Dulmage-Mendelsohn percolation

Random geometry of maximum-matchings, zero modes & Majorana excitations...

Kedar Damle, TIFR (STCS Colloquium March '21)

Ritesh Bhola

Sounak Biswas

Mursalin Islam

Sambuddha Sanyal

Lesik Motrunich

Some generalities

- Quenched disorder matters (often)
- Particles scatter and diffuse (may be anomalously...)
- Matter-waves scatter and localise (sometimes weakly...)

Classical transport of particle-fluid

- Simplest setting: Porous random medium
- Random geometry of medium determines fluid transport
- Paradigm of percolation
- More generally: Diffusion in presence of random potentials

Broadbent & Hammersley, Sinai...

Percolation

- Study end-to-end connectivity of a porous medium
- Can you go from one end to other?
- Answer changes as function of porosity
- Simplest model: Randomly diluted regular lattice (graph)

Broadbent and Hammersley, Percolation processes I, Crystals and Mazes (1957)

Sharp question about the random geometry

Crossing probability

- Consider two dimensional square grid or honeycomb net or three dimensional cubic lattice of linear size L
- Remove fraction $n_{\rm vac}$ of sites and delete links to removed sites.
- $P_w(n_{\rm vac}, L)$: Probability that one can 'walk' from left end to right end along existing sites and links.
- How does this behave as a function of $n_{\rm vac}$ and L?

Sharp threshold behaviour

Property of thermodynamic limit

- In d = 2 and in $d = 3, L \to \infty$ limit characterised by sharp threshold behaviour as function of $n_{\rm vac}$
- 'Percolation transition'
- Simplest geometric example of a 'thermodynamic phase transition'
- For $n_{\rm vac} < n_{\rm vac}^{\rm crit}$, $P_w \to 1$ as $L \to \infty$
- For $n_{\rm vac} > n_{\rm vac}^{\rm crit}$, $P_w \to 0$ as $L \to \infty$

Approach to thermodynamic limit

'Scaling behaviour'

- $L \rightarrow \infty$ limit is approached in interesting way
- $P_w(n_{\rm vac},L) = f(\delta L^{1/\nu})$ where $\delta = n_{\rm vac} n_{\rm vac}^{\rm crit}$
- f(x) is the 'universal scaling function', ν is a 'scaling exponent' and $n_{\text{vac}}^{\text{crit}}$ is the 'critical' dilution

Approach to thermodynamic limit

'Scale invariance' and 'universality'

- f(x) and ν believed to be independent of microscopic-scale details. Examples of 'universal critical properties'. Square lattice and honeycomb net have same f(x) and ν .
- Cubic lattice has different f(x) and ν . Dimensionality dependent.
- Implies different size samples have same P_w for $n_{vac} = n_{vac}^{crit}$
- Scale invariance: Pictures of random geometry look same if we rescale pictures!
- Only true if we ignore lattice scale features, but amazing anyway!

Localization of matter waves

- Anderson localization of electrons in dirty metals
- Localization of quasiparticles in dirty superconductors
- Symmetries of disordered Hamiltonian matter (e.g. in random matrix theory)

Anderson, Ramakrishnan, Abrahams, Thouless, Dyson, Wegner, Mehta...

Simplest lattice model

•
$$\sum_{j \in i} t_{ij} \psi_j + V_i \psi_i = E \psi_i \text{ for all } i$$

- E is the energy of the particle represented by wave function ψ_i
- t_{ij} are 'hopping amplitudes' for particle to hop from site i to site j
- V_i are values of external potential at sites i
- Allowed E: Eigenvalues of matrix of $t_{ij} + V_i \delta_{ij}$

Quantum mechanics of bipartite random hopping

- Particle hopping on a bipartite lattice
- Random (real) hopping amplitudes between nearest neighbour sites
- Bipartite ('chiral') symmetry: State with energy ϵ has partner at energy $-\epsilon$
- Symmetry broken by random potentials, next-neighbour hopping...

Vacancy disorder

- Vacancy disorder: random dilution of the underlying lattice (missing atoms in crystal structure)
- Also natural if substitutional impurities correspond to missing orbital
- Question: Does vacancy-disorder change the asymptotic low-energy behaviour of $\rho(\epsilon)$?
- Note: No change in symmetries

The question

 $\epsilon = 0$ is special

• Does anything interesting happen in the quantum mechanical spectrum of H near $\epsilon=0$?

'Surprise': Zero modes

For large enough lattice, almost every sample has at least one zero mode

In fact: Nonzero density of zero modes

Constraint on zero-energy wavefunction: ψ_A : $\sum t_{AB_0}\psi_A = 0$ ψ_B : $\sum t_{BA_0}\psi_B = 0$ $B \in A_0$ $A \in B_0$

Example of R-type region

Gives a rigorous lower bound on density of zero modes on honeycomb lattice

Major open questions remained

- Actual density of zero modes much larger than lower bound
- What dominates?
- General algorithm for identifying all R-type regions?

Finally: progress...

- Key idea: Disorder-robust zero modes only depend on connectivity, not hopping strengths.
- R-type regions rely on local imbalance between A and B type site densities.
- Suggests thinking in terms of matchings a.k.a dimer covers
- Places that cannot be covered by dimers host wavefunctions?

Counting zero modes from maximum matchings

Some Studies in Molecular Orbital Theory I. Resonance Structures and Molecular Orbitals in Unsaturated Hydrocarbons

H. C. Longuet-Higgins

(1950)

Chemist (structure of diborane)

Physicist (advisor of Peter Higgs)

Pioneer in:

Cognitive science and computer vision

'Machine-intelligence (aka AI!)

Computer music...

Counting zero modes from maximum matchings

Longuet-Higgins (restated)

 Number of monomers in any maximum matching of bipartite graph gives number of topologically-protected zero modes

nonzero-defect generalization of Tutte's Theorem in bipartite case

Gives access to larger sizes

- Somewhat larger-size studies confirm our claim of enormous excess of zero modes above simple lower bounds
- Again: What are these modes?

Density of disorder-robust zero modes

Equivalent to counting zero modes of a $10^9 \times 10^9$ matrix (?!)

Wavefunctions?... Longuet-Higgins again:

 Set of all sites that host a monomer in at least one maximum matching form support of all topologically-protected zero mode wavefunctions

Want more: What do the zero modes look like?

Maximally-localised basis for zero-mode subspace?

Basis-invariant consequences for on-shell zero-energy Green function?

Consequences for two-terminal conductance?

Our strategy

Bring into play classic result from graph theory

COVERINGS OF BIPARTITE GRAPHS

A. L. DULMAGE and N. S. MENDELSOHN

Can. J. Math. 10: 517, 1958

Characterization of regions of lattice that can host monomers

Matchings, augmenting paths, and alternating paths

In any maximum matching M:

Augmenting paths absent

A useful version of the DM decomposition

Even, odd and unreachable sites from any one maximum matching M

- Even: Reachable by even-length alternating paths from monomers of M (including length zero)
- Odd: Reachable by odd-length alternating paths from monomers of M
- Unreachable: Not...
- Decomposition:
- $C_A : E_A \cup O_A$
- $C_B : E_B \cup O_B$
- $P: U_A \cup U_B$

Key observation: R-type regions from C_A and C_B

Focus on connected components

In any maximum matching:

F< **>***F*

Key observation: Connected components construct R-type regions

- Each R_i^A (R_j^B) hosts I_i^A (I_j^B) topologically-protected zero modes with wavefunctions confined to the region.
- Provides alternate 'local' proof for correspondence between monomers of maximum matchings and zero modes of adjacency matrix
- Gives topologically-robust construction of a maximally-localised basis for zero modes
- Standard proofs (Longuet-Higgins, Lovasz) are 'global' no information about maximallylocalised basis.

Computational strategy

- Compensated disorder (|A| = |B|)
- Standard algorithms for finding any one maximum matching
- Alternating path tree from each monomer to obtain DM classification
- Burning algorithm to construct connected components

Basic picture in d=2

Typical R type regions are BIG at low dilution (of order 5%)

Thermodynamic densities of number of R-type regions

Thermodynamic densities of number of P-type regions

Thermodynamic densities of total mass in R-type regions

R-type regions take over the lattice in low-dilution limit!

Dominated by large-scale structures

'Small' defined to have 10000 vacancies(!)

Length-scales

Size of largest R-type region is limited by system size at low dilution

Incipient percolation: wrapping probabilities

Is there universal scaling?

Anomalous exponent?

 η very close to zero or zero...

What about three dimensional cubic lattice?

Very similar basic picture...

R-type regions invade lattice

Dominated by large length scales

Percolation transition

Percolation transition

A second transition (!)

Spontaneous sublattice-symmetry breaking transition within percolated phase

Summary a la Wodehouse

• Patient perseverance produces percolative paradigms!

Consequences

- Infinitesimal dilution localises monomers of the maximally-packed dimer model in two dimensions
- Infinitesimal dilution causes sublattice symmetry-breaking in the monomer gas in three dimensions
- There is no quantum percolation transition in two dimensions (long story, starting '70s)
- Precise determination of quantum percolation threshold in three dimensions and evidence for second transition
- Majorana zero modes hosted by R-type regions with odd imbalance undergo a percolation transition

Acknowledgements

- T. Kavitha and A. Mondal for introduction to graph decompositions
- Computational resources of DTP-TIFR
- Discussions with D. Sen, D. Dhar, Mahan Mj, J. Radhakrishnan and many others...
- Research supported in part by Infosys-Chandrasekharan Random Geometry Center @ TIFR