Dulmage-Mendelsohn percolation

Random geometry of maximum-matchings, zero modes & Majorana excitations...
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Some generalities

* Quenched disorder matters (often)
* Particles scatter and diffuse (may be anomalously...)

* Matter-waves scatter and localise (sometimes weakly...)



Classical transport of particle-fluid

Simplest setting: Porous random medium
Random geometry of medium determines fluid transport
Paradigm of percolation

More generally: Diffusion in presence of random potentials

Broadbent & Hammersley, Sinai...



Percolation

e Study end-to-end connectivity of a porous medium

e Can you go from one end to other?

Answer changes as function of porosity

* Simplest model: Randomly diluted regular lattice (graph)

Broadbent and Hammersley, Percolation processes |, Crystals and Mazes (1957)



Sharp question about the random geometry

Crossing probability

Consider two dimensional square grid or honeycomb net or three
dimensional cubic lattice of linear size L

Remove fraction n, . of sites and delete links to removed sites.

P, (n,,., L) : Probability that one can ‘walk’ from left end to right end along
existing sites and links.

How does this behave as a function of n,,,. and L?



Sharp threshold behaviour

Property of thermodynamic limit

Ind =2 andind = 3, L — oo limit characterised by sharp threshold
behaviour as function of n, .

‘Percolation transition’

Simplest geometric example of a ‘thermodynamic phase transition’
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Approach to thermodynamic limit

‘Scaling behaviour’

« [. — oo limit is approached in interesting way

. P, (n,,..L) = f(SL") where 6 = n,,, — n

vac

» f(x) is the ‘universal scaling function’, v is a ‘scaling exponent’ and n it is the
‘critical’ dilution



Approach to thermodynamic limit

‘Scale invariance’ and ‘universality’

f(x) and v believed to be independent of microscopic-scale details. Examples of
‘universal critical properties’. Square lattice and honeycomb net have same f(x) and v.

Cubic lattice has different f(x) and v. Dimensionality dependent.

crit

Implies different size samples have same P, forn,,. = n,.

Scale invariance: Pictures of random geometry look same if we rescale pictures!

Only true if we ignore lattice scale features, but amazing anyway!



Localization of matter waves

* Anderson localization of electrons in dirty metals
* Localization of quasiparticles in dirty superconductors

 Symmetries of disordered Hamiltonian matter (e.g. in random matrix theory)

Anderson, Ramakrishnan, Abrahams, Thouless, Dyson, Wegner, Mehta...



Simplest lattice model

Z Ly + Viy; = Ey; for all @

JEI
E is the energy of the particle represented by wave function y;

l;; are ‘hopping amplitudes’ for particle to hop from site i to site |

V. are values of external potential at sites i

Allowed E: Eigenvalues of matrix of #;; + V;0;;



Quantum mechanics of bipartite random hopping

Particle hopping on a bipartite lattice

Random (real) hopping amplitudes between nearest neighbour sites

Bipartite (‘chiral’) symmetry: State with energy € has partner at energy —e

Symmetry broken by random potentials, next-neighbour hopping...



Vacancy disorder

Vacancy disorder: random dilution of the underlying lattice (missing atoms in crystal
structure)

Also natural if substitutional impurities correspond to missing orbital

Question: Does vacancy-disorder change the asymptotic low-energy behaviour of p(€)?

Note: No change in symmetries



The question

e = 0 is special

* Does anything interesting happen in the quantum mechanical spectrum
of Hneare = 0 ?
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‘Surprise’: Zero modes
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For large enough lattice, almost every sample has at least one zero mode
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In fact: Nonzero density of zero modes
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Our idea: R-type regions hosting zero modes
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Example of R-type region

Gives a rigorous lower bound on density of zero modes on honeycomb lattice



Major open questions remained

e Actual density of zero modes much larger than lower bound
* What dominates?

e General algorithm for identifying all R-type regions?



Finally: progress...

Key idea: Disorder-robust zero modes only depend on connectivity, not hopping strengths.
R-type regions rely on local imbalance between A and B type site densities.
Suggests thinking in terms of matchings a.k.a dimer covers

Places that cannot be covered by dimers host wavefunctions?



Counting zero modes from maximum matchings

AI P ‘ The Journal of
Chemical Physics
Some Studies in Molecular Orbital Theory I. Resonance Structures and Molecular

Orbitals in Unsaturated Hydrocarbons
H. C. Longuet-Higgins

(1950)

Chemist (structure of diborane)
Physicist (advisor of Peter Higgs)
Pioneer In:

Cognitive science and computer vision

‘Machine-intelligence (aka Al')

Computer music...



Counting zero modes from maximum matchings

Longuet-Higgins (restated)

 Number of monomers in any maximum matching of bipartite graph gives
number of topologically-protected zero modes

nonzero-defect generalization of Tutte’s Theorem in bipartite case



Gives access to larger sizes

« Somewhat larger-size studies confirm our claim of enormous excess of
zero modes above simple lower bounds

e Again: What are these modes?

Numerical results on percolating by Evers group (Weik et al ‘16)




Density of disorder-robust zero modes
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Equivalent to counting zero modes of a 10° X 10° matrix (?!)



Wavefunctions?... Longuet-Higgins again:

« Set of all sites that host a monomer in at least one maximum matching form support of all
topologically-protected zero mode wavefunctions



Want more: What do the zero modes look like?

Maximally-localised basis for zero-mode subspace?

Basis-invariant consequences for on-shell zero-energy Green function?

Consequences for two-terminal conductance?



Our strategy

Bring into play classic result from graph theory

COVERINGS OF BIPARTITE GRAPHS

A. L. DULMAGE axp N. S. MENDELSOHN

Can. J. Math. 10: 517, 1958

Characterization of regions of lattice that can host monomers



Matchings, augmenting paths, and alternating paths

In any maximum matching M:
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A useful version of the DM decomposition

Even, odd and unreachable sites from any one maximum matching M

* Even: Reachable by even-length alternating paths from monomers of M
(including length zero)

Odd: Reachable by odd-length alternating paths from monomers of M

Unreachable: Not...

Decomposition:

Cy:E U0,

Cp: EzU Og

P:U,UUg



Key observation: R-type regions from C, and Cj,

Focus on connected components
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Key observation: Connected components construct R-type regions

A [ pB A [ IB : . .
Each R (Rj ) hosts [ (Ij ) topologically-protected zero modes with wavefunctions
confined to the region.

Provides alternate ‘local’ proof for correspondence between monomers of maximum
matchings and zero modes of adjacency matrix

Gives topologically-robust construction of a maximally-localised basis for zero modes

Standard proofs (Longuet-Higgins, Lovasz) are ‘global’—no information about maximally-
localised basis.



Computational strategy

Compensated disorder (|A | = | B|)
Standard algorithms for finding any one maximum matching
Alternating path tree from each monomer to obtain DM classification

Burning algorithm to construct connected components



Basic picture in d=2

Typical R type regions are BIG at low dilution (of order 5%)



Thermodynamic densities of number of R-type regions
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Thermodynamic densities of number of P-type regions
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Thermodynamic densities of total mass in R-type regions
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Dominated by large-scale structures
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Length-scales

Honeycomb (L = 26000)

Square (L = 26000)
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Size of largest R-type region is limited by system size at low dilution



Incipient percolation: wrapping probabilities
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Is there universal scaling?

Honeycomb (v = 5.1) Square (v = 5.1)
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Anomalous exponent?
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What about three dimensional cubic lattice?
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Very similar basic picture...
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R-type regions invade lattice
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Dominated by large length scales




Percolation transition
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A second transition (!)
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Spontaneous sublattice-symmetry breaking transition within percolated phase



Summary a la Wodehouse

» Patient perseverance produces percolative paradigms!



Consequences

Infinitesimal dilution localises monomers of the maximally-packed dimer model in
two dimensions

Infinitesimal dilution causes sublattice symmetry-breaking in the monomer gas in
three dimensions

There is no quantum percolation transition in two dimensions (long story, starting
“70s)

Precise determination of quantum percolation threshold in three dimensions and
evidence for second transition

Majorana zero modes hosted by R-type regions with odd imbalance undergo a
percolation transition
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