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• Quenched disorder matters (often)


• Particles scatter and diffuse (may be anomalously...)


• Matter-waves scatter and localise (sometimes weakly...)

Some generalities



• Simplest setting: Porous random medium


• Random geometry of medium determines fluid transport


• Paradigm of percolation


• More generally: Diffusion in presence of random potentials

Broadbent & Hammersley, Sinai...

Classical transport of particle-fluid



• Study end-to-end connectivity of a porous medium


• Can you go from one end to other?


• Answer changes as function of porosity


• Simplest model: Randomly diluted regular lattice (graph)      

Percolation

Broadbent and Hammersley, Percolation processes I, Crystals and Mazes (1957)



• Consider two dimensional square grid or honeycomb net or three 
dimensional cubic lattice of linear size 


• Remove fraction  of sites and delete links to removed sites.


•  : Probability that one can ‘walk’ from left end to right end along 
existing sites and links.


• How does this behave as a function of  and ?

L

nvac

Pw(nvac, L)

nvac L

Crossing probability

Sharp question about the random geometry



• In  and in ,  limit characterised by sharp threshold 
behaviour as function of 


• ‘Percolation transition’


• Simplest geometric example of a ‘thermodynamic phase transition’


• For ,  as 


• For ,  as 

d = 2 d = 3 L → ∞
nvac

nvac < ncrit
vac Pw → 1 L → ∞

nvac > ncrit
vac Pw → 0 L → ∞

Property of thermodynamic limit

Sharp threshold behaviour



•  limit is approached in interesting way


•  where 


•  is the ‘universal scaling function’,  is a ‘scaling exponent’ and  is the 
‘critical’ dilution

L → ∞

Pw(nvac, L) = f(δL1/ν) δ = nvac − ncrit
vac

f(x) ν ncrit
vac

‘Scaling behaviour’

Approach to thermodynamic limit



•  and  believed to be independent of microscopic-scale details. Examples of 
‘universal critical properties’. Square lattice and honeycomb net have same  and .


• Cubic lattice has different  and . Dimensionality dependent.


• Implies different size samples have same  for 


• Scale invariance: Pictures of random geometry look same if we rescale pictures!


• Only true if we ignore lattice scale features, but amazing anyway!

f(x) ν
f(x) ν

f(x) ν

Pw nvac = ncrit
vac

‘Scale invariance’ and ‘universality’

Approach to thermodynamic limit



Localization of matter waves

• Anderson localization of electrons in dirty metals


• Localization of quasiparticles in dirty superconductors


• Symmetries of disordered Hamiltonian matter (e.g. in random matrix theory)

Anderson, Ramakrishnan, Abrahams, Thouless, Dyson, Wegner, Mehta...



•  for all 


• E is the energy of the particle represented by wave function 


•  are ‘hopping amplitudes’ for particle to hop from site i to site j


•  are values of external potential at sites i


• Allowed E: Eigenvalues of matrix of 

∑
j∈i

tijψj + Viψi = Eψi i

ψi

tij

Vi

tij + Viδij

Simplest lattice model



• Particle hopping on a bipartite lattice


• Random (real) hopping amplitudes between nearest neighbour sites


• Bipartite (‘chiral’) symmetry: State with energy  has partner at energy  


• Symmetry broken by random potentials, next-neighbour hopping...

ϵ −ϵ

Quantum mechanics of bipartite random hopping



• Vacancy disorder: random dilution of the underlying lattice (missing atoms in crystal 
structure)


• Also natural if substitutional impurities correspond to missing orbital


• Question: Does vacancy-disorder change the asymptotic low-energy behaviour of ?


• Note: No change in symmetries

ρ(ϵ)

 Vacancy disorder



• Does anything interesting happen in the quantum mechanical spectrum 
of H near  ?ϵ = 0

The question

 is specialϵ = 0



‘Surprise’: Zero modes
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For large enough lattice, almost every sample has at least one zero mode



In fact: Nonzero density of zero modes
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Our idea: R-type regions hosting zero modes
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Example of R-type region

Gives a rigorous lower bound on density of zero modes on honeycomb lattice



• Actual density of zero modes much larger than lower bound


• What dominates? 


• General algorithm for identifying all R-type regions?

Major open questions remained



Finally: progress...

• Key idea: Disorder-robust zero modes only depend on connectivity, not hopping strengths. 


• R-type regions rely on local imbalance between A and B type site densities.


• Suggests thinking in terms of matchings a.k.a dimer covers


• Places that cannot be covered by dimers host wavefunctions?



Counting zero modes from maximum matchings

Chemist (structure of diborane)

Physicist (advisor of Peter Higgs)

Pioneer in:

‘Machine-intelligence (aka AI!)

Cognitive science and computer vision

Computer music...

(1950)



• Number of monomers in any maximum matching of bipartite graph gives 
number of topologically-protected zero modes 

Counting zero modes from maximum matchings

Longuet-Higgins (restated)

nonzero-defect generalization of Tutte’s Theorem in bipartite case 



• Somewhat larger-size studies confirm our claim of enormous excess of 
zero modes above simple lower bounds


• Again: What are these modes?

Gives access to larger sizes

Numerical results on percolating by Evers group (Weik et al ‘16)



Density of disorder-robust zero modes
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Equivalent to counting zero modes of a  matrix (?!)109 × 109



Wavefunctions?... Longuet-Higgins again:

• Set of all sites that host a monomer in at least one maximum matching form support of all 
topologically-protected zero mode wavefunctions



Maximally-localised basis for zero-mode subspace?

Want more: What do the zero modes look like?

Basis-invariant consequences for on-shell zero-energy Green function?

Consequences for two-terminal conductance?



Bring into play classic result from graph theory

Our strategy

Characterization of regions of lattice that can host monomers

Can. J. Math. 10: 517, 1958



Matchings, augmenting paths, and alternating paths
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• Even: Reachable by even-length alternating paths from monomers of M 
(including length zero)


• Odd: Reachable by odd-length alternating paths from monomers of M


• Unreachable: Not...


• Decomposition:        


•         


• 


•

CA : EA ∪ OA

CB : EB ∪ OB

P : UA ∪ UB

Even, odd and unreachable sites from any one maximum matching M

A useful version of the DM decomposition



Focus on connected components

Key observation: R-type regions from  and CA CB
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• Each  (  ) hosts  (  ) topologically-protected zero modes with wavefunctions 
confined to the region.


• Provides alternate ‘local’ proof for correspondence between monomers of maximum 
matchings and zero modes of adjacency matrix 


• Gives topologically-robust construction of a maximally-localised basis for zero modes


• Standard proofs (Longuet-Higgins, Lovasz) are ‘global’—no information about maximally-
localised basis.

RA
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j IA
i IB

j

Key observation: Connected components construct R-type regions



• Compensated disorder ( )


• Standard algorithms for finding any one maximum matching


• Alternating path tree from each monomer to obtain DM classification


• Burning algorithm to construct connected components

|A | = |B |

Computational strategy



Basic picture in d=2

Typical R type regions are BIG at low dilution (of order 5%)



Thermodynamic densities of number of R-type regions
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Thermodynamic densities of number of P-type regions
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Thermodynamic densities of total mass in R-type regions
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R-type regions take over the lattice in low-dilution limit!



Dominated by large-scale structures
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‘Small’ defined to have 10000 vacancies(!)



Length-scales
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Size of largest R-type region is limited by system size at low dilution



Incipient percolation: wrapping probabilities 
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Is there universal scaling?
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Anomalous exponent?
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 very close to zero or zero...η



What about three dimensional cubic lattice?
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Very similar basic picture...
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R-type regions invade lattice
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Dominated by large length scales
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Percolation transition
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Percolation transition
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A second transition (!)

0.2 0.3 0.4 0.5 0.6
nvac

0.0

0.2

0.4

0.6

0.8

1.0
m

m
ax

/m
to

t
L = 500

L = 600

L = 700

Spontaneous sublattice-symmetry breaking transition within percolated phase



• Patient perseverance produces percolative paradigms!

Summary a la Wodehouse



• Infinitesimal dilution localises monomers of the maximally-packed dimer model in 
two dimensions


• Infinitesimal dilution causes sublattice symmetry-breaking in the monomer gas in 
three dimensions


• There is no quantum percolation transition in two dimensions (long story, starting 
‘70s)


• Precise determination of quantum percolation threshold in three dimensions and 
evidence for second transition


• Majorana zero modes hosted by R-type regions with odd imbalance undergo a 
percolation transition

Consequences



• T. Kavitha and A. Mondal for introduction to graph decompositions


• Computational resources of DTP-TIFR


• Discussions with D. Sen, D. Dhar, Mahan Mj, J. Radhakrishnan and many others...
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