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Disorder

Quenched disorder: Missing atoms, adatoms, lattice imperfections... 

Quite common in condensed matter systems

Effects varied:

Weak disorder: Can be irrelevant for low energy properties (not always).

Strong disorder: new phases of matter (e.g. spin glasses)

Can probe correlations of underlying state (e.g. spin textures in frustrated magnets)



  

“Central dogma”

In large-size limit - 

Strong version:

Self-averaging of properties: Sample-to-sample fluctuations small (average = typical)

Violations exist – e.g. Disordered quantum spin chains (infinite-disorder fixed points)

Weak version:

At a minimum, two samples prepared using some protocol must be in same phase.

Violations? May exist in infinite-range spin glass models (?)



  

Our basic message

Violations of “central dogma”

Weak disorder can lead to:

Violations of not just strong but also weak form of the “central dogma”

Root cause: Kinematic constraints induce long-range correlations

(caveat emptor: merely post-facto rationalization, no detailed understanding)



  

Where’s the “Fractionalized Quantum Matter” in this story?

Weak vacancy disorder predicted to lead to similar effects in:

Triangular lattice short-range RVB spin liquids

Pinned triangular vortex-lattice state of topological p+ip superconductors

Triangular lattice Majorana spin liquids



  

Some predictions for observable effects

 

Consequences:

Weak vacancy disorder leads to similar effects in short-range RVB spin liquids on the triangular lattice

At a minimum: Strong violations of thermodynamic self-averaging in low-temperature suscepbtibility

Likely: “R-type samples” have spin-glass order but not “P-type” samples

Weak vacancy disorder in pinned vortex lattice state of p+ip superconductors will also lead to similar effects

At a minimum: Strong violations of thermodynamic self-averaging in the thermal conductivity

Likewise for weak vacancy disorder in triangular lattice Majorana spin liquids



  

The setting: Maximum-density dimer packings of diluted lattices



  

Some conclusions (from pictures):

Pure case:

Most regular lattices have nonzero entropy density of fully-packed dimer coverings

(if bipartite, require |A|=|B| of course)

Weak vacancy disorder or bond dilution:

Typically have nonzero density of monomers in any maximum-density dimer packing

(and nonzero entropy density of such packings)



  

Constraints on maximum-density dimer packings



  

More conclusions (from pictures):

Consequences of hard-core and maximum-density constraints:

Constrained kinematics: ring-exchange or monomer-hopping

Constraint on links of ring-exchange and monomer-hopping process paths:

Each such link must be occupied by a dimer in at least one such dimer packing

Constraint on monomer and dimer motion:

Monomers confined to well-defined regions of disordered lattice. Other regions fully-packed.



  

Geometry of monomer-carrying and fully-packed regions



  

Another conclusion (from pictures):

Boundaries of monomer-carrying  R-type ,   fully-packed P-  type regions:

Some “forbidden” links of disordered lattice can never be occupied by a dimer in any such packing

Boundaries of these regions demarcated by the “forbidden” links

These regions are properties of disordered lattice, not any one maximum-density packing



  

Formal justification J. Edmonds, 1965T. Gallai 1963,’64 

Prescription: 

Pick favorite maximum-density dimer packing

Explore forest of alternating paths starting from all monomers

Label vertices e (even) if they can be reached along an even-length path of this forest

Label vertices u (unreachable) if they cannot be reached along any paths of this forest

Label vertices o (odd) otherwise (i.e. can be reached by odd-length path but not even-length path)



  

Gallai-Edmonds Theory

J. Edmonds, 1965

T. Gallai 1963,’64 

Labeling independent of choice of favorite maximum-density dimer packing

Property of underlying disordered lattice

Labeling comes with structural guarantees about disordered lattice

No e – u links possible

Deleting e – o organizes all e vertices into odd-cardinality connected components: “Blossoms”

Labeling also comes with guarantees about ensemble of maximum-density dimer packings

All u vertices connected to another u vertex by a dimer

All o vertices connected to some e vertex by a dimer

All monomers live on blossoms, no blossom has more than one monomer on it.



  

Construction of  R-type  and P-  type regions

Key observation: o – o and o – u links are the “forbidden” links. Delete!

KD, PRB 105 235118 (2022) 



  

Significance of  R-type  and P-   type regions: Take 1

Quantum monomer-dimer models

Monomer-hopping and ring-exchange processes cannot cross boundaries

All eigenstates of quantum/classical monomer-dimer models factorize 

(for any dimer-interactions along flippable loops, but short-range monomer interactions)

Implies: If all regions small, area law entanglement in the middle of the many-body spectrum



  

Significance of  R-type  and P-   type regions: Take 2

Non-magnetic impurities (vacancy disorder) in short range resonating valence bond spin liquids

Within Rokhsar-Kivelson quantum dimer model framework:

Monomers associated with emergent local moments, confined to R-type regions

Emergent local moments are a multi-vacancy effect

Dominant short-range interactions between these local moments also confined

Geometry of R-type regions expected to determine low-energy state and magnetic response

Short-range resonating valence bond spin liquid

Ansari, KD, PRL 132 226504 (2024)



  

Contrast with lattice symmetry broken VBS state

Each vacancy individually nucleates a local moment bound to it

Valence bond solid (VBS) 

spontaneous lattice symmetry broken

Ansari, KD, PRL 132 226504 (2024)



  

Why the distinction?

Ansari, KD, PRL 132 226504 (2024)

Also follows from more formal arguments relying on large-N expansions 

And via computations (QMC) on model “designer” Hamiltonians with SU(N), O(N) symmetry

Heuristic picture 

Ansari, Kundu, KD, in preparation 



  

Conclusion: local moment instability of RVB and VBS states

J e f f

In RVB case, only if 

In VBS case, even when 

Ansari, KD, PRL 132 226504 (2024)



Significance of  R-type  and P-  type regions  : Take 3

Topologically-protected collected Majorana zero modes of such “Majorana networks”

Each R-type region hosting I  monomers has I  topologically-protected collective Majorana zero modes

Localized entirely within individual R-type regions.

Effective low-energy Hamiltonian for Majorana excitations 

Triangular lattice Majorana spin liquids 

Majorana modes of pinned triangular vortex lattice state of p+ip superconductors 

KD, PRB 105 235118 (2022) 



  

With this motivation...

Computational study of large-scale geometry of monomer-carrying  R-type ,   fully-packed P-  type regions

Computationally tractable (but challenging) using Edmonds’ polynomial time matching algorithm

Typical regions are large at low dilution: Think in terms of percolation

What is percolation? Sharp threshold (as function of some parameter) in end-to-end connectivity of a medium

The “right”  yes/no question to ask: Can one walk from one end of  a sample, staying within a single region?



  

On the diluted triangular lattice



  

On the diluted triangular lattice



  

Pictorially on the diluted triangular lattice

R-type sample P-type sample



  

On the diluted triangular lattice

 

Does this suggest some emergent symmetry between monomer-carrying and fully-packed regions

Again: Parity of largest geometric cluster plays no role!

Why???



  

On the diluted triangular lattice

 

Violation of even the weak form of “central dogma” at low vacancy concentration:

Monomers delocalized in half the samples, localized to O(1) regions in the other half!

All samples identically prepared, randomly diluted, with the exact same density of vacancies



  

On the diluted triangular lattice

Suggests extreme sensitivity of large-scale geometry to micro-scale details of disorder configuration

Can we quantify this?

Model dynamics: Set vacancies in motion and watch what happens!

Small fraction of vacancies exchange position with neighboring surviving site at each time step 

How does the large-scale geometry of these regions react?



  

Dynamics doesn’t disturb underlying lattice much



  

Yet: Large-scale geometry of monomer-carrying/fully-packed regions responds chaotically



  

Some predictions for observable effects

 

Consequences:

Weak vacancy disorder leads to similar effects in short-range RVB spin liquids on the triangular lattice

At a minimum: Strong violations of thermodynamic self-averaging in low-temperature suscepbtibility

Likely: “R-type samples” have spin-glass order but not “P-type” samples

Weak vacancy disorder in pinned vortex lattice state of p+ip superconductors will also lead to similar effects

At a minimum: Strong violations of thermodynamic self-averaging in the thermal conductivity

Likewise for weak vacancy disorder in triangular lattice Majorana spin liquids



  

On the theory side...

 

Similar phenomena on other non-bipartite lattices:

Checked: Percolation transition and low-dilution phase essentially the same on the Shastry-Sutherland lattice

A totally baroque phase diagram in three dimensions

Interesting from the vantage point of percolation theory



  

Exception: Site-diluted kagome lattice: A striking result

Short-range RVB state stable to vacancy disorder on kagome lattice (!) 

Generally true on all claw-free lattices (pyrochlore lattice, star lattice etc)

Ansari, KD, PRL 132 226504 (2024)
Bhola, KD, in preparation

w=0 in the thermodynamic limit of the diluted kagome lattice with nonzero vacancy density 



  

Explicit computation:

Any maximum matching has at most 1 monomer in each connected component of lattice(!)

Ansari, KD, PRL 132 226504 (2024)



  

 3D Phase diagram via wrapping probabilities
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Supplementary information slides follow...



  

 Monomer density 



  

 Percolation transition



  

 Percolation transition



  

Quantum dimer model framework

Rokhsar and Kivelson: Effective Hamiltonian living in subspace of singlets spanned by nn VB

Additional terms incorporate the effect of matrix elements to  further-neighbor singlet states

More generally: Ring-exchange kinetic terms on “flippable” plaquettes, and local interactions



  

Z2 spin liquid example: Triangular QDM

Triangular lattice: Moessner-Sondhi (within QDM framework):

Triangular lattice QDM has truly quantum disordered phase

Short-range spin correlations, valence bond correlations, genuine Z2 spin liquid

(also  for kagome lattice)



  

Monomers correspond to “emergent” local moments in spin system

Each monomer corresponds to a disorder-induced “emergent” local moment
(purely kinematic effect, independent of VBS vs RVB nature of ground state) 

Signature: Large intermediate temperature range with Curie tail in susceptibility

Quenched below scale set by residual interactions

But wait: This conclusion seems to rely too much on having only nearest-neighbor singlets?
Does it hold for more generic short-range RVB liquid?



  

To answer: large-N route to quantum dimer model  

Enlarge symmetry group: 

Affleck, Read, Sachdev, Auerbach, Coleman, Sandvik, Kawashima, Beach, Kaul...(1988 - now)



  

What’s the enlarged symmetry?

Bipartite case: Enhanced “staggered” SU(N) symmetry  

O(N) symmetry on any arbitrary lattice



  

Large N limit in pure case

Any perfect (fully packed) dimer cover is a ground state (each dimer interpreted as singlet state) 

(Affleck, Read, Sachdev, Kaul...)

Leading 1/N corrections: Captured precisely by QDM Hamiltonian with ring-exchange 

Higher orders in 1/N: Additional local terms in QDM Hamiltonian 

Recover the same QDM framework---without nearest-neighbor singlet assumption.



  

Any maximum matching now gives a large-N ground state

1/N corrections: QDM Hamiltonian with ring-exchange + monomer kinetic energy terms  

Higher orders in 1/N: Additional local terms in QDM Hamiltonian 

Presumably: residual interactions between local moments...(?)

Maximally-packed QDM Hamiltonian valid description of disorder effects in short-range RVB liquid

Large-N limit in disordered case



  

Key claims that need computational test

Isolated vacancies do not seed local moments in RVB states, but do so in VBS states.

Monomer-carrying regions of lattice correspond to local moments in both kinds of states



  

Primer: Computational tests

O(N) models on non-bipartite lattices, SU(N) models on bipartite lattices

Ideal unified test: (runs into computational difficulties)

For SU(N) systems, equivalent to checking:

For O(N) systems, can instead check:

This is not defined for nonbipartite O(N) models

expected to be equivalent for



  

Test results (nonbipartite): VBS state

Ansari, KD, PRL 132 226504 (2024)



  

Test results (nonbipartite): RVB state

Ansari, KD, PRL 132 226504 (2024)



  

Test results (nonbipartite): RVB state

Note: deleted bonds, not sites 

Ansari, KD, PRL 132 226504 (May, 2024)



  

Test results: VBS state (bipartite)

Ansari, Kundu, KD, in preparation 



  

Test results: RVB state (bipartite)

Ansari, Kundu, KD, in preparation 



  

Test results: RVB state (bipartite)

Ansari, Kundu, KD, in preparation 



  

Test results

Ansari, Kundu, KD, in preparation 



  

R-type regions in bipartite case: General mechanism

Sanyal, KD, Motrunich PRL 2016 Bhola, Biswas, Islam, KD, PRX 12, 021058 (2022) 

These regions traps        monomers each (local statement)



  

R-type regions in nonbipartite case: General mechanism

This region traps two monomers (local statement)

KD,  PRB 2022



  

Aside: R-type regions host topologically-protected zero modes (bipartite case)

Bhola, Biswas, Islam, KD,  PRX 2022



  

Aside: Basic picture for collective Majorana modes (general case)

Many such isolated modes mix inside “R-type” region 

KD,  PRB 2022

Odd cyles in isolation guaranteed to have zero mode.

Topologically protected collective Majorana modes survive



  

Gels well with a  theorem of Lovasz

Monomer number = number of topologically protected zero modes of

Fund. Comp. Th. 1979



  

Constructing R-type regions in general case

● Each blossom hosts 1 (would-be) monomer.
● Number of monomers in each R-type region of auxillary bipartite graph 

fixed, independent of maximum matching

R-type region in bipartite auxiliary graph

KD,  PRB 2022



  

Aside: also constructs the zero modes

Alternate “local” proof of Lovasz’s Thm:

● Each blossom hosts 1 (would-be) mode.
● Number of monomers in each R-type region of auxillary bipartite graph 

fixed, determines number of collective zero modes.

R-type region in bipartite auxiliary graph

KD,  PRB 2022


