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Boyle and Newton in the 1600s

I Boyle’s gas law:
P ∝ 1

V at fixed T

I Newton’s law(s) of motion:
m dv

dt = F
Force of gravity: F12 = G m1m2

r2
12

Planetary motion understood...

Beginings of the systematic study of physical properties of materials...
& the science of mechanics...



1750-1850: Bernoulli, Dalton, Avogadro, Carnot, and
Kelvin

I Bernoulli & Dalton: Gases made of invisible particles with
definite mass (atoms)

I Avogadro: Some gases made of molecules
Ideal gas equation of state: PV = NkBT

I Carnot’s Therrmodynamics: Connecting heat content to work
output (engines)
absolute temperature, free-energy F, entropy of substances...



Dynamics of atoms vs thermodynamics of gases

I Trajectories of 1023 particles predicted by Newton’s laws
vs
Thermodynamic concepts heat, temperature, entropy,
free-energy?

Where is thermodynamics “hiding” inside the mechanistic view?



Waterston∗, Maxwell, Boltzmann, Gibbs: Statistical
mechanics (1850–1920s)

I Statistical description of macroscopic aggregates of atoms
Each microscopic configuration C ≡ {vi, xi} arises with
probability
Probability(C) = exp(−E(C)/kBT)

Z ,
where Z =

∑
C exp(−E(C)/kBT)

I Free energy F = −kBT log(Z)

(For ideal of atoms : E =
∑

i
mv2

i
2 +

∑
i,j V(xi − xj))

∗ Grant College Bombay, circa 1860



Ordered phases and phase transitions of matter
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I Phase transformation from fluid to ordered crystalline phases
I Always involves crossing line of singular thermodynamic

behaviour

Can statistical mechanics describe such ordering phenomena?



Another example: Ordering of magnetic moments in
ionic solids

Intrinsic spin angular momentum of ions quantized in half-integer
units (|~S| = k/2). Magnetic moment ~mion = 2µB~S

Disordered

paramagnet

m

Ferromagnetic order

Net magnetic moment

antiferromagnetic (Neel) order

Apparent “paradox”: Prob(C~m=↑) = Prob(C~m=↓) by symmetry of E
(E = J

∑
rr′
~Sr ·~Sr′ − A

∑
r(
~S · n̂)2)

〈~m〉 = 0 by Gibbs prescription



Onsager, Anderson: Spontaneously broken symmetry
and fluctuation modes

I Resolution of “paradox”: Timescale to change direction of ~m
diverges with system size.
“Spontaneous symmetry breaking” and long-range order in
“thermodynamic limit”

I Real question: Do small-angle, long-wavelength fluctuations
destabilize order?



Peierls, Mermin-Wagner: Role of spatial dimension
and magnetic anisotropy

I Peierls: In easy-axis limit (A > 0), long-range order possible in
planar structures (d = 2), and three-dimensional materials, but
not in chain-like structures (d = 1)

I Mermin-Wagner: Without anisotropy (A = 0), or with easy-plane
anisotropy (A < 0), long-range order possible in d = 3, but not
d = 2 or d = 1

Long-range magnetic order only possible in sheet-like materials if
magnetic moments can only point up or down along fixed axis
(eliminates small-angle fluctuations)



Kosterlitz-Thouless: Vortex-binding transition in d = 2
easy-plane case
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〈~m(r) · ~m(r′)〉 ∼ exp(−|r − r′|/ξ) for T > TKT (paramagnet)
〈~m(r) · ~m(r′)〉 = C

|r−r′|η , η ∈ (0, 1
4 ) for T < TKT (Power-law ordered)



Distinction is “topological”

I KT transition is transition between “ionized plasma” of single
vortices and neutral gas of vortex-pairs

I Distinction has a “topological” flavour to it:
Can count number of isolated vortices (signed sum) in region by
simply looking at winding of moments along the boundary

Connection to superfluid/superconducting thin films?



Enter: Quantum mechanics

I Linear superposition of alternatives: a| ↑〉+ b| ↓〉
I Trajectories replaced by sum over paths, weighted by exp(iS) for

each path S =
∫

dt(m
2 (

dx
dt )

2 − V(x))

I Particles behave like waves in some ways



From Superfluids/superconductors to magnets with
easy-plane anisotropy
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Superfluid grains

Each grain r is in state |ψr〉 ∼
∑∞

n=0
ψn

r√
n!
|n〉

|n〉: State with exactly n particles in grain
E = −J

∑
rr′(ψ

∗
r ψr′ + ψ∗r′ψr)

ψ = |ψ|eiθ → ~m with easy-plane anisotropy



Consequence: Thin-film superfluidity

I 〈ψ∗(r)ψ(r′)〉 ∼ 1/|r − r′|η

I Superfluid fraction ρs ∝ η
I ρs/(kBTKT) = 2m2/π~2

Observable universal jump in superfluid fraction
(Nelson-Kosterlitz)



Haldane: Quantum mechanics of linear chains of
magnetic moments:

I E = J
∑

i
~Si ·~Si+1 with J > 0

Recall: Intrinsic spin angular momentum of ions quantized in
half-integer units (|S| = k/2). Magnetic moment ~mion = 2µB~S

I Quantum-mechanics: Trajectories replaced by sum over
histories

I Best formulated in terms of Neel vector ~Ni ∝ ~Si −~Si+1 with
|~Ni| = 1
~N varies slowly with i: Continuum approximation valid ~Ni → ~N(x)

I Weight of trajectory is exp(iS) with
S =

∫
dt
∫

dx
[
( d~N

dt )
2 − ( d~N

dx )
2
]
+ SB



SB: Depends only on “topology” of ~N(x, t)

Maps from (x,t) to N

‘Wrapping number’ of

SB = πkQ[~N], where Q = 1
4π

∫
dxdt~N · ( d~N

dx ×
d~N
dt ) counts “wrapping

number” of configuration



Consequences

I Chains with S = 1 (e.g. Ni2+)have exponentially small
low-temperature susceptibility and specific heat

I Chains with S = 1/2 (e.g. Cu2+) have much higher susceptibility
and specific heat
In fact, power-law ordered

I “Topologically protected” boundary spin S = 1/2 moments in
integer spin chains cut by non-magnetic impurities: Seen directly
in NMR experiments.
“Topological protection” Presence of free spin S = 1/2 at
chain-ends is totally independent of details of crystal structure
and energetics



Thouless-Nightingale-Kohmoto-Den Nijs, Haldane:
Winding of wavefunctions

I Electron waves in “diffraction grating” created by regular
crystalline arrangement of ionic cores

I Described by wavefunctions arranged in groups called bands
I Winding number of band “wavefunction” u of electrons

determines Hall-voltage
I Result: Hall conductivity σH = ne2/h

n = 1
2π

∫
d2kB(~k) where B =

dAy

dkx
− dAx

dky
with Aj = i〈uk| d

dkj
|uk〉

Not pictorially obvious: But counts “winding number” n of
wavefunction



Impact

I Inspiration for sustained efforts to expand our classification of
phases of matter, beyond “obvious” distinctions of
spontaneously broken symmetry and long-range order

I Much known by now about topologically distinct phases of
matter and transitions between them

I Most remarkably: Purely theoretical ideas playing key role in
understanding new materials
e.g. “topological insulators” with “protected” surface states


