
Assignment-1: Classical Mechanics

Solutions

1. Consider the action

S =
∫ (∑

n
1
2
mnẋ

2
n − U(xn)

)
dt

A (constant) infinitesimal boost causes the following change in the coordi-
nates and velocities of the particles:

δxi
n = V itε

δẋi
n = V iε

where ε is a small parameter and V is the velocity of the boost. Here n
labels the particle number and i is the component of the vector quantity.
The general expression for the conserved charge is:

Q = p · δx−H

where p is the generalized momentum and H is the change in the action. The
change in the action can be calculated as follows. The potential function U is
taken to be translationally invariant, i.e., it is a function of the separations of
the particles only. Since a constant Galilean boost is just a time dependent
translation, the potential remains unchanged. Thus, the only change is in
the kinetic energy term. Thus, the change in the Lagrangian (to O(ε)) is:

δL = ε (
∑

nmnẋn) ·V = d
dt
(ε (

∑
nmnxn) ·V)

Thus, H = ε (
∑

nmnxn) ·V. At the same time, we have, for the first term
in the expression for the conserved charge p · δx = ∂L

∂ẋ
· δx

∂L
∂ẋ

· δx = ε (
∑

nmnẋn) ·Vt

substituting for the above quantities in the general expression for Q, we get:
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Q = ε (
∑

nmn(ẋnt− xn)) ·V

Thus, the conserved charge is:∑
nmn(ẋnt− xn)

As a consequence,

d
dt
(
∑

nmn(ẋ
i
nt− xi

n)) = t d
dt
(
∑

nmnẋ
i
n) = 0

as the total momentum (the quantity in the brackets) is conserved. Thus,
there is no new conserved quantity one can derive from Galilean invariance.

2. (a) The equation of motion is easily found to be:

mẍ = −10kx9

(b) Substituting the given scaling in the equation of motion, we get on the
RHS λ8 and on the LHS we get λ2β. Thus, β = 4 for λx(λβt) to be a solution.
(c)We have λx(λ4t) as a solution, and from the scaling arguments for the time
period given in class, we easily find that the time period scales as k = −4.
(d) Applying the virial theorem as discussed in the class, one finds:

2T̄ = αŪ

Where Ā indicates the time average of the quantity A. T and U are the ki-
netic and potential energies respectively and α is the exponent in the scaling
of the potential. We easily find thus T̄ /Ū = 5.

3. (a) We fix a system of coordinates in the body fixed frame of the earth.
Note that this is not an inertial frame of reference. Thus, by denoting φ as
the longitude, θ the latitude and h the height above the surface of the earth,
we have the Lagrangian for the particle:

L = T − V = m
2
(R2(sin2 θ(φ̇+ ω)2 + θ̇2) + ḣ2)−mgh

We note that by solving the φ equation of motion, one can derive the familiar
Coriolis force on objects due to the rotation of the earth.
(b) (i) First, we must specify the number of degrees of freedom of the sus-
pended ball. For this purpose, let us first work in a system of coordinates
fixed to the rotating turntable; this is not an inertial system. We choose the
z axis along the axis of the turntable, and the xy plane so that the plane
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contains the point from which the rod is suspended from the pole; i.e., at
z = 0. We can observe that there are clearly two ‘directions’ in which the ball
can freely move: one can be defined by the angle that the rod suspending the
ball subtends with respect to the pole; another resulting from the fact that
the ball can spin around the pole. Let us denote these angles (our general-
ized coordinates) by θ and φ respectively. Thus, there are two generalized
coordinates; hence the number of degrees of freedom (defined as the number
of variables to be given at t = 0 to completely determine the evolution) are
four.
(ii) To set up the Lagrangian, we need to determine the transformation that
relates the body fixed (rotating) frame to a one that is inertial. We choose
the inertial system in the same manner as above; the origins of the two sys-
tems coincide. Let us call the coordinates of the inertial system as xout, yout
and zout and the rotating reference frame x, y and z. Clearly, the inertial
system is related to the rotating system by a rotation in the xy plane; thus
the relation is: (

xout
yout

)
=

(
cosωt sinωt
− sinωt cosωt

)(
x
y

)
Clearly,

zout = z

Note that the rotation angle (the argument of the rotation matrix) could in
principle be any function of t; in our specific case it is ωt. It now remains to
determine x, y and z in terms of θ and φ defined above, which would enable
us to write down the Lagrangian in the inertial frame.
We can easily see that with respect to the body fixed frame, the position of
the ball is:

x = R + (l sin θ) cosφ

y = (l sin θ) sinφ

z = −l cos θ

Substituting the above relations, after some straightforward algebra, one
finds the expression for the Lagrangian:

L =
m

2
(R2ω2 + l2(θ̇2 + sin2 θ(φ̇− ω)2)− 2Rωl((φ̇− ω) sin θ cosφ

+ θ̇ cos θ sinφ)) +mgl cos θ
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4 (a) The translational invariance is clear from the fact that the velocity de-
pendent terms do not contribute to any change in the Lagrangian, whereas
the potential depends only on the separations of the particles, hence any con-
stant translation cancels in the term |r1 − r2|2. Similarly, we can argue that
the Lagrangian is rotationally invariant as it is function of v2 and |r1 − r2|2,
which are unchanged under rotations. Similarly, time translational invari-
ance is guaranteed as the Lagrangian is not explicitly time dependent.
But the v4 term in the Lagrangian clearly violates Galilean invariance as the
velocities change under a Galilean boost and the v4 term cannot be trans-
formed in any way to give rise to a total derivative as was shown in class,
and can be easily checked. The same holds true for the equations of motion
following from the given Lagrangian, as it contains terms which are third
degree in the velocity.
(b) We can use the general expression given in problem 1 to compute the
conserved charges following from the mentioned invariances of the problem.
The conserved charge for the translational invariance is the generalized mo-
mentum; this is just ∂L

∂vi
for each particle. Thus, we find for spatial transla-

tional invariance the following conserved charge:

pi = 2miv
2
i vi

The conserved charge corresponding to time translational invariance is the
energy; the expression for energy is E =

∑
i
∂L
∂vi

· ṙi − L. Thus, we find:

E =
∑

i 2miv
2
i vi ·ṙi−(1

2
m1v

4
1+

1
2
m2v

4
2−|r1−r2|2) = 3

2
m1v

4
1+

3
2
m2v

4
2+|r1−r2|2

Please note that the names ‘momentum’ and ‘energy’ are misnomers; in
this case they are just conserved charges corresponding to the symmetries of
the given problem; the names are purely conventional. Finally, the charge
related to rotational invariance can be obtained in a similar way. In this case,
δxa = εabcδθbxc, where δθa is the infinitesimal angle of rotation. Thus, this
gives the conserved charge to be:

Q = 2miv
2
i v

a
i ε

abcδθbxc
i

Thus, the conserved quantity is the ‘angular momentum’,
∑

i 2miv
2
i (xi×vi).

Here, i labels the particle number i = 1, 2 and a, b, c denote the vector
components.
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