Classical Mechanics: Mid Term Test

- 1. Consider a spherical pendulum of mass m and angular momentum M. (A spherical pendulum is a particle of mass m moving on the surface of a sphere of radius l in a gravitational field.)
- (i) Determine the effective potential as a function of the polar angle θ for fixed angular momentum M.
- (ii) Determine the minimum of the above effectice potential at fixed angular momentum M.
- (iii) Determine the frequency of small oscillations around this minimum.
- 2. A particle of mass m moves in a potential V(x) and has time period T. Determine the time period of a particle of mass m' moving in the potential $\alpha V(x)$.
- 3. Find the time dependence of the co-ordinates of a particle with energy E=0 moving in a parabola in a field $U=-\alpha/r$.
- 4. Determine the effective cross-section for particles of mass m_1 to strike a sphere of mass m_2 and radius R to which they are attracted in accordance with Newton's law.
- 5. Determine the final amplitude for the oscillations of a harmonic oscillator

$$\ddot{x} + \omega_0^2 x = f(t)$$

under a force f(t) which is as

$$f(t) = \begin{cases} 0 & \text{for } t < 0 \\ F_0 t / T & \text{for } 0 \le t \le T \\ 0 & \text{for } t > T \end{cases}$$

6. Obtain expressions for the Cartesian components and the magnitude of the angular momentum of a particle in cylindrical co-ordinates $r,\,\phi,\,z.$