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» This talk is about the role of gauge symmetries, also called
local symmetries, in physics.

» Historically, gauge symmetry arose in the equations for a
charged particle moving in an electromagnetic field.

» These equations had been inferred from experiment. That
these equations possess gauge symmetry was observed by:

Vladimir Fock (1926) Fritz London (1928)
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» Quite independently, a similar idea arose in the equations for
gravitation proposed by:

Albert Einstein (1915)

» These equations were based on the principle of general
relativity which basically asserts that the laws of nature take
the same form in any choice of space-time coordinates.

» This principle can in fact be re-cast as a type of gauge
invariance.
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There holds, as we now know, a principle of gauge invariance in
nature; but it does not connect the electromagnetic potentials ¢,,,
as | had assumed, with Einstein's gravitational potentials g,,,, but
ties them to the four components of the wave field ... which ...
represent the electron.



> A failed attempt to unify electromagnetism and gravity was
made by:

Hermann Weyl (1918)
> In 1955, shortly before his death, Weyl wrote:

[I attempted] to attain this goal by a new principle which | called
gauge invariance (Eichinvarianz). This attempt has failed.

There holds, as we now know, a principle of gauge invariance in
nature; but it does not connect the electromagnetic potentials ¢,,,
as | had assumed, with Einstein's gravitational potentials g,,,, but
ties them to the four components of the wave field ... which ...
represent the electron.

» However, Weyl's nomenclature “gauge invariance” survived.
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» Today we know there are two more fundamental interactions

besides electromagnetism and gravity. These are the weak and
strong nuclear interactions.

» Remarkably these too have the property of gauge symmetry!
This arises in a form originally proposed by:

4 g
C.N. Yang (1954) Robert L. Mills (1954)
» Thus, the gauge principle governs all the basic interactions

observed in nature. This is experimentally verified beyond a
shadow of doubt.
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symmetry in non-relativistic mechanics

The electromagnetic field is spgcified by a scalar potential
¢(Z,t) and a vector potential A(Z,1).
In terms of these, the electric and magnetic fields are given
by: .

E=-Vé¢—-A,  B=VxA
Notice that these are invariant under the transformations:

A A-VN ¢d—d+ A\

where the parameter A\(Z,t) is an arbitrary function of space
and time.

This is the simplified form of gauge transformations in a

situation where only electromagnetism (and no matter) is
present.
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» Now suppose a particle of mass m and electric charge ¢
propagates in an electromagnetic field. Experimentally we
know it obeys the Lorentz force law:

mi=eZ x B + ¢E

» In quantum mechanics the above equation should take the
form of Heisenberg's equation of motion:

dao i 00
P ﬁ[H,O} + 57

where O = mZ and H is some Hamiltonian operator.
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» A simple calculation tells us that the Hamiltonian must be:

1 L 12
H= o [ﬁf eA(f)} + (@)
» Therefore the Schrodinger equation for a charged particle in

an electromagnetic field is:

2m

1 7. N . . L oY(Z,
{p — PA(T):| + ep(Z) p Y(Z,t) = mT
where p'= —ihV.
» The observation of Fock and London amounts to saying that
this equation is invariant under:
Y= e NIy A5 A-VA, ¢+ A

for an arbitrary function . This now is the full gauge
transformation and we see that it includes a phase
multiplication on the wave-function.
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» Geometrically, a phase multiplying a (complex) wave function
just rotates it in the complex plane:

» A gauge transformation performs this rotation independently
at each point of space and time. Therefore it is also called a
local symmetry transformation.

» One should keep in mind that the rotation is not in real space
but in “internal space” in which the wave function is valued.
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Notice that (%, t) can always be multiplied by a constant
phase without changing anything.

So gauge invariance is interesting only when the phase is
non-constant.

In this case, the derivatives acting on v would bring down

—

extra factors. The transformation of (A, ¢) just cancels these
factors.

—

Without the electromagnetic field (A, ¢) we could not possibly
have gauge invariance! Conversely, imposing gauge invariance
on matter fields requires the electromagnetic field to exist.
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» All configurations related by gauge transformations are
supposed to describe the same physical situation:

(v, 4,0) = (¥, A',¢))
» Therefore gauge symmetry is not really a symmetry but a

redundancy.

> In non-relativistic physics gauge symmetry is just an elegant
property, but as we will soon see, in relativistic physics it is
crucial for consistency and has predictive power.
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- e e me - - - __

Gauge transformation being performed on a coach of
the trans-Siberian railway
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In relativistic physics the wave function is replaced by a
quantum field 1 that creates and destroys matter particles.

—

The electromagnetic potentials (A, ¢) also combine into a
quantum field A, that creates and destroys photons.

The photons created by A,, would have four polarisations, one
for each ;1 =0, 1,2,3. This flatly contradicts experiment! It
also contradicts unitarity because the state:

1) ~ A,0)
must, by Lorentz invariance, satisfy:

(|v) ~ nu  (Minkowski metric)

and therefore some components have a negative norm.
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Gauge symmetry saves us because it says that:

O\
AH, and APL — @
are the same physical configuration.

Indeed the electric and magnetic fields, encoded in:
F, =0,A, —0,A,

are manifestly invariant under the above transformation.

One can show that gauge invariance removes two polarisations
of the photon, including the one which would have had a
negative norm.

As a result we are in agreement with experiment, as well as
with positivity of probabilities.

It is curious that gauge symmetry requires the photon to exist
in the first place, thereby creating a potential problem with
unitarity, and then solves that same problem!
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» In mathematics, the gauge principle is related to connections
on vector bundles.
133

b Zero section

a Hﬂ' B

_ b
b

» The statement of gauge invariance becomes a statement
about cohomology. So it would not be wrong to say the
photon has two polarisations rather than four because it is a
cohomology class!
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Local Lorentz symmetry

> In special relativity, the rotation algebra is enhanced to a
larger algebra containing both rotations and Lorentz boosts.

» Special relativity is equivalent to saying that Lorentz
transformations are a symmetry of nature.

> Now consider a transformation for which the amount of
rotation or boost is different at different points of space-time.

» This generalisation of Lorentz symmetry is called “local
Lorentz symmetry"”.
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» It is like a gauge transformation but instead of rotating wave
functions or fields, it rotates (or boosts) space-time itself:

» Although the formulae are more complicated, local Lorentz
symmetry (like gauge symmetry) requires there to be a new
field in nature: the gravitational field g,,, .

> Indeed, when we implement local Lorentz symmetry we get
Einstein's general theory of relativity, which is experimentally
verified to high precision.

» Therefore here too, a type of gauge symmetry correctly
predicts a field and its interactions.
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Yang-Mills gauge symmetry

» By analogy with rotations in space, one can consider a group
of rotations in the space of fields.

» For example, one can take the fields of an electron and an
electron-type neutrino and consider them as a 2-component

V(7 t) = (Z’)

» This vector can be rotated via a 2 X 2 unitary matrix:

vector:

\IJl' — UZ]\IJJ

» If U depends on (Z,t) then this is a local gauge
transformation. It requires a compensating field A, (7, )
which is a 2 x 2 Hermitian matrix.
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» A new feature with respect to electrodynamics is that two
transformations by matrices U and U® do not necessarily
commute:

vhuy® £y
and the matrices form a group, in this case SU(2).

» For SU(2) and more generally for any Lie group, such
matrices can be parametrised in terms of a linear space called
a Lie algebra:
U - eeaT“

where T'® form a representation of the Lie algebra.

» They obey the relation:

[Ta7 Tb] _ fabc T<

where [ are the structure constants of the algebra.
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The key observation of Yang and Mills was that the gauge
transformation must be non-linear and the associated field
strength is given by:

F,LLl/ - 8,uA1/ - (?VA;L - g[Aua Al/}
which transforms as:

F, —-U'F,U

Gauge-invariant interactions can be made out of products of
traces. The simplest one is:

tr F'F,,
which contains the terms (inside the trace):

(04A, — 0,A,)% — 490, A, [A*, A”] + ¢*[A,, A ][AF, A
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» This time gauge invariance does three distinct things:

(i) predicts the existence of a matrix-valued particle created
by the Hermitian field A, amounting to three spin-1
particles: roughly, W+ W~ Z,

(ii) Solves the potential unitarity problem associated to these
particles,

(iii) Predicts a relation between the different possible
self-interactions allowed by Lorentz invariance:

(04A, — 0,A,)* + a0, A A", AY] + B[A,, A ][AF, A

namely,
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Nominally, Yang-Mills gauge fields (just like photons and
gravitons) are massless.

However the weak interactions are short-range and therefore
the mediating particles must be massive.

This problem was resolved via the Higgs mechanism, a
surprising mechanism in which gauge invariance, though
present, appears to be “spontaneously broken”.

Something different (“confinement”) takes place for strong
interactions.

We see that physical implementation of the gauge principle
can take a long time and may require novel mechanisms.
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Supergravity: a new gauge principle

v

A brand new gauge principle was proposed in the mid 1970's.

The idea that all internal symmetries are related to Lie
algebras was generalised to include supersymmetry algebras.

Instead of transforming fields v of spin—% fermions into
themselves, it transforms them into fields ¢ of spinless bosons.

V=9, o=

Alternatively it transforms spin-% electrons into spin-1 gauge
fields:
V= Ay Ay =,

In each case, supersymmetry changes the spin by % (in units
of h).
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» Supersymmetry is like a rotation in a space spanned by bosons
and fermions.

» Moreover, if we combine two supersymmetry transformations,
we get an ordinary translation in space-time.

{5,y ~ T

» This is the first time in physics that a basic symmetry like
translation has been written as a composite of another
symmetry!
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Now let's transform the boson into a fermion by an amount
that is different at each point of spacetime. This will be a
gauge transformation.

Then a beautiful thing happens. Since two supersymmetries
combine into a translation, local supersymmetry implies local
translation symmetry.

This in turn is the same as local Lorentz invariance which, as
we have seen, implies the existence of gravity.

Therefore local supersymmetry gives rise to a supersymmetric
extension of gravity called supergravity.
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> As we saw, the “gauge particle” associated to gravity is the
spin-2 graviton denoted g,,,..

> In supergravity this is paired with a new particle, the spin—%
gravitino denoted X q:

Xpa = Guvs  Guv = Xpa

» Today the gravitino is being sought (along with other
particles) at the Large Hadron Collider.
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» Supersymmetry must at best be an approximate or broken
symmetry, otherwise gravitinos would be massless (like
gravitons) and contradict experiment.

» If gravitinos are found to exist, it will confirm that at the most

fundamental level, Nature chooses to be governed by gauge
theories!
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» Mathematically, the fact that two supersymmetries give a
translation is related to the representation theory of the
Lorentz algebra:

spinor X spinor D  vector

» The related geometric structure is a supermanifold: like a
manifold but with some anticommuting directions.

» This is appealing because fermions occur rather abundantly in
nature, and these arise automatically once we have
supermanifolds.
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» For many years now, particle theorists have speculated that at
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At distances that are large compared to the typical string size,
string theory reduces to particle theory.

But what sort of particle theory? This is entirely dictated by
the background in which the string propagates.

The simplest background is a flat Minkowski space-time.

Here we understand how to satisfy conformal invariance. All
physical states of the string must be annihilated by an infinite
set of “Virasoro operators”:

Ly|phys) =0
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On quantising an open string, one finds a massless state with
a vector index:

ks k)
where k,, is the 4-momentum of the state.
Now consider a general linear combination of these states:

Z Cu(k) 1, k)

Cu(k) is just the Fourler transform of a vector field A, (x).
Imposing the conformal invariance requirement:

Ly|p, k) =0
we find that:
kuk“ G(k) =0, k* C,lt(k) =0

The first condition says the field is massless. Taken together,
the two conditions give us the Maxwell equations:

o (kuCy — kuCu) =0 <5 0MF,, =0
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» We know that Maxwell's equations have gauge symmetry.
How do we see this in string theory?

» Consider the state:
ku ‘:ua k>
It is easy to show that this is orthogonal to all the physical
states of the theory.

» This means it is equivalent to zero. Thus for arbitrary A(k),
we have the equivalence of polarisation vectors:

C/J.(k) ~ C/L(k) - iku A(k)

This is the momentum space version of the gauge
equivalence:
Ay~ A, —0,A

» Thus open string theory has gauge invariance! We did not
require it, rather it emerged upon quantising the theory.
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» If we repeat the same procedure on the closed string, we find
it has local Lorentz invariance at the linearised level.

» This leads one to suspect that at low energies, closed strings
describe gravity, including its gauge symmetries. This is true
and has by now been confirmed in many different ways.

» Thus in string theory, both the original gauge principles
(electromagnetism and gravity) emerge automatically (one
from open strings and the other from closed strings).
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If we put together many species of open strings ( “parallel
D-branes”) then we get non-Abelian or Yang-Mills gauge
symmetry.

o = 3
1
./\/\)\/\/\M//\/'\/\.

The above diagram shows three D-branes producing the gauge
symmetry of U(3).

Mathematicians associate Lie algebras to a root diagram. The
above is a physical realisation of this root diagram!



» String theory seems to contain many more gauge symmetries
than any ordinary field theory.



» String theory seems to contain many more gauge symmetries
than any ordinary field theory.

» Closed strings inevitably produce massless “tensor fields”. An
example is the 2nd rank tensor B,,,, whose interactions are
invariant under:

A
B;w — B;w - <8AV - a N)

oxt  Oxv

analogous to the usual gauge transformation.



» String theory seems to contain many more gauge symmetries
than any ordinary field theory.

» Closed strings inevitably produce massless “tensor fields”. An
example is the 2nd rank tensor B,,,, whose interactions are
invariant under:

A
B;w — B;w - <8AV - a N)

ort  OxV
analogous to the usual gauge transformation.

» The superstring expectedly has supergravity as its low energy
limit and possesses the corresponding local supersymmetry
invariance.



String theory seems to contain many more gauge symmetries
than any ordinary field theory.

Closed strings inevitably produce massless “tensor fields”. An
example is the 2nd rank tensor B,,,, whose interactions are
invariant under:

A
B;w — B;w - <8AV - a N)

ort  OxV
analogous to the usual gauge transformation.

The superstring expectedly has supergravity as its low energy
limit and possesses the corresponding local supersymmetry
invariance.

Also in some backgrounds, string theory exhibits an
infinite-dimensional W, symmetry.
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It originated, like many other good things, with Nambu:

v

His idea was to generalise the 2d phase space, which comes
with variables (p, ¢), to a 3d space with variables, say, (p,q, 7).
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Then the Poisson bracket can be naturally generalised:

OF G OH
: H==—""2=""1
[G,H] — [F,G,H] % 30 Or
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The idea was revived recently in connection with an
interesting open problem: to find a maximally supersymmetric,
conformal-invariant field theory in (2+1) dimensions.

This field theory is supposed to describe membrane excitations
of strongly coupled string theory.

The simplest such theory turns out to be uniquely determined
by supersymmetry. It has eight real scalar particles and eight
2-component fermions.

Now in (2+1) dimensions it is known that scalar fields have a
scale dimension % and therefore the interaction ¢ is
dimensionless — a necessary (though not sufficient)
requirement for conformal invariance.
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» The novel mathematical structure employed in these works is
the concept of a 3-algebra:

[11(17 Tb, TC] — fab(?d Td
generalising the notion of Lie algebra:
a b1 _ rab c
[T 7T } - f (:T
» If we have a number of scalar fields ¢/ ¢ and we write:
¢I _ ¢IaTa
then it's natural to postulate a 6-th order coupling:

tr[@!, @7, @K1 ~ F 1T by 07 O by 8L OF
by analogy with the 4th-order coupling:

U.[Alu AV}Q ~ fabcfde cApaAvp Aud A
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> The 3-algebra gauge symmetry is a gauge symmetry requires a
gauge field non-dynamical (Chern-Simons) rather than
dynamical Yang-Mills type.

» This theory has some remarkable properties including the
possibility of the non-dynamical gauge field transmuting into a
dynamical one. These will be discussed in my subsequent
lectures here.

> 3-algebras are the most recent form of gauge symmetry to be
introduced in physics. They could be relevant not only in the
particle physics/string theory context but also for
condensed-matter systems in the context of quantum
criticality.
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Conclusions

» We have seen that the gauge principle is fundamental in
nature.

» This principle endows relativistic quantum field theory with
new particles, consistency and predictive power.

> New gauge symmetries like supergravity and 3-algebra
symmetries have been proposed and may well be tested.

» String theory naturally embodies the gauge principle and has
given us clues about how it could be generalised.
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