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What do we study?

 Maximally packed dimer models on diluted lattices



Glossary

(7

e)

a)
d)

e Vacancy disorder (Qquenched): Randomly delete sites of a lattice
e Matchings: attempt to pair each vertex with exactly one neighbour via hard-core dimers on link.

 Unmatched vertex: Location of monomer



MW ()

Maximum matching aka maximally packed dimer cover: Leave as few vertices unmatched as possible.
Alternating and augmenting paths

Matching maximum iff no augmenting path

Perfect matching aka fully packed dimer cover: No vertex left unmatched

Ensemble of maximum matchings: Maximally-packed dimer model



The questions:

 Number of monomers in the maximally packed dimer model (as function of vacancy density)?

* \Where do these monomers live?



Why ask these questions?

Answers have implications for:

Particle-hole symmetric quantum percolation at band center (in bipartite case)
Collective Majorana fermion excitations of networks of localised Majorana modes
Vacancy-induced local moments in short valence-bond spin liquids

Many-body localized phases of quantum dimer models with vacancy disorder.

Nonmagnetic impurity induced Curie tails in Kitaev magnets



What do we find?

« Percolation phenomena of monomer-carrying “R-type” regions (deep within geometrically percolated
phase of host lattice)

e Sublattice symmetry breaking transition within percolated phase (in d=3 bipartite case)

e Unusual “zero-half” threshold behaviour at percolation transition (in non bipartite case)



Some generalities:

* Quenched disorder matters (often)
e Particles scatter and diffuse (may be anomalously...)

« Matter-waves scatter and localise (sometimes weakly...)



Classical transport of fluid

Simplest setting: Porous random medium
Random geometry of medium determines fluid transport
Paradigm of percolation

More generally: Diffusion in presence of random potentials



Localization of matter waves

* Anderson localization of electrons in dirty metals
» Localization of quasiparticles in dirty superconductors

 Symmetries of disordered Hamiltonian matter (e.g. in random matrix theory)

Anderson, Ramakrishnan, Abrahams, Thouless, Dyson, Wegner, Mehta...



Simplest lattice model: Disordered tight-binding Hamiltonian

Z L+ Viy, = ey, foralli

JjEI
¢ is the energy of the particle described by wave function y;

l;; are ‘hopping amplitudes’ for particle to hop from site i to site |

V. are values of external potential at sites i

Allowed € : Eigenvalues of matrix of tij -+ Vlél]



Vacancy disorder

* Random dilution of the underlying lattice
* Models missing atoms in crystal structure

* Also natural if substitutional impurities correspond to missing orbital (binary alloys)



Quantum percolation

Anderson localisation meets geometric percolation (Kirkpatrick-Eggarter ’72, Shapir-Aharony-Harris ’82...)
Vacancy disorder
No external random potentials

Can the quantum electron fluid be localised even when the corresponding classical fluid diffuses from end
to end?



Simplest case: bipartite lattice with hopping and vacancy disorder

Particle hopping on a randomly diluted bipartite lattice (binary alloy)

(Possibly random) hopping amplitudes between nearest neighbour sites

Bipartite symmetry: State with energy € has partner at energy —e¢

Symmetry broken by random potentials, next-neighbour hopping — left out here.



The “Gade-Wegner” problem

e ¢ = (0 is special

« What is the asymptotic low-energy behaviour of p(€)?



“Gade-Wegner problem”

Hopping disorder: Singular tail of low-energy states. DOS has ‘modified Gade-Wegner’ scaling.

(Gade-Wegner '91, Motrunich, KD, Huse '02, Mudry-Ryu-Furusaki '03)

Vacancy disorder: Very slow crossover to ‘modified Gade-Wegner’ scaling + zero mode density
(Sanyal, KD, Motrunich ’16)

(Also earlier: Willans-Chalker-Moessner '11, Ostrovsky et al ’14, Hefner et al ’14)
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Our idea: R-type regions hosting zero modes
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Example of R-type region

Rigorous lower bound on density of zero modes on diluted honeycomb lattice
(Sanyal, KD, Motrunich, PRL ’16)



Major puzzle remained:

» Actual density of zero modes much larger than lower bound

 \WWhat dominates?



Enter maximum matchings

Key idea: Disorder-robust zero modes only depend on connectivity, not hopping strengths.
R-type regions rely on local sublattice imbalance between A and B type site densities.
Suggests thinking in terms of matchings a.k.a dimer covers

Places that cannot be covered by dimers host wavefunctions



Switch gears: Majorana networks

l
HMajorana — Z Z Ay My with a.,. = —a.,.
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c = 5(77,, + in,.) is a canonical fermion
Modes can serve as resource for qguantum computing

(Read & Green, Ivanov, Kitaev, Biswas, Sau, Alicea...)



Question: Collective Majorana excitations?

Mixing amplitudes are non-idealities, expected to cause dephasing in quantum computing schemes

But: zero energy collective excitations of network are Majorana fermions, can also serve as quantum
computing resources.

Interesting question: Are there protected zero energy collective excitations of network?

Equivalently: Zero energy eigenvectors of pure imaginary anti symmetric matrix ia,.,.?

In bipartite case, previous “construction” yields collective Majorana excitations of network



What about general networks?

* No two-sublattice decomposition, no sublattice imbalance, so how do we think?

* Key point: Nonbipartite lattices have odd-perimeter plaquettes (e.g. triangles), and each such isolated
plagquette hosts a protected zero mode of ia,.,.

o Zero modes of full network somehow built from linear combinations of these?



Making all this precise: Bipartite case

Counting zero modes from maximum matchings

v | AI P ‘ The Journal of
_ Chemical Physics
Some Studies in Molecular Orbital Theory I. Resonance Structures and Molecular

Orbitals in Unsaturated Hydrocarbons
H. C. Longuet-Higgins

(1950)

Chemist - structure of diborane)
Physicist - (co)advisor of Peter Higgs)
Pioneer in:
Cognitive science and computer vision

‘Machine-intelligence (aka Al!)

Computer music...



Longuet-Higgins (restated)

 Number of monomers in any maximum matching of bipartite graph gives number of
topologically-protected zero modes of corresponding tight-binding model

“nonzero-defect” generalization of “Tutte’s Theorem” for bipartite graphs (Edmonds)



But what do the zero modes “look” like?

What do we mean by “look” like?

Our interest: Consequences for basis invariant Green functions and for transport at particle-hole
symmetric chemical potential (e.g. undoped graphene)

What we really want: A general way of identifying “all possible” R-type regions

In other words: A choice of “maximally localised” basis for the zero-mode subspace



Partial answer from Longuet-Higgins:

Global statement from Longuet-Higgins: Set of all sites that host a monomer in at least one
maximum matching form support of all topologically-protected zero mode wavefunctions

Clearly, we want more:
General algorithm for identifying all R-type regions?

Maximally-localised basis for zero mode subspace?



Our progress: A local statement

Brings into play classic result from graph theory

COVERINGS OF BIPARTITE GRAPHS

A. L. DULMAGE axp N. S, MENDELSOHN

Can. J. Math. 10: 517, 1958

Use structure theory of Dulmage-Mendelsohn to construct non-overlapping ‘complete’ set of R-type
regions.

‘R-type’ regions of lattice host monomers in maximum matchings and zero modes of a quantum particle

Zero temperature two-terminal conductance is zero if R-type regions don’t percolate



Matchings, augmenting paths, and alternating paths

In any maximum matching M:
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A useful version of the DM decomposition

Even, odd and unreachable sites from any one maximum matching M

Even: Reachable by even-length alternating paths from monomers of M (including
length zero)

Odd: Reachable by odd-length alternating paths from monomers of M
Unreachable: Not...

Decomposition:
Cy:E U0,
Cp: EgU Og

P:U,UUg



Key: Connected components of C, and Cy
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Connected components are R-type regions

A [ pB A (1B - : : : :
« Each R, (R]. ) hosts [ (Ij ) topologically-protected zero modes with wavefunctions confined to the region.

* Provides alternate ‘local’ proof for correspondence between monomers of maximum matchings and zero
modes of adjacency matrix

* Proof gives topologically-robust construction of a maximally-localised basis for zero modes



Making things precise for general nonbipartite networks

Gallai-Edmonds decomposition

= o

N AT




Auxiliary bipartite graph

Bipartite network of factor critical components and odd sites

C3 k C4 ) \ CS

(KD, PRB 2022)



R-type regions of auxiliary bipartite graph

Auxiliary graph only has RZA regions, no free regions, no RiB regions.

Each RlA host IlA monomers in any maximum matching and IiA topologically-protected zero modes of ia,,.

Provides alternate ‘local’ proof for correspondence between total number of monomers of maximum
matchings and total number of protected zero modes (earlier proof of Lovasz-Anderson is global)

Proof gives construction of maximally-localised basis for protected zero mode sub space of ia,,.

(KD, PRB 2022)



Upshot: Computational strategy

Standard algorithms for finding any one maximum matching
Alternating path tree from each monomer to obtain DM/GE labels of vertices
Burning algorithm to construct connected components and obtain R-type regions

Size of R-type regions gives upper bound on localization length of zero-energy Green function

In bipartite case: compensated disorder (|A | = | B|) to avoid nuisance modes

In nonbipartite case: check that global parity has no effect in large size limit



Basic picture in d=2 (for bipartite honeycomb lattice)

Typical R-type regions are BIG at low (~5%) dilution

Bhola, Biswas, Islam, KD, PRX 12 021058 (2022)
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Incipient percolation: wrapping probabilities

Honeycomb Square
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Universal scaling at zero-dilution critical point

(v =5.1)
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Universal scaling of mass susceptibility y = (m?)/L?

x/L*"

Honeycomb Square
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Cubic lattice: percolation transition

Cubic (n® = (0.5956 & v = 0.87)
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Cubic lattice: susceptibility scaling

Cubic (n® = 0.5956, v = 0.87,d = 3 & n = 0.0)
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Cubic lattice: sublattice symmetry breaking

Cubic
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Sublattice symmetry breaking: Transition from two to one percolating clusters

Cubic
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Triangular lattice: Basic picture

Triangular
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Bhola & KD, preprint
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Triangular lattice: basic picture

R-type sample P-type sample
| | |

|
n, = 0.48 N £
A L =10000 A2
o L = 14000 e
L = 18000 1l
& L = 22000 &
o L = 26000 2 ||
%p

000000000000000000000000000000000

0.6 0.8 0.0 0.2
Mo/ MG Mo/ MG

Bhola & KD, preprint




Triangular lattice: basic picture
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Triangular lattice: basic picture
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Triangular lattice: basic picture
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“Zero-half” percolation threshold

R-type samples undergo percolation transition, but not P-type samples
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Scaling at percolation transition

Zero-half percolation threshold shows universal scaling
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Scaling at percolation transition

Zero-half percolation threshold shows universal scaling

Triangular Snub square
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Summary a la Wodehouse

» Patient perseverance produces percolative paradigms!
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Percolation

Study end-to-end connectivity of a porous medium
Can you go from one end to other?
Answer changes as function of porosity

Simplest model: Randomly diluted regular lattice (graph)

Broadbent and Hammersley, Percolation processes |, Crystals and Mazes (1957)



Precise question about the random geometry

Crossing probability?

Consider two dimensional square grid or honeycomb net or three dimensional cubic lattice of
linear size L

Remove fraction n,, . of sites and delete links to removed sites.

« P, (n,,. L) : Probability that one can ‘walk’ from left end to right end along existing sites and links.

How does this behave as a function of n,,. and L?



Sharp threshold behaviour

Property of thermodynamic limit

Ind =2andind =3, L = oo limit characterised by sharp threshold behaviour as function of n,,,.

Percolation transition

Simplest geometric example of a thermodynamic phase transition

crit
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For Nyac > Nyges

P,—0asL - o



Approach to thermodynamic limit

Universality and scaling

[ — oo limit is approached in interesting way

e P, (n,,.,L) =f(6L") where 6 = n ,, — nc

vacC

. f(x) is the universal scaling function, v is a scaling exponent and n ™ is the critical dilution
vac

 f(x) and v believed to be universal (independent of microscopic-scale details)

 Square lattice and honeycomb net have same f(x) and v. Cubic lattice different (dimension dependent)



Scale invariance

: : : _ ,crit
- Implies different size samples have same P, for n,. = ny,.

« Scale invariance: Pictures of random geometry look same if we rescale pictures!

* Only true if we ignore lattice scale features, but amazing anyway!



Number density of R-type regions
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Thermodynamic densities of number of P-type regions
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Cubic lattice: Number density of R-type regions
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Cubic lattice: Very similar basic picture...
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1.00
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Cubic lattice: R-type regions take over lattice at low dilution
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Comparison of length-scales

Honeycomb (L = 26000)

Square (L = 26000)
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Emergence of a large length scale




Mode density in large R-type regions looks ‘typical’
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Zero mode density dominated by large-scale structures

Honeycomb Square
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Zero-mode density: featureless

Honeycomb Square
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Percolation transition
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Unconnected with geometric percolation transition of lattice itself



Universal scaling at zero-dilution critical point
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A second transition?

Cubic
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Consequences

Infinitesimal dilution localises monomers of the maximally-packed dimer model in two dimensions
There is no bipartite quantum percolation transition in two dimensions (long story, starting ‘70s)
Precise determination of quantum percolation threshold in three dimensions.

Infinitesimal dilution causes sublattice symmetry breaking in the monomer gas in three dimensions.
Consequences for electronic system(?)

In corresponding Majorana network: Majorana zero modes hosted by R-type regions with odd
Imbalance undergo a percolation transition

Perhaps most directly interesting: Low energy triplet excitations in diluted quantum antiferromagnets
In the extremely low-dilution regime.



