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Introduction

I This talk is about the role of gauge symmetries, also called
local symmetries, in physics.

I Historically, gauge symmetry arose in the equations for a
charged particle moving in an electromagnetic field.

I These equations had been inferred from experiment. That
these equations possess gauge symmetry was observed by:

Vladimir Fock (1926) Fritz London (1928)
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I Quite independently, a similar idea arose in the equations for
gravitation proposed by:

Albert Einstein (1915)

I These equations were based on the principle of general
relativity which basically asserts that the laws of nature take
the same form in any choice of space-time coordinates.

I This principle can in fact be re-cast as a type of gauge
invariance.
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I A failed attempt to unify electromagnetism and gravity was
made by:

Hermann Weyl (1918)

I In 1955, shortly before his death, Weyl wrote:

[I attempted] to attain this goal by a new principle which I called
gauge invariance (Eichinvarianz). This attempt has failed.

There holds, as we now know, a principle of gauge invariance in
nature; but it does not connect the electromagnetic potentials φµ,
as I had assumed, with Einstein’s gravitational potentials gµν , but
ties them to the four components of the wave field ... which ...
represent the electron.

I However, Weyl’s nomenclature “gauge invariance” survived.
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I Today we know there are two more fundamental interactions
besides electromagnetism and gravity. These are the weak and
strong nuclear interactions.

I Remarkably these too have the property of gauge symmetry!
This arises in a form originally proposed by:

C.N. Yang (1954) Robert L. Mills (1954)

I Thus, the gauge principle governs all the basic interactions
observed in nature. This is experimentally verified beyond a
shadow of doubt.
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Gauge symmetry in non-relativistic mechanics

I The electromagnetic field is specified by a scalar potential
φ(~x, t) and a vector potential ~A(~x, t).

I In terms of these, the electric and magnetic fields are given
by:

~E = −~∇φ− ~̇A, ~B = ~∇× ~A

I Notice that these are invariant under the transformations:

~A→ ~A− ~∇λ, φ→ φ+ λ̇

where the parameter λ(~x, t) is an arbitrary function of space
and time.

I This is the simplified form of gauge transformations in a
situation where only electromagnetism (and no matter) is
present.
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I Now suppose a particle of mass m and electric charge e
propagates in an electromagnetic field. Experimentally we
know it obeys the Lorentz force law:

m~̈x = e ~̇x× ~B + e ~E

I In quantum mechanics the above equation should take the
form of Heisenberg’s equation of motion:

dO

dt
=
i

~
[H,O] +

∂O

∂t

where O = m~̇x and H is some Hamiltonian operator.
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I A simple calculation tells us that the Hamiltonian must be:

H =
1

2m

[
~p− e ~A(~x)

]2
+ eφ(~x)

I Therefore the Schrödinger equation for a charged particle in
an electromagnetic field is:{

1

2m

[
~p− e ~A(~x)

]2
+ eφ(~x)

}
ψ(~x, t) = i~

∂ψ(~x, t)

∂t

where ~p = −i~~∇.

I The observation of Fock and London amounts to saying that
this equation is invariant under:

ψ → e−i
e
~λ(~x,t)ψ, ~A→ ~A− ~∇λ, φ→ φ+ λ̇

for an arbitrary function λ. This now is the full gauge
transformation and we see that it includes a phase
multiplication on the wave-function.
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I Let’s examine what this invariance means.

I Geometrically, a phase multiplying a (complex) wave function
just rotates it in the complex plane:

I A gauge transformation performs this rotation independently
at each point of space and time. Therefore it is also called a
local symmetry transformation.

I One should keep in mind that the rotation is not in real space
but in “internal space” in which the wave function is valued.
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I Notice that ψ(~x, t) can always be multiplied by a constant
phase without changing anything.

I So gauge invariance is interesting only when the phase is
non-constant.

I In this case, the derivatives acting on ψ would bring down
extra factors. The transformation of ( ~A, φ) just cancels these
factors.

I Without the electromagnetic field ( ~A, φ) we could not possibly
have gauge invariance! Conversely, imposing gauge invariance
on matter fields requires the electromagnetic field to exist.
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I All configurations related by gauge transformations are
supposed to describe the same physical situation:

(ψ, ~A, φ)→ (ψ′, ~A′, φ′)

I Therefore gauge symmetry is not really a symmetry but a
redundancy.

I In non-relativistic physics gauge symmetry is just an elegant
property, but as we will soon see, in relativistic physics it is
crucial for consistency and has predictive power.
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Gauge symmetry in relativistic physics

I In relativistic physics the wave function is replaced by a
quantum field ψ that creates and destroys matter particles.

I The electromagnetic potentials ( ~A, φ) also combine into a
quantum field Aµ that creates and destroys photons.

I The photons created by Aµ would have four polarisations, one
for each µ = 0, 1, 2, 3. This flatly contradicts experiment! It
also contradicts unitarity because the state:

|µ〉 ∼ Aµ|0〉

must, by Lorentz invariance, satisfy:

〈µ|ν〉 ∼ ηµν (Minkowski metric)

and therefore some components have a negative norm.
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I Gauge symmetry saves us because it says that:

Aµ and Aµ −
∂λ

∂xµ

are the same physical configuration.

I Indeed the electric and magnetic fields, encoded in:

Fµν = ∂µAν − ∂νAµ

are manifestly invariant under the above transformation.

I One can show that gauge invariance removes two polarisations
of the photon, including the one which would have had a
negative norm.

I As a result we are in agreement with experiment, as well as
with positivity of probabilities.

I It is curious that gauge symmetry requires the photon to exist
in the first place, thereby creating a potential problem with
unitarity, and then solves that same problem!
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I In mathematics, the gauge principle is related to connections
on vector bundles.

I The statement of gauge invariance becomes a statement
about cohomology. So it would not be wrong to say the
photon has two polarisations rather than four because it is a
cohomology class!
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Local Lorentz symmetry

I In special relativity, the rotation algebra is enhanced to a
larger algebra containing both rotations and Lorentz boosts.

I Special relativity is equivalent to saying that Lorentz
transformations are a symmetry of nature.

I Now consider a transformation for which the amount of
rotation or boost is different at different points of space-time.

I This generalisation of Lorentz symmetry is called “local
Lorentz symmetry”.
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I It is like a gauge transformation but instead of rotating wave
functions or fields, it rotates (or boosts) space-time itself:

−→

I Although the formulae are more complicated, local Lorentz
symmetry (like gauge symmetry) requires there to be a new
field in nature: the gravitational field gµν .

I Indeed, when we implement local Lorentz symmetry we get
Einstein’s general theory of relativity, which is experimentally
verified to high precision.

I Therefore here too, a type of gauge symmetry correctly
predicts a field and its interactions.
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Yang-Mills gauge symmetry

I By analogy with rotations in space, one can consider a group
of rotations in the space of fields.

I For example, one can take the fields of an electron and an
electron-type neutrino and consider them as a 2-component
vector:

Ψ(~x, t) =

(
ψe
ψνe

)
I This vector can be rotated via a 2× 2 unitary matrix:

Ψi → U ijΨj

I If U depends on (~x, t) then this is a local gauge
transformation. It requires a compensating field Aµ(~x, t)
which is a 2× 2 Hermitian matrix.
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I A new feature with respect to electrodynamics is that two
transformations by matrices U (1) and U (2) do not necessarily
commute:

U (1)U (2) 6= U (2)U (1)

and the matrices form a group, in this case SU(2).

I For SU(2) and more generally for any Lie group, such
matrices can be parametrised in terms of a linear space called
a Lie algebra:

U = eθ
aT a

where T a form a representation of the Lie algebra.

I They obey the relation:

[T a,T b] = fabc T
c

where fabc are the structure constants of the algebra.
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I The key observation of Yang and Mills was that the gauge
transformation must be non-linear and the associated field
strength is given by:

F µν = ∂µAν − ∂νAµ − g[Aµ,Aν ]

which transforms as:

F µν → U−1F µν U

I Gauge-invariant interactions can be made out of products of
traces. The simplest one is:

trF µνF µν

which contains the terms (inside the trace):

(∂µAν − ∂νAµ)2 − 4g ∂µAν [Aµ,Aν ] + g2[Aµ,Aν ][Aµ,Aν ]
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I This time gauge invariance does three distinct things:

(i) predicts the existence of a matrix-valued particle created
by the Hermitian field Aµ, amounting to three spin-1
particles: roughly, W+,W−, Z,

(ii) Solves the potential unitarity problem associated to these
particles,

(iii) Predicts a relation between the different possible
self-interactions allowed by Lorentz invariance:

(∂µAν − ∂νAµ)2 + α∂µAν [Aµ,Aν ] + β[Aµ,Aν ][Aµ,Aν ]

namely,

β =
(α
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I These interactions have been accurately tested by experiment!



I These interactions have been accurately tested by experiment!



I Nominally, Yang-Mills gauge fields (just like photons and
gravitons) are massless.

I However the weak interactions are short-range and therefore
the mediating particles must be massive.

I This problem was resolved via the Higgs mechanism, a
surprising mechanism in which gauge invariance, though
present, appears to be “spontaneously broken”.

I Something different (“confinement”) takes place for strong
interactions.

I We see that physical implementation of the gauge principle
can take a long time and may require novel mechanisms.
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Supergravity: a new gauge principle

I A brand new gauge principle was proposed in the mid 1970’s.

I The idea that all internal symmetries are related to Lie
algebras was generalised to include supersymmetry algebras.

I Instead of transforming fields ψ of spin-12 fermions into
themselves, it transforms them into fields φ of spinless bosons.

ψ → φ, φ→ ψ,

I Alternatively it transforms spin-12 electrons into spin-1 gauge
fields:

ψ → Aµ Aµ → ψ,

I In each case, supersymmetry changes the spin by 1
2 (in units

of ~).
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I Supersymmetry is like a rotation in a space spanned by bosons
and fermions.

I Moreover, if we combine two supersymmetry transformations,
we get an ordinary translation in space-time.

{S, S†} ∼ T

I This is the first time in physics that a basic symmetry like
translation has been written as a composite of another
symmetry!
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I Now let’s transform the boson into a fermion by an amount
that is different at each point of spacetime. This will be a
gauge transformation.

I Then a beautiful thing happens. Since two supersymmetries
combine into a translation, local supersymmetry implies local
translation symmetry.

I This in turn is the same as local Lorentz invariance which, as
we have seen, implies the existence of gravity.

I Therefore local supersymmetry gives rise to a supersymmetric
extension of gravity called supergravity.
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I As we saw, the “gauge particle” associated to gravity is the
spin-2 graviton denoted gµν .

I In supergravity this is paired with a new particle, the spin-32
gravitino denoted χµα:

χµα → gµν , gµν → χµα

I Today the gravitino is being sought (along with other
particles) at the Large Hadron Collider.
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I Supersymmetry must at best be an approximate or broken
symmetry, otherwise gravitinos would be massless (like
gravitons) and contradict experiment.

I If gravitinos are found to exist, it will confirm that at the most
fundamental level, Nature chooses to be governed by gauge
theories!
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I Mathematically, the fact that two supersymmetries give a
translation is related to the representation theory of the
Lorentz algebra:

spinor× spinor ⊃ vector

I The related geometric structure is a supermanifold: like a
manifold but with some anticommuting directions.

I This is appealing because fermions occur rather abundantly in
nature, and these arise automatically once we have
supermanifolds.
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String theory

I For many years now, particle theorists have speculated that at
very high energies, the successful quantum field theories that
we know reveal a stringy structure.

I This is one of the few ways we know to make quantum gravity
consistent in the ultraviolet (high energy) regime.

I Quantisation of strings is somewhat more complicated than
for particles, but also more tightly constrained.

I One of the most basic constraints is conformal invariance of
the string worldsheet:
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I At distances that are large compared to the typical string size,
string theory reduces to particle theory.

I But what sort of particle theory? This is entirely dictated by
the background in which the string propagates.

I The simplest background is a flat Minkowski space-time.

I Here we understand how to satisfy conformal invariance. All
physical states of the string must be annihilated by an infinite
set of “Virasoro operators”:

Ln|phys〉 = 0
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I On quantising an open string, one finds a massless state with
a vector index:

|µ, k〉
where kα is the 4-momentum of the state.

I Now consider a general linear combination of these states:

3∑
µ=0

ζµ(k) |µ, k〉

ζµ(k) is just the Fourier transform of a vector field Aµ(x).
I Imposing the conformal invariance requirement:

Ln|µ, k〉 = 0

we find that:

kµk
µ ζν(k) = 0, kµ ζµ(k) = 0

I The first condition says the field is massless. Taken together,
the two conditions give us the Maxwell equations:

kµ (kµζν − kνζµ) = 0 ↔ ∂µFµν = 0
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I We know that Maxwell’s equations have gauge symmetry.
How do we see this in string theory?

I Consider the state:

kµ |µ, k〉

It is easy to show that this is orthogonal to all the physical
states of the theory.

I This means it is equivalent to zero. Thus for arbitrary Λ(k),
we have the equivalence of polarisation vectors:

ζµ(k) ∼ ζµ(k)− ikµ Λ(k)

This is the momentum space version of the gauge
equivalence:

Aµ ∼ Aµ − ∂µΛ

I Thus open string theory has gauge invariance! We did not
require it, rather it emerged upon quantising the theory.
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I If we repeat the same procedure on the closed string, we find
it has local Lorentz invariance at the linearised level.

I This leads one to suspect that at low energies, closed strings
describe gravity, including its gauge symmetries. This is true
and has by now been confirmed in many different ways.

I Thus in string theory, both the original gauge principles
(electromagnetism and gravity) emerge automatically (one
from open strings and the other from closed strings).
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I If we put together many species of open strings (“parallel
D-branes”) then we get non-Abelian or Yang-Mills gauge
symmetry.

I The above diagram shows three D-branes producing the gauge
symmetry of U(3).

I Mathematicians associate Lie algebras to a root diagram. The
above is a physical realisation of this root diagram!
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I String theory seems to contain many more gauge symmetries
than any ordinary field theory.

I Closed strings inevitably produce massless “tensor fields”. An
example is the 2nd rank tensor Bµν , whose interactions are
invariant under:

Bµν → Bµν −
(
∂Λν
∂xµ

− ∂Λµ
∂xν

)
analogous to the usual gauge transformation.

I The superstring expectedly has supergravity as its low energy
limit and possesses the corresponding local supersymmetry
invariance.

I Also in some backgrounds, string theory exhibits an
infinite-dimensional W∞ symmetry.
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I Also in some backgrounds, string theory exhibits an
infinite-dimensional W∞ symmetry.
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3-algebras

I In recent years a new type of symmetry has attracted interest.

I It originated, like many other good things, with Nambu:

I His idea was to generalise the 2d phase space, which comes
with variables (p, q), to a 3d space with variables, say, (p, q, r).

I Then the Poisson bracket can be naturally generalised:

[G,H] → [F,G,H] =
∂F

∂p

∂G

∂q

∂H

∂r
± · · ·
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I The idea was revived recently in connection with an
interesting open problem: to find a maximally supersymmetric,
conformal-invariant field theory in (2+1) dimensions.

I This field theory is supposed to describe membrane excitations
of strongly coupled string theory.

I The simplest such theory turns out to be uniquely determined
by supersymmetry. It has eight real scalar particles and eight
2-component fermions.

I Now in (2+1) dimensions it is known that scalar fields have a
scale dimension 1

2 and therefore the interaction φ6 is
dimensionless – a necessary (though not sufficient)
requirement for conformal invariance.
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I The novel mathematical structure employed in these works is
the concept of a 3-algebra:

[T a,T b,T c] = fabc d T
d

generalising the notion of Lie algebra:

[T a,T b] = fab c T
c

I If we have a number of scalar fields φI a and we write:

φI = φI aT a

then it’s natural to postulate a 6-th order coupling:

tr[φI ,φJ ,φK ]2 ∼ fabcgfdefg φIa φJb φKc φId φJe φKf
by analogy with the 4th-order coupling:

tr[Aµ,Aν ]2 ∼ fabcfde cAµaAν bA
µ
dA

ν
e
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I The 3-algebra gauge symmetry is a gauge symmetry requires a
gauge field non-dynamical (Chern-Simons) rather than
dynamical Yang-Mills type.

I This theory has some remarkable properties including the
possibility of the non-dynamical gauge field transmuting into a
dynamical one. These will be discussed in my subsequent
lectures here.

I 3-algebras are the most recent form of gauge symmetry to be
introduced in physics. They could be relevant not only in the
particle physics/string theory context but also for
condensed-matter systems in the context of quantum
criticality.
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Conclusions

I We have seen that the gauge principle is fundamental in
nature.

I This principle endows relativistic quantum field theory with
new particles, consistency and predictive power.

I New gauge symmetries like supergravity and 3-algebra
symmetries have been proposed and may well be tested.

I String theory naturally embodies the gauge principle and has
given us clues about how it could be generalised.
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