concentration:

Monomers delocalized in half the samples, localized to $O(1)$ regions in the other half!

All samples identically prepared, randomly diluted, with the exact same density of vacancies

On the diluted triangular lattice

Suggests extreme sensitivity of large-scale geometry to micro-scale details of disorder configuration

Can we quantify this?

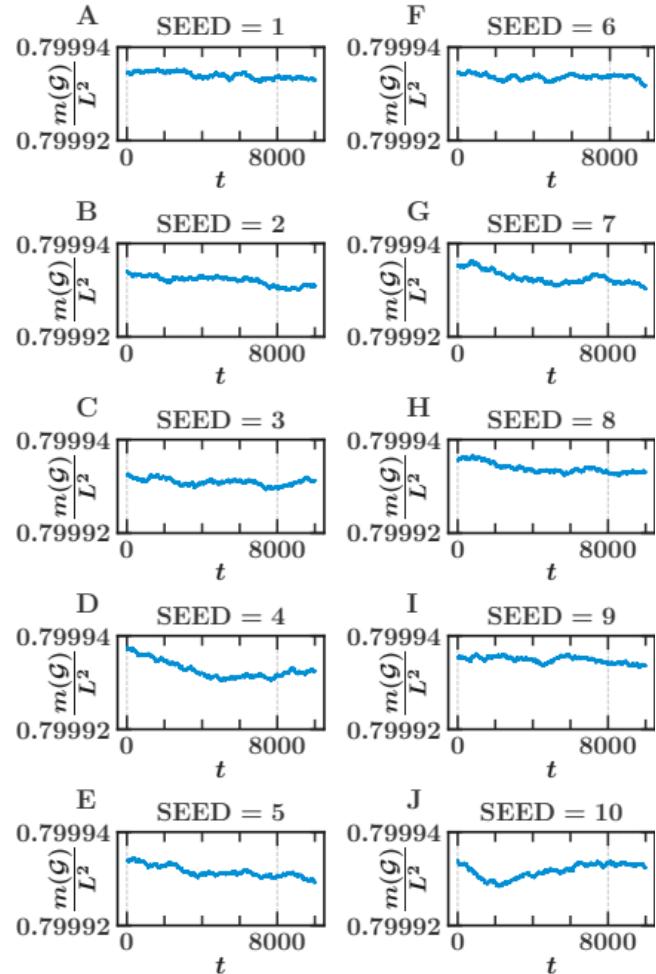
Model dynamics: Set vacancies in motion and watch what happens!

Small fraction of vacancies exchange position with neighboring surviving site at each time step

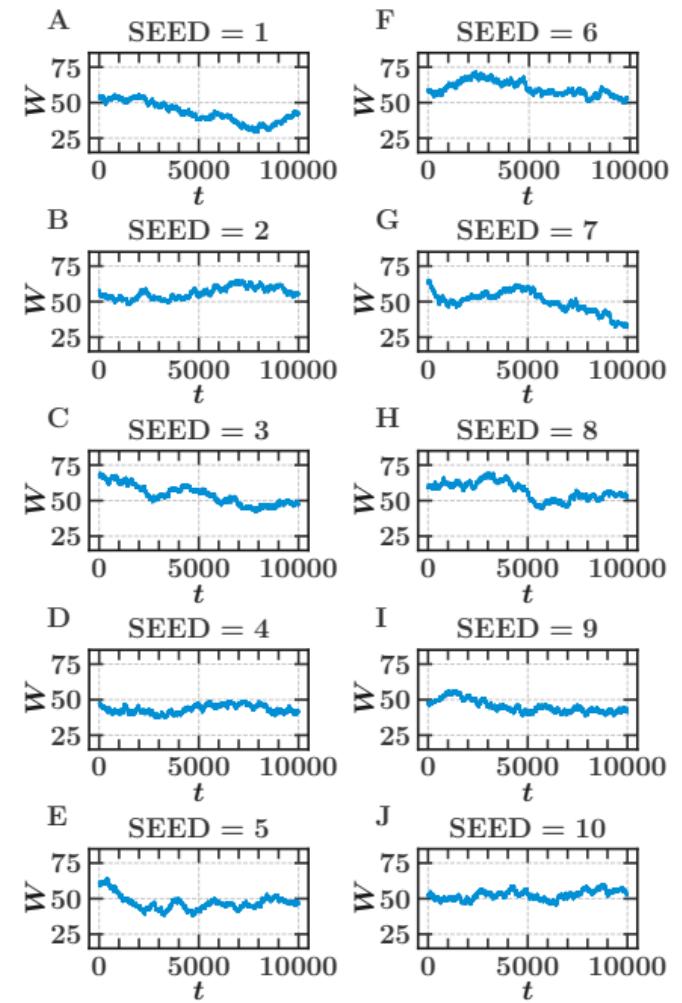
How does the large-scale geometry of these regions react?

Dynamics doesn't disturb underlying lattice much

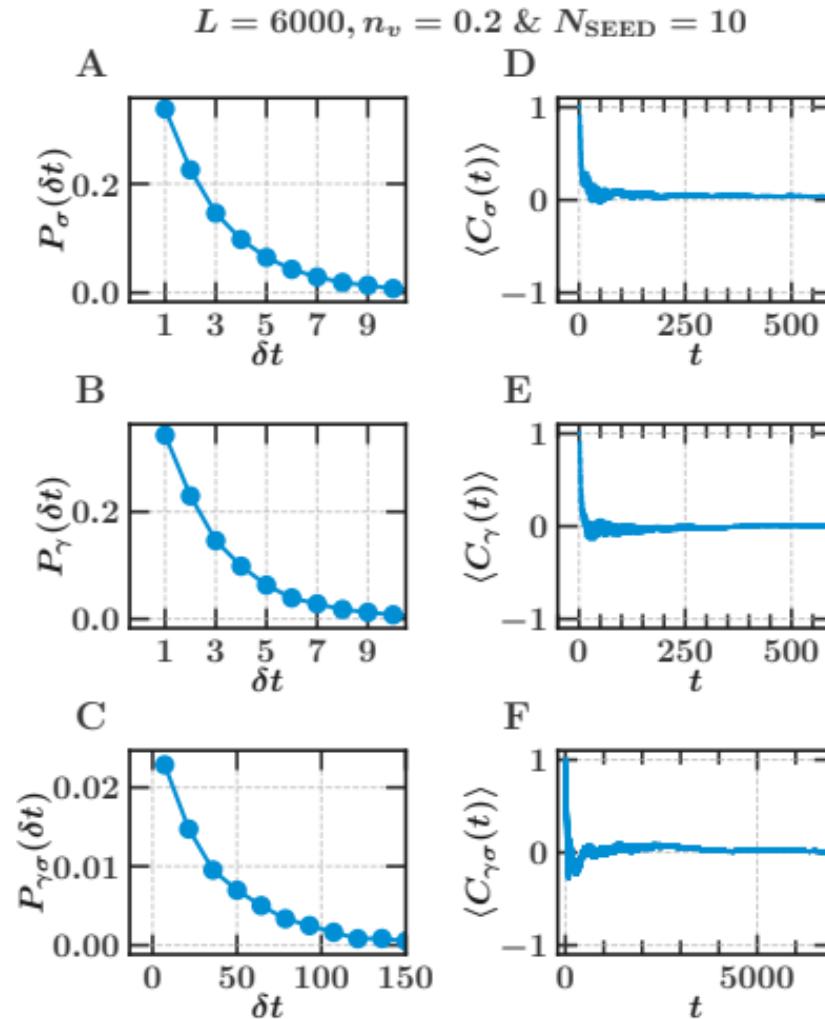
$L = 6000$ & $n_v = 0.2$



$L = 6000$ & $n_v = 0.2$



Yet: Large-scale geometry of monomer-carrying/fully-packed regions responds chaotically



And thus: Consequences for transport

Effects of weak vacancy disorder (missing vortices) in pinned vortex lattice state of p+ip superconductors:

At a minimum: Strong violations of thermodynamic self-averaging in the thermal conductivity

Likely: “R-type samples” have high thermal conductance but not “P-type” samples

Also: Chaotic (deterministic but unpredictable) conductance response to changes in disorder configuration.

...and for magnetism

Effects of weak vacancy disorder (nonmagnetic impurities) in short-range RVB spin liquids on triangular lattice

At a minimum: Strong violations of thermodynamic self-averaging in the susceptibility

Likely: “R-type samples” have spin-glass order but not “P-type” samples

Also: Chaotic (deterministic but unpredictable) susceptibility response to changes in disorder configuration.

More results...

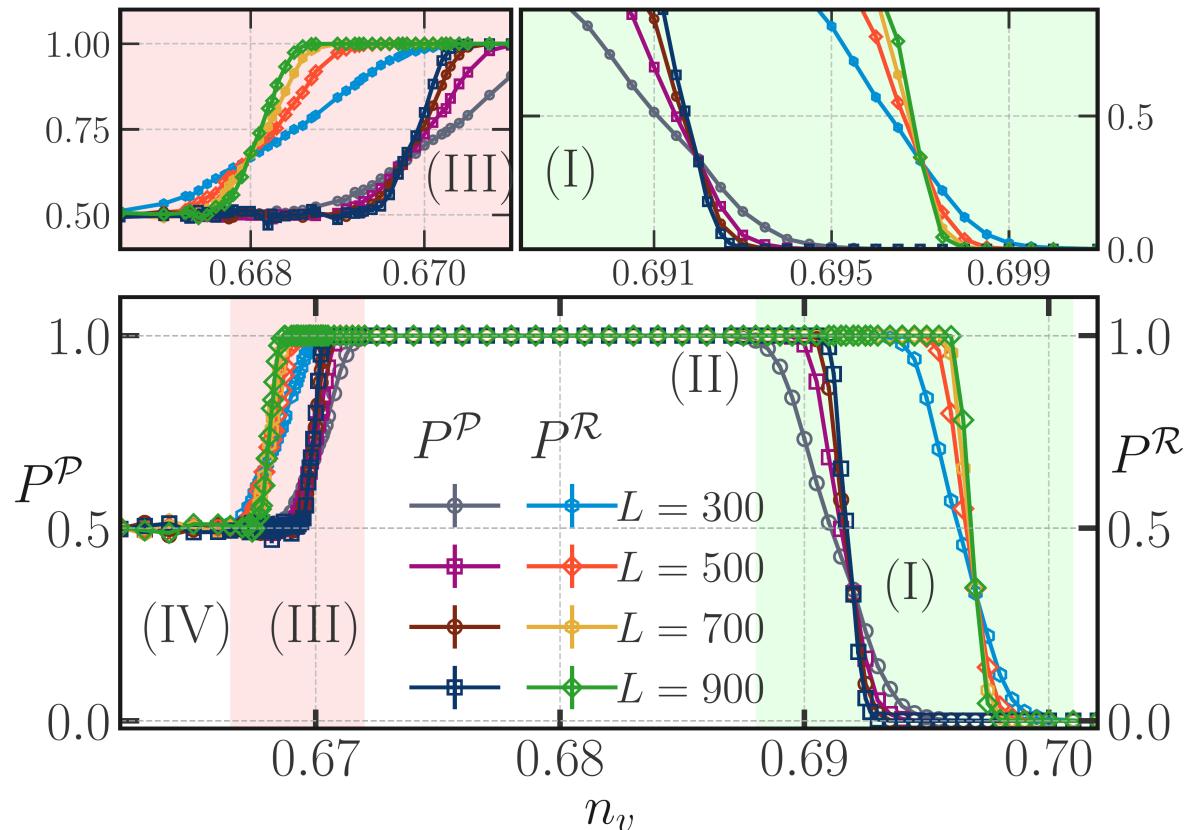
Similar phenomena on other non-bipartite lattices:

Checked: Percolation transition and low-dilution phase essentially the same on the Shastry-Sutherland lattice

A totally baroque phase diagram in three dimensions

Interesting from the vantage point of percolation theory

Phase diagram in 3d via wrapping probabilities



Acknowledgements

Pointers to Math literature: T. Kavitha (TIFR CS), A. Mondal (TIFR Math), Piyush Srivastava (TIFR CS)

Correspondence with: R. Anstee (Vancouver, Math), about theorem about $n_v \simeq L^{-\alpha} \rightarrow 0$ limits.

Discussions on

vacancies in sRVB, VBS, & AFM states: S. Bhattacharjee (ICTS-TIFR), L. Balents, S. Sachdev, A. Sandvik

Percolation: Deepak Dhar (ICTS-TIFR), Subhajit Goswami (TIFR Math), Piyush Srivastava (TIFR CS)

Computing cluster related support @ TIFR: K. Ghadiali and A. Salve (DTP SysAds)