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One slide summary

Competition between two different manifestations of spin-orbit coupling:

Easy-axis anisotropy of the exchange couplings Easy-plane anisotropy in the single-ion energetics

Tight-binding descriptions for SO coupled Mott insulators suggest such regimes can exist

Rau, Lee, Kee, PRL 112, 077204 (2014)Lee, Bhattacharjee, Kim, PRB 87, 214416 (2013)

Our message- 

caveat emptor: No candidate materials known to us...

However-

Interplay of geometric frustration and this competition drives interesting physics 



  

1. Competing anisotropies and the S=1 kagome 1/3-magnetization plateau

Each kagome triangle has: Sz = 1    

(Large  O(J) energy gap to other values) (1,0,0) or (1,1, -1)

(with slightly different energies)

Quantum fluctuations, additional interactions are small

Representative Hamiltonian:

O( (J) width around B ≃ 2J)  
One-third magnetization plateau

Two ways to add up to Sz = 1    

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Fully-packed configurations of loops + trivial loops (dimers)

Divergence-free polarization

Microscopic height construction



  

All open strings disallowed

Half-charges (half-vortices) forbidden

Integer charges (unit-vortices) also forbidden

Two distinct length-1 objects if half vortices 
allowed (drive transition to 2/3 magnetization 
plateau)

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Dimer-loop partition function

Physics of kagome magnet described in terms of dimer-loop partition function on honeycomb lattice
  

Tool: Classical Monte Carlo using a worm algorithm

Also useful to study square lattice dimer loop model (to check universality of honeycomb model transitions)



  

Some theoretical perspective

w=0 is fully-packed O(1) honeycomb loops (loop fugacity is unity). 

(configurations in one-to-one correspondence with fully-packed dimers: empty links form loops)

Limit of infinite w is usual fully-packed dimer model.

Warning: no obvious duality between w and 1/w for general w

Expect: 

At w=0: Power-law loop size distribution, dipolar correlations.

At infinite w: dipolar correlations   

(Baxter, Moessner-Tchernyshyov-Sondhi 2004, Jaubert-Haque-Moessner 2011, Jacobsen-Kondev 1998, Saleur-Duplantier 1987)



  

Coarse-grained height field-theory

(Youngblood 1980, Henley, Fradkin et al 2004, Vishwanath et al 2004, Alet et al 2005, Moessner et al 2004 ...)

h is an angle:  

                         h-->h+1 redundancy in pure dimer limit

                         h-->h+1/2 redundancy in pure loop limit

Since loops exist at any finite w, expect h-->h+1/2 redundancy for all finite w.

Smooth crossover as a function of w as we go from 0 to infinity?



  

Numerics:

● Classical Monte Carlo using two worm updates

● One uses a unit-vortex antivortex pair, the other does the same with half-vortices 

● Allows measurement of test half-vortex correlator

● Puts a bound on test unit-vortex correlator

● Periodic boundary conditions: Two independent fluxes of polarization field (winding numbers 
for height field) are well-defined

● Fluxes are allowed to be half-integer in general except in pure dimer limit.



  

Measurements

Loop-size distribution and moments

Loop-size Binder ratio

Flux (winding number) distribution

Probability of having fractional fluxes

Three-sublattice spin order parameter and half/unit-vortex correlators



  

Geometric characterization: short-to-long loop phase transition

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Topological characterization: Flux confinement-deconfinement transition

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Topological characterization: Flux confinement-deconfinement transition

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Dynamical characterization: Half-vortex (charge) correlators in two phases

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Transition in kagome spin three-sublattice correlations

(but: operator is illegal in flux deconfined phase)

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Not an artifact of periodic boundary conditions...

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Transition observable in kagome spin structure factor

Power-law feature at 
three sublattice 
wavevector absent in 
long-loop phase

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Thermodynamic characterization: Specific heat singularity

Ising-like

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)



  

Conclusion from numerics

Two distinct Coulomb liquids separated by continuous transition

Multiple characterizations of the two Coulomb liquids and transition between them:

Geometric: Long-loop phase vs short-loop phase

Topological: Flux confinement-deconfinement transition (jump in compactification radius)

Dynamical: Half-vortices are deconfined in one phase but not other (unit vortices always deconfined)

Long-wavelength correlations:  Power-law three-sublattice order in one but not other phase

Ising transition: Hidden Ising order parameter

Souvik Kundu & KD, Phys. Rev. X 15, 011018 (2025)

Jay Pandey & KD, unpublished



  

“Hidden” Ising order parameter 

View each non-trivial loop as a domain wall

Fine print: 

Ising variable only defined for integer flux sectors.

and each dimer-loop state maps to pair of Ising configurations  CI   and  C*I  

Jay Pandey & KD, unpublished



  

Ferromagnetic transition seen by Ising Binder ratio

Jay Pandey & KD, unpublished



  

Ferromagnetic transition seen by Ising susceptibility

Jay Pandey & KD, unpublished



  

Aside: Ising variable has power-law three-sublattice order in both phases

Jay Pandey & KD, unpublished

Consistent with:



  

2.   S=1 kagome in zero field

Each kagome triangle has: Sz = 0     (Large  O(J) energy gap to other values) 

(0,0,0), or (1,-1, 0) and permutations (a “vertex model”)

(with slightly different energies)

Quantum fluctuations, additional interactions negligible

Representative Hamiltonian:

zero field physics:

Multiple ways to add up to Sz = 0:    

Each Sz
 r = ± 1 contributes one factor of w=exp(−βμ) to the Boltzmann weight

Jay Pandey & KD unpublished 



  

Description in terms of fluctuating polarization field and heights

Divergence-free polarization on honeycomb links:

Microscopic height construction:

implies

h is an angle:  h-->h+1 redundancy

Expect coarse-grained theory:

Periodic boundary conditions: Two independent fluxes of polarization field (winding numbers) well-defined

Jay Pandey & KD unpublished



  

Question:

w=0 is trivial paramagnet, while infinite w maps to a O(2) honeycomb loop model.

Is there a smooth crossover from small w to large w, or a thermodynamic phase transition? 

Viewing polarization field as divergence-free current in current-loop representation of 2dxy model:

             Expect an (inverted) KT transition driven by relevance of exp(± 2π i h)  (?) 

would imply transition when 

Jay Pandey & KD unpublished 



  

Answering this: Vertex model partition function

Physics of kagome magnet described in terms of vertex model partition function on honeycomb lattice

Tool: Classical Monte Carlo using a worm algorithm

Jay Pandey & KD unpublished 



  

Spin 1 kagome in zero field

Scaling argument would 
suggest transition at w=0.7 

Jay Pandey & KD unpublished 



  

S=1 kagome in zero field

Analog of superfluid stiffness:

Dotted line corresponds to expected value at critical w

Jay Pandey & KD unpublished 



  

3. Competing anisotropies and the S=1 pyrochore in zero field

Each pyrochlore tetrahedron has: Sz = 0     (Large  O(J) energy gap to other values) 

(a “vertex model” on the diamond lattice)

(with slightly different energies)

Quantum fluctuations, additional interactions negligible

Representative Hamiltonian:

zero field physics:

Multiple ways to add up to Sz = 0:    

Jay Pandey & KD, arXiv:2512.11623

Each Sz
 r = ± 1  contributes one factor of w=exp(−βμ) to the Boltzmann weight



  

4. Competing anisotropies and the S=3/2 pyrochore in zero field

Each pyrochlore tetrahedron has: Sz = 0     (Large  O(J) energy gap to other values) 

(a “vertex model” on the diamond lattice)

(with slightly different energies)

Quantum fluctuations, additional interactions negligible

Representative Hamiltonian:

zero field physics:

Multiple ways to add up to Sz = 0:    

Jay Pandey, Souvik Kundu, & KD, unpublished

Each Sz
 r = ± 3/2  contributes one factor of w=exp(−2βμ) to the Boltzmann weight



  

Description in terms of fluctuating polarization field and vector potential

Divergence-free polarization on diamond links:

Microscopic height construction:

implies

Expect coarse-grained theory:

Periodic boundary conditions: Three independent integer-valued fluxes of polarization field well-defined



  

Vertex model partition function

Physics of S=1 and S=3/2  pyrochlore magnets described by respective vertex models on diamond lattice

Tool: Classical Monte Carlo using a worm algorithm



  

S=1 case

By analogy to kagome:

Viewing the polarization field as a divergence free current of 2+1d bosons 

Transition from trivial paramagnet to non-trivial liquid is a 3dxy transition?

Jay Pandey & KD, arXiv:2512.11623



  

Superfluid stiffness scales as expected for 3d xy transition

shows expected scaling

Jay Pandey & KD, arXiv:2512.11623



  

Surprise: second transition

Two transitions seen in specific heat Three phases seen in unit test charge correlator
Jay Pandey & KD, arXiv:2512.11623



  

Understanding the second transition

Z2 part of the flux has a confinement transition 

Jay Pandey & KD, arXiv:2512.11623



  

Flux distribution: evidence of Z2 confinement

Jay Pandey & KD, arXiv:2512.11623



  

Critical test charge correlators

Interpret as correlation function of xy field whose current is the polarization 

Jay Pandey & KD, arXiv:2512.11623



  

Summary of spin 1 case:

Three phases in the S=1 case: 
small-w paramagnet, intermediate-w flux-deconfined Coulomb, & large-w flux-confined Coulomb phases.
(with intervening 3dxy transition followed by flux confinement-deconfinement transition with Z2 character.

Jay Pandey & KD, arXiv:2512.11623



  

S=3/2 case



  

First order transition

Jay Pandey, Souvik Kundu, & KD, unpublished

First-order transition between two Coulomb phases



  

Clear phase co-existence

Jay Pandey, Souvik Kundu, & KD, unpublished

First-order transition between two Coulomb phases



  

Z3 flux confinement

Jay Pandey, Souvik Kundu, & KD, unpublished

Transition is a Z3 flux confinement-deconfinement transition between two Coulomb liquids



  

Summary of spin 3/2 case:

Two phases in the S=3/2 case:
Small-w flux-deconfined Coulomb phase separated from large-w flux-confined Coulomb phase by a first 
order flux confinement-deconfinement transition with Z3 character

Jay Pandey, Souvik Kundu, & KD, unpublished 
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