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Motivation

I We understand the field theory on multiple D-branes rather
well, but the one on multiple M-branes not so well.

I The latter should hold the key to M-theory:
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I While there is an obstacle (due to (anti) self-dual 2-forms) to
writing the M5-brane field theory, there is no obstacle for
M2-branes as far as we know.

I And yet, despite ∼ 200 recent papers – and two Strings 2008
talks – on the subject, we don’t exactly know what the
multiple membrane theory is.

I Even the French aristocracy doesn’t seem to know...
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I Of course, there is one description that is clearly right and has
manifest N = 8 supersymmetry (but not manifest conformal
symmetry):

lim
gYM→∞

1
g2

YM

LSYM

I The question is whether this conformal IR fixed point has an
explicit Lagrangian description wherein all the symmetries are
manifest.

I This includes a global SO(8)R symmetry describing rotations
of the space transverse to the membranes – enhanced from
the SO(7) of SYM.

I Let us look at the Lagrangians that have been proposed to
describe this limit.
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I Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by
integer k. Algebra is SU(2)× SU(2).

⇒ Argued to describe a pair of M2 branes at Zk singularity.
But no generalisation to > 2 branes.

I Lorentzian 3-algebra [Gomis-Milanesi-Russo,

Benvenuti-Rodriguez-Gomez-Tonni-Verlinde, Bandres-Lipstein-Schwarz,

Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]: Based on arbitrary
Lie algebras, have N = 8 superconformal invariance.

⇒ Certainly correspond to D2-branes, and perhaps to
M2-branes. Status of latter unclear at the moment.

I ABJM theories [Aharony-Bergman-Jafferis-Maldacena]: Labelled by
algebra G×G′ and integer k, with N = 6 superconformal
invariance. Is actually a “relaxed” 3-algebra.

⇒ Describe multiple M2-branes at orbifold singularities. But
the k = 1 theory is missing two manifest supersymmetries and
decoupling of CM mode not visible.
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I These theories all have 8 scalars and 8 fermions.

I And they have non-dynamical (Chern-Simons-like) gauge
fields.

I Thus the basic classification is:

(i) Euclidean signature 3-algebras, which are G×G
Chern-Simons theories:

k tr
(
A ∧ dA+ 2

3A ∧A ∧A− Ã ∧ dÃ−
2
3Ã ∧ Ã ∧ Ã

)
BLG : G = SU(2)

ABJM : G = SU(N) or U(N), any N (+ other choices)

both : scalars, fermions are bi-fundamental, e.g. XI
aȧ

(ii) Lorentzian signature 3-algebras, which are B ∧F theories
based on any Lie algebra.

scalars, fermions are singlet + adjoint, e.g. XI
+,X

I
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3Ã ∧ Ã ∧ Ã
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I Both classes make use of the triple product XIJK :

Euclidean : XIJK ∼ XIXJ †XK , XI bi-fundamental

Lorentzian : XIJK ∼ XI
+[XJ ,XK ] + cyclic

XI
+ = singlet,XJ = adjoint

I The potential is:
V (X) ∼ (XIJK)2

therefore sextic.
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I One might have expected a simple and unique description for
the theory on N M2-branes in flat spacetime.

I It is basically an analogue of 4d N = 4 super-Yang-Mills!

I The only “excuse” we have for not doing better is that the
theory we seek will be strongly coupled. So it’s not even clear
what the classical action means.

I However it’s also maximally superconformal, which should
give us a lot of power in dealing with it.

I In this talk I’ll deal with some things we have understood
about the desired theory.
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The Higgs mechanism

I For the G×G Chern-Simons class of theories, the following
holds true [SM-Papageorgakis].

I If we give a vev v to one component of the bi-fundamental
fields, then at energies below this vev, the Lagrangian
becomes:

L
(G×G)
CS

∣∣∣
vev v

=
1
v2
L

(G)
SYM +O

(
1
v3

)
and the G gauge field has become dynamical!

I This is an unusual result. In SYM with gauge group G, when
we give a vev to one component of an adjoint scalar, at low
energy the Lagrangian becomes:

1
g2

YM

L
(G)
SYM

∣∣∣
vev v

=
1
g2

YM

L
(G′⊂G)
SYM

where G′ is the subgroup that commutes with the vev.
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I Let’s give a quick derivation of this novel Higgs mechanism,
first for k = 1:

LCS = tr
(
A ∧ dA+ 2

3A ∧A ∧A− Ã ∧ dÃ−
2
3Ã ∧ Ã ∧ Ã

)
= tr

(
A− ∧ F+ + 1

6A− ∧A− ∧A−
)

where A± = A± Ã, F+ = dA+ + 1
2A+ ∧A+.

I Also the covariant derivative on a scalar field is:

DµX = ∂µX −AµX +XÃµ

I If 〈X〉 = v 1 then:

−(DµX)2 ∼ −v2(A−)µ(A−)µ + · · ·
I Thus, A− is massive – but not dynamical. Integrating it out

gives us:

− 1
4v2

(F+)µν(F+)µν +O
(

1
v3

)
so A+ becomes dynamical.
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2
3Ã ∧ Ã ∧ Ã
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I One can check that the bi-fundamental XI reduces to an
adjoint under A+. The rest of N = 8 SYM assembles itself
correctly.

I But how should we physically interpret this?

LG×GCS

∣∣∣
vev v

=
1
v2
LGSYM +O

(
1
v3

)
I It seems like the M2 is becoming a D2 with YM coupling v.

I Have we somehow compactified the theory? No.

I For any finite v, there are corrections to the SYM. These
decouple only as v →∞. So at best we can say that:

LG×GCS

∣∣∣
vev v→∞

= lim
v→∞

1
v2
LGSYM

I The RHS is by definition the theory on M2-branes! So this is
more like a “proof” that the original Chern-Simons theory
really is the theory on M2-branes.
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I However once we introduce the Chern-Simons level k then the
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and this is definitely the Lagrangian for D2 branes at finite
coupling.

I So this time we have compactified the theory! How can that
be?
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I We proposed this should be understood as deconstruction for
an orbifold C4/Zk:
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k

I In our paper we observed that the orbifold C4/Zk has N = 6
supersymmetry and SU(4) R-symmetry. We thought this
might be enhanced to N = 8 for some unknown reason.

I Instead, as ABJM found, it’s the BLG field theory that needs
to be modified to have N = 6.

I One lesson we learn is that for large k we are in the regime of
weakly coupled string theory.

I A lot can be done in that regime, but for understanding the
basics of M2-branes, that is not where we want to be.
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Lorentzian 3-algebras

I The Lorentzian 3-algebra theories have the following
Lagrangian:

L
(G)
L3A = tr

(
1
2ε
µνλBµF νλ − 1

2D̂µX
ID̂µXI

− 1
12

(
XI

+[XJ ,XK ] +XJ
+[XK ,XI ] +XK

+ [XI ,XJ ]
)2 )

+ (Cµ I − ∂µXI
−)∂µXI

+ + Lgauge fixing + Lfermions

where
D̂µX

I ≡ ∂µXI − [Aµ,X
I ]−BµX

I
+

I These theories have no parameter k.

I They have SO(8) global symmetry acting on the indices
I, J,K ∈ 1, 2, · · · , 8.

I The equation of motion of the auxiliary gauge field CIµ implies
that X+ = constant.
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I Our Higgs mechanism works in these theories, but it works
too well! [Ho-Imamura-Matsuo]

I On giving a vev to the singlet field XI
+, say:

〈X8
+〉 = v

one finds:

L
(G)
L3A

∣∣∣
vev v

=
1
v2
L

(G)
SYM (+ no corrections)

I This leads one to suspect that the theory is a re-formulation
of SYM.

I In fact it can be derived [Ezhuthachan-SM-Papageorgakis] starting
from N = 8 SYM.
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I The procedure involves a non-Abelian (dNS) duality
[deWit-Nicolai-Samtleben] on the (2+1)d gauge field.

I Start with N = 8 SYM in (2+1)d. Introducing two new
adjoint fields Bµ,φ, the dNS duality transformation is:

− 1
4g2YM

F µνF µν → 1
2ε
µνλBµF νλ − 1

2 (Dµφ− gYMBµ)
2

Note that Dµ is the covariant derivative with respect to the
original gauge field A.

I In addition to the gauge symmetry G, the new action has a
noncompact abelian gauge symmetry:

δφ = gYMM , δBµ = DµM

where M(x) is an arbitrary matrix in the adjoint of G.

I To prove the duality, use this symmetry to set φ = 0. Then
integrating out Bµ gives the usual YM kinetic term for F µν .
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I The dNS-duality transformed N = 8 SYM is:

L = tr
(

1
2ε
µνλBµF νλ − 1

2

(
Dµφ− gYMBµ

)2
− 1

2DµX
iDµXi − g2YM

4 [Xi,Xj ]2 + fermions
)

I We can now see the SO(8) invariance appearing.

I Rename φ→X8. Then the scalar kinetic terms are:

−1
2D̂µX

ID̂µXI = −1
2

(
∂µX

I − [Aµ,X
I ]− gIYMBµ

)2
where gIYM = (0, . . . , 0, gYM).

I Next, we can allow gIYM to be an arbitrary 8-vector.
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I The action is now SO(8)-invariant if we rotate both the fields
XI and the coupling-constant vector gIYM:

L = tr
(

1
2ε
µνλBµF νλ − 1

2D̂µX
ID̂µXI

− 1
12

(
gIYM[XJ ,XK ] + gJYM[XK ,XI ] + gKYM[XI ,XJ ]

)2 )

I This is not yet a symmetry, since it rotates the coupling
constant.

I The final step is to introduce an 8-vector of new
(gauge-singlet) scalars XI

+ and replace:

gIYM → XI
+(x)

I This is legitimate if and only if XI
+(x) has an equation of

motion that renders it constant. Then on-shell we can recover
the original theory by writing 〈XI

+〉 = gIYM.
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I Constancy of XI
+ is imposed by introducing a new set of

abelian gauge fields and scalars: CIµ, X
I
− and adding the

following term:

LC = (CµI − ∂X
I
−)∂µXI

+

I This has a shift symmetry

δXI
− = λI , δCIµ = ∂µλ

I

which will remove the negative-norm states associated to CIµ.

I We have thus ended up with the Lorentzian 3-algebra action
[Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]:
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(
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)2 )

+ (Cµ I − ∂µXI
−)∂µXI

+ + Lgauge−fixing + Lfermions
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I The final action has some remarkable properties.

I It has manifest SO(8) invariance as well as N = 8
superconformal invariance.

I However, both are spontaneously broken by giving a vev
〈XI

+〉 = gIYM and the theory reduces to N = 8 SYM with
coupling |gYM|.

I It will certainly describe M2-branes if one can find a way to
take 〈XI

+〉 =∞. That has not yet been done.
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Higher-order corrections for Lorentzian 3-algebras

I One might ask if the non-Abelian duality that we have just
performed works when higher order (in α′) corrections are
included.

I For the Abelian case [Duff, Townsend, Schmidhuber] we know that
the analogous duality works for the entire DBI action and that
fermions and supersymmetry can also be incorporated
[Aganagic-Park-Popescu-Schwarz].

I Recently we have shown [Alishahiha-SM] that to lowest nontrivial
order (F 4-type corrections) one can indeed dualise the
non-Abelian SYM into an SO(8)-invariant form.

I Here of course one cannot do all orders in α′ because a
non-Abelian analogue of DBI is still not known.

I However our approach may have a bearing on that unsolved
problem.
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non-Abelian SYM into an SO(8)-invariant form.

I Here of course one cannot do all orders in α′ because a
non-Abelian analogue of DBI is still not known.

I However our approach may have a bearing on that unsolved
problem.
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I Let us see how this works. In (2+1)d, the lowest correction to
SYM for D2-branes is the sum of the following contributions
(here Xij = [Xi,Xj ]):

L
(4)
1 = 1

12g4YM

[
F µνF ρσF

µρF νσ + 1
2F µνF

νρF ρσF
σµ

− 1
4F µνF

µνF ρσF
ρσ − 1

8F µνF ρσF
µνF ρσ

]
L

(4)
2 = 1

12g2YM

[
F µν D

µXi F ρν DρX
i + F µν DρX

i F µρDνXi

− 2F µρ F
ρν DµXiDνX

i − 2F µρ F
ρν DνX

iDµXi

− F µν F
µν DρXiDρX

i − 1
2F µν DρXi F µν DρXi

]
− 1

12

(
1
2F µν F

µνXijXij + 1
4F µνX

ij F µνXij
)

L
(4)
3 = −1

6

(
DµXiDνXjF µν +DνXj F µν D

µXi

+ F µν D
µXiDνXj

)
Xij



L
(4)
4 = 1

12

[
DµX

iDνX
j DνXiDµXj +DµX

iDνX
j DµXj DνXi

+ DµX
iDνX

iDνXj DµXj −DµX
iDµXiDνX

j DνXj

− 1
2DµX

iDνX
j DµXiDνXj

]
L

(4)
5 = g2YM

12

[
Xkj DµX

kXij DµXi +Xij DµX
kXikDµXj

− 2XkjXikDµX
j DµXi − 2XkiXjkDµX

j DµXi

− XijXij DµX
kDµXk − 1

2X
ij DµX

kXij DµXk

]
L

(4)
6 = g4YM

12

[
XijXklXikXjl + 1

2X
ijXjkXklX li

− 1
4X

ijXijXklXkl − 1
8X

ijXklXijXkl

]



I We have been able to show that this is dual, under the dNS
transformation, to:

L = tr
[

1
2ε
µνρBµF νρ − 1

2D̂µX
ID̂µXI

+ 1
12

(
D̂µX

I D̂νX
J D̂νXI D̂µXJ + D̂µX

I D̂νX
J D̂µXJ D̂νXI

+ D̂µX
I D̂νX

I D̂νXJ D̂µXJ − D̂µX
I D̂µXI D̂νX

J D̂νXJ

− 1
2D̂µX

I D̂νX
J D̂µXI D̂νXJ

)
+ 1

12

(
1
2X

LKJD̂µX
KXLIJD̂µXI + 1

2X
LIJD̂µX

KXLIKD̂µXJ

− XLKJXLIKD̂µX
JD̂µXI −XLKIXLJKD̂µX

JD̂µXI

− 1
3X

LIJXLIJD̂µX
KD̂µXK − 1

6X
LIJ D̂µX

KXLIJD̂µXK
)

− 1
6ερµνD̂

ρXI D̂µXJ D̂νXKXIJK − V (X)
]



I In the previous expression,

D̂µX
I = ∂µX

I − [Aµ,X
I ]−BµX

I
+

XIJK = XI
+[XJ ,XK ] +XJ

+[XK ,XI ] +XK
+ [XI ,XJ ]

I Here V (X) is the potential:

V (X) = 1
12X

IJKXIJK + 1
108

[
XNIJXNKLXMIKXMJL

+ 1
2X

NIJXMJKXNKLXMLI

− 1
4X

NIJXNIJXMKLXMKL

− 1
8X

NIJXMKLXNIJXMKL
]

I We see that the dual Lagrangian is SO(8) invariant.

I It’s worth noting that this depends crucially on the relative
coefficients of various terms in the original Lagrangian.
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I We see from this that the 3-algebra structure remains intact
when higher-derivative corrections are taken into account.

I We conjecture that SO(8) enhancement holds to all orders in
α′.

I Unfortunately the all-orders corrections are not known for
SYM, so we don’t have a starting point from which to check
this.



I We see from this that the 3-algebra structure remains intact
when higher-derivative corrections are taken into account.

I We conjecture that SO(8) enhancement holds to all orders in
α′.

I Unfortunately the all-orders corrections are not known for
SYM, so we don’t have a starting point from which to check
this.



I We see from this that the 3-algebra structure remains intact
when higher-derivative corrections are taken into account.

I We conjecture that SO(8) enhancement holds to all orders in
α′.

I Unfortunately the all-orders corrections are not known for
SYM, so we don’t have a starting point from which to check
this.



Outline

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions



Summary

I Much progress has been made towards finding the multiple
membrane field theory representing the IR fixed point of
N = 8 SYM.

I But we don’t seem to be there yet.

I The existence of a large-order orbifold (deconstruction) limit
provides a way (the only one so far) to relate the membrane
theory to D2-branes. One would like to understand
compactification of transverse or longitudinal directions, as we
do for D-branes.

I An interesting mechanism has been identified to dualise the
D2-brane action into a superconformal, SO(8) invariant one.
The result is a Lorentzian 3-algebra and this structure is
preserved by α′ corrections.
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I A detailed understanding of multiple membranes should open
a new window to M-theory and 11 dimensions.

I

...if you were as tiny as a graviton
You could enter these dimensions and go wandering on

And they’d find you...
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