Multiple Membrane Dynamics

Sunil Mukhi Tata Institute of Fundamental Research, Mumbai

Strings 2008, Geneva, August 19, 2008

Based on:

"M2 to D2", SM and Costis Papageorgakis, arXiv:0803.3218 [hep-th], JHEP 0805:085 (2008).

" M2-branes on M-folds",

Jacques Distler, SM, Costis Papageorgakis and Mark van Raamsdonk, arXiv:0804.1256 [hep-th], JHEP 0805:038 (2008).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

" D2 to D2",

Bobby Ezhuthachan, SM and Costis Papageorgakis, arXiv:0806.1639 [hep-th], JHEP 0807:041, (2008).

Mohsen Alishahiha and SM, to appear

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- ► The latter should hold the key to M-theory:

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- ► The latter should hold the key to M-theory:

While there is an obstacle (due to (anti) self-dual 2-forms) to writing the M5-brane field theory, there is no obstacle for M2-branes as far as we know.

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- ► The latter should hold the key to M-theory:

- While there is an obstacle (due to (anti) self-dual 2-forms) to writing the M5-brane field theory, there is no obstacle for M2-branes as far as we know.
- And yet, despite ~ 200 recent papers and two Strings 2008 talks – on the subject, we don't exactly know what the multiple membrane theory is.

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- The latter should hold the key to M-theory:

- While there is an obstacle (due to (anti) self-dual 2-forms) to writing the M5-brane field theory, there is no obstacle for M2-branes as far as we know.
- And yet, despite ~ 200 recent papers and two Strings 2008 talks – on the subject, we don't exactly know what the multiple membrane theory is.
- Even the French aristocracy doesn't seem to know...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\lim_{g_{YM}\to\infty}\frac{1}{g_{YM}^2}\mathcal{L}_{SYM}$$

$$\lim_{g_{YM}\to\infty}\frac{1}{g_{YM}^2}\mathcal{L}_{SYM}$$

The question is whether this conformal IR fixed point has an explicit Lagrangian description wherein all the symmetries are manifest.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\lim_{g_{YM}\to\infty}\frac{1}{g_{YM}^2}\mathcal{L}_{SYM}$$

- The question is whether this conformal IR fixed point has an explicit Lagrangian description wherein all the symmetries are manifest.
- This includes a global SO(8)_R symmetry describing rotations of the space transverse to the membranes – enhanced from the SO(7) of SYM.

$$\lim_{g_{YM}\to\infty}\frac{1}{g_{YM}^2}\mathcal{L}_{SYM}$$

- The question is whether this conformal IR fixed point has an explicit Lagrangian description wherein all the symmetries are manifest.
- This includes a global SO(8)_R symmetry describing rotations of the space transverse to the membranes – enhanced from the SO(7) of SYM.
- Let us look at the Lagrangians that have been proposed to describe this limit.

► Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by integer k. Algebra is SU(2) × SU(2).

 \Rightarrow Argued to describe a pair of M2 branes at Z_k singularity. But no generalisation to > 2 branes.

・ロト・日本・モート モー うへで

► Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by integer k. Algebra is SU(2) × SU(2).

 \Rightarrow Argued to describe a pair of M2 branes at Z_k singularity. But no generalisation to > 2 branes.

Lorentzian 3-algebra [Gomis-Milanesi-Russo,

Benvenuti-Rodriguez-Gomez-Tonni-Verlinde, Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]: Based on arbitrary Lie algebras, have $\mathcal{N}=8$ superconformal invariance.

 \Rightarrow Certainly correspond to $D2\text{-}\mathrm{branes},$ and perhaps to $M2\text{-}\mathrm{branes}.$ Status of latter unclear at the moment.

► Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by integer k. Algebra is SU(2) × SU(2).

 \Rightarrow Argued to describe a pair of M2 branes at Z_k singularity. But no generalisation to > 2 branes.

Lorentzian 3-algebra [Gomis-Milanesi-Russo,

Benvenuti-Rodriguez-Gomez-Tonni-Verlinde, Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]: Based on arbitrary Lie algebras, have $\mathcal{N}=8$ superconformal invariance.

 \Rightarrow Certainly correspond to $D2\text{-}\mathrm{branes},$ and perhaps to $M2\text{-}\mathrm{branes}.$ Status of latter unclear at the moment.

► ABJM theories [Aharony-Bergman-Jafferis-Maldacena]: Labelled by algebra G × G' and integer k, with N = 6 superconformal invariance. Is actually a "relaxed" 3-algebra.

 \Rightarrow Describe multiple M2-branes at orbifold singularities. But the k = 1 theory is missing two manifest supersymmetries and decoupling of CM mode not visible. ▶ These theories all have 8 scalars and 8 fermions.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- ► These theories all have 8 scalars and 8 fermions.
- And they have non-dynamical (Chern-Simons-like) gauge fields.

(ロ)、(型)、(E)、(E)、 E) の(の)

- ► These theories all have 8 scalars and 8 fermions.
- And they have non-dynamical (Chern-Simons-like) gauge fields.
- Thus the basic classification is:

(i) Euclidean signature 3-algebras, which are $G \times G$ Chern-Simons theories:

 $k \operatorname{tr} \left(\boldsymbol{A} \wedge d\boldsymbol{A} + rac{2}{3} \boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A} - \tilde{\boldsymbol{A}} \wedge d\tilde{\boldsymbol{A}} - rac{2}{3} \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}}
ight)$

 $\mathsf{BLG}: G = SU(2)$

ABJM : G = SU(N) or U(N), any N (+ other choices) both : scalars, fermions are bi-fundamental, e.g. $X_{a\dot{a}}^{I}$

(ii) Lorentzian signature 3-algebras, which are $B \wedge F$ theories based on any Lie algebra.

scalars, fermions are singlet + adjoint, e.g. X_+^I, \boldsymbol{X}^I

• Both classes make use of the triple product X^{IJK} :

Euclidean : $X^{IJK} \sim X^{I}X^{J\dagger}X^{K}$, X^{I} bi-fundamental Lorentzian : $X^{IJK} \sim X^{I}_{+}[\mathbf{X}^{J}, \mathbf{X}^{K}] + \text{cyclic}$ $X^{I}_{+} = \text{singlet}, \mathbf{X}^{J} = \text{adjoint}$

• Both classes make use of the triple product X^{IJK} :

Euclidean : $X^{IJK} \sim X^{I}X^{J\dagger}X^{K}$, X^{I} bi-fundamental Lorentzian : $X^{IJK} \sim X^{I}_{+}[\mathbf{X}^{J}, \mathbf{X}^{K}] + \text{cyclic}$ $X^{I}_{+} = \text{singlet}, \mathbf{X}^{J} = \text{adjoint}$

The potential is:

 $V(X) \sim (\boldsymbol{X}^{IJK})^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

therefore sextic.

One might have expected a simple and unique description for the theory on N M2-branes in flat spacetime.

(ロ)、(型)、(E)、(E)、 E) の(の)

One might have expected a simple and unique description for the theory on N M2-branes in flat spacetime.

▶ It is basically an analogue of 4d $\mathcal{N} = 4$ super-Yang-Mills!

- One might have expected a simple and unique description for the theory on N M2-branes in flat spacetime.
- ▶ It is basically an analogue of 4d $\mathcal{N} = 4$ super-Yang-Mills!
- The only "excuse" we have for not doing better is that the theory we seek will be strongly coupled. So it's not even clear what the classical action means.

- One might have expected a simple and unique description for the theory on N M2-branes in flat spacetime.
- ▶ It is basically an analogue of 4d $\mathcal{N} = 4$ super-Yang-Mills!
- The only "excuse" we have for not doing better is that the theory we seek will be strongly coupled. So it's not even clear what the classical action means.

However it's also maximally superconformal, which should give us a lot of power in dealing with it.

- One might have expected a simple and unique description for the theory on N M2-branes in flat spacetime.
- ▶ It is basically an analogue of 4d $\mathcal{N} = 4$ super-Yang-Mills!
- The only "excuse" we have for not doing better is that the theory we seek will be strongly coupled. So it's not even clear what the classical action means.
- However it's also maximally superconformal, which should give us a lot of power in dealing with it.
- In this talk I'll deal with some things we have understood about the desired theory.

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Higgs mechanism

► For the *G* × *G* Chern-Simons class of theories, the following holds true [SM-Papageorgakis].

The Higgs mechanism

- ► For the G × G Chern-Simons class of theories, the following holds true [SM-Papageorgakis].
- If we give a vev v to one component of the bi-fundamental fields, then at energies below this vev, the Lagrangian becomes:

$$L_{CS}^{(G \times G)}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^{(G)} + \mathcal{O}\left(\frac{1}{v^3}\right)$$

and the G gauge field has become dynamical!

The Higgs mechanism

- ► For the G × G Chern-Simons class of theories, the following holds true [SM-Papageorgakis].
- If we give a vev v to one component of the bi-fundamental fields, then at energies below this vev, the Lagrangian becomes:

$$L_{CS}^{(G \times G)}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^{(G)} + \mathcal{O}\left(\frac{1}{v^3}\right)$$

and the G gauge field has become dynamical!

This is an unusual result. In SYM with gauge group G, when we give a vev to one component of an adjoint scalar, at low energy the Lagrangian becomes:

$$\frac{1}{g_{\rm YM}^2} L_{SYM}^{(G)}\Big|_{vev\ v} = \frac{1}{g_{\rm YM}^2} L_{SYM}^{(G'\subset G)}$$

where G' is the subgroup that commutes with the vev.

• Let's give a quick derivation of this novel Higgs mechanism, first for k = 1:

$$L_{CS} = \operatorname{tr} \left(\boldsymbol{A} \wedge d\boldsymbol{A} + \frac{2}{3}\boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A} - \tilde{\boldsymbol{A}} \wedge d\tilde{\boldsymbol{A}} - \frac{2}{3}\tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \right)$$

= $\operatorname{tr} \left(\boldsymbol{A}_{-} \wedge \boldsymbol{F}_{+} + \frac{1}{6}\boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-} \right)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $A_{\pm} = A \pm \tilde{A}$, $F_{+} = dA_{+} + \frac{1}{2}A_{+} \wedge A_{+}$.

• Let's give a quick derivation of this novel Higgs mechanism, first for k = 1:

$$egin{aligned} &L_{CS} \;=\; \mathrm{tr}\left(oldsymbol{A}\wedge doldsymbol{A}+rac{2}{3}oldsymbol{A}\wedge oldsymbol{A}\wedge oldsymbol{A}-rac{2}{3}oldsymbol{ ilde{A}}\wedgeoldsymbol{ ilde{A}}-rac{2}{3}oldsymbol{ ilde{A}}\wedgeoldsymbol{ ilde{A}}\wedgeoldsymbol{ ilde{A}}
ight) \ &=\; \mathrm{tr}\left(oldsymbol{A}_{-}\wedgeoldsymbol{F}_{+}+rac{1}{6}oldsymbol{A}_{-}\wedgeoldsymbol{A}_{-}\wedgeoldsymbol{A}_{-}
ight) \end{aligned}$$

where $A_{\pm} = A \pm \tilde{A}$, $F_{+} = dA_{+} + \frac{1}{2}A_{+} \wedge A_{+}$.

Also the covariant derivative on a scalar field is:

$$D_{\mu}X = \partial_{\mu}X - A_{\mu}X + X\tilde{A}_{\mu}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let's give a quick derivation of this novel Higgs mechanism, first for k = 1:

$$egin{aligned} L_{CS} &= \ ext{tr} \left(oldsymbol{A} \wedge doldsymbol{A} + rac{2}{3}oldsymbol{A} \wedge oldsymbol{A} \wedge oldsymbol{A} - oldsymbol{ ilde{A}} \wedge oldsymbol{ ilde{A}} - rac{2}{3}oldsymbol{ ilde{A}} \wedge oldsymbol{ ilde{A}}
ight) \ &= \ ext{tr} \left(oldsymbol{A}_- \wedge oldsymbol{F}_+ + rac{1}{6}oldsymbol{A}_- \wedge oldsymbol{A}_- \wedge oldsymbol{A}_-
ight) \end{aligned}$$

where $A_{\pm} = A \pm \tilde{A}$, $F_{+} = dA_{+} + \frac{1}{2}A_{+} \wedge A_{+}$.

Also the covariant derivative on a scalar field is:

$$D_{\mu}X = \partial_{\mu}X - A_{\mu}X + X\tilde{A}_{\mu}$$

• If $\langle X \rangle = v \mathbf{1}$ then:

$$-(D_{\mu}X)^{2} \sim -v^{2}(\boldsymbol{A}_{-})_{\mu}(\boldsymbol{A}_{-})^{\mu} + \cdots$$

Let's give a quick derivation of this novel Higgs mechanism, first for k = 1:

$$egin{aligned} L_{CS} &= \ ext{tr} \left(oldsymbol{A} \wedge doldsymbol{A} + rac{2}{3}oldsymbol{A} \wedge oldsymbol{A} \wedge oldsymbol{A} - ilde{A} \wedge oldsymbol{A} - rac{2}{3}oldsymbol{ ilde{A}} \wedge oldsymbol{ ilde{A}}
ight) \ &= \ ext{tr} \left(oldsymbol{A}_- \wedge oldsymbol{F}_+ + rac{1}{6}oldsymbol{A}_- \wedge oldsymbol{A}_- \wedge oldsymbol{A}_-
ight) \end{aligned}$$

where $A_{\pm} = A \pm \tilde{A}$, $F_{+} = dA_{+} + \frac{1}{2}A_{+} \wedge A_{+}$.

Also the covariant derivative on a scalar field is:

$$D_{\mu}X = \partial_{\mu}X - A_{\mu}X + X\tilde{A}_{\mu}$$

• If $\langle X \rangle = v \mathbf{1}$ then:

$$-(D_{\mu}X)^{2} \sim -v^{2}(\boldsymbol{A}_{-})_{\mu}(\boldsymbol{A}_{-})^{\mu} + \cdots$$

Thus, A₋ is massive – but not dynamical. Integrating it out gives us:

$$-\frac{1}{4v^2}(\boldsymbol{F}_+)_{\mu\nu}(\boldsymbol{F}_+)^{\mu\nu} + \mathcal{O}\left(\frac{1}{v^3}\right)$$

so A_+ becomes dynamical.

► One can check that the bi-fundamental X^I reduces to an adjoint under A₊. The rest of N = 8 SYM assembles itself correctly.

- ► One can check that the bi-fundamental X^I reduces to an adjoint under A₊. The rest of N = 8 SYM assembles itself correctly.
- But how should we physically interpret this?

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{1}{v^3}\right)$$
- ► One can check that the bi-fundamental X^I reduces to an adjoint under A₊. The rest of N = 8 SYM assembles itself correctly.
- But how should we physically interpret this?

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{1}{v^3}\right)$$

• It seems like the M2 is becoming a D2 with YM coupling v.

- ► One can check that the bi-fundamental X^I reduces to an adjoint under A₊. The rest of N = 8 SYM assembles itself correctly.
- But how should we physically interpret this?

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{1}{v^3}\right)$$

- It seems like the M2 is becoming a D2 with YM coupling v.
- ► Have we somehow compactified the theory? No.

- ► One can check that the bi-fundamental X^I reduces to an adjoint under A₊. The rest of N = 8 SYM assembles itself correctly.
- But how should we physically interpret this?

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{1}{v^3}\right)$$

- It seems like the M2 is becoming a D2 with YM coupling v.
- Have we somehow compactified the theory? No.
- For any finite v, there are corrections to the SYM. These decouple only as v → ∞. So at best we can say that:

$$L_{CS}^{G \times G}\Big|_{vev \ v \to \infty} = \lim_{v \to \infty} \frac{1}{v^2} L_{SYM}^G$$

- ► One can check that the bi-fundamental X^I reduces to an adjoint under A₊. The rest of N = 8 SYM assembles itself correctly.
- But how should we physically interpret this?

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{1}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{1}{v^3}\right)$$

- It seems like the M2 is becoming a D2 with YM coupling v.
- ► Have we somehow compactified the theory? No.
- For any finite v, there are corrections to the SYM. These decouple only as v → ∞. So at best we can say that:

$$L_{CS}^{G \times G} \Big|_{vev \ v \to \infty} = \lim_{v \to \infty} \frac{1}{v^2} L_{SYM}^G$$

► The RHS is by definition the theory on M2-branes! So this is more like a "proof" that the original Chern-Simons theory really is the theory on M2-branes. However once we introduce the Chern-Simons level k then the analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{k}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{k}{v^3}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

However once we introduce the Chern-Simons level k then the analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{k}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{k}{v^3}\right)$$

▶ If we take $k \to \infty, v \to \infty$ with $v^2/k = g_{YM}$ fixed, then in this limit the RHS actually becomes:

$$\frac{1}{g_{\rm YM}^2} L_{SYM}^G$$

and this is definitely the Lagrangian for D2 branes at finite coupling.

However once we introduce the Chern-Simons level k then the analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

$$L_{CS}^{G \times G}\Big|_{vev \ v} = \frac{k}{v^2} L_{SYM}^G + \mathcal{O}\left(\frac{k}{v^3}\right)$$

▶ If we take $k \to \infty, v \to \infty$ with $v^2/k = g_{YM}$ fixed, then in this limit the RHS actually becomes:

$$\frac{1}{g_{YM}^2} L_{SYM}^G$$

and this is definitely the Lagrangian for D2 branes at finite coupling.

So this time we have compactified the theory! How can that be?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In our paper we observed that the orbifold C⁴/Z_k has N = 6 supersymmetry and SU(4) R-symmetry. We thought this might be enhanced to N = 8 for some unknown reason.

- In our paper we observed that the orbifold C⁴/Z_k has N = 6 supersymmetry and SU(4) R-symmetry. We thought this might be enhanced to N = 8 for some unknown reason.
- ► Instead, as ABJM found, it's the BLG field theory that needs to be modified to have N = 6.

- In our paper we observed that the orbifold C⁴/Z_k has N = 6 supersymmetry and SU(4) R-symmetry. We thought this might be enhanced to N = 8 for some unknown reason.
- ► Instead, as ABJM found, it's the BLG field theory that needs to be modified to have N = 6.
- One lesson we learn is that for large k we are in the regime of weakly coupled string theory.

- In our paper we observed that the orbifold C⁴/Z_k has N = 6 supersymmetry and SU(4) R-symmetry. We thought this might be enhanced to N = 8 for some unknown reason.
- ► Instead, as ABJM found, it's the BLG field theory that needs to be modified to have N = 6.
- One lesson we learn is that for large k we are in the regime of weakly coupled string theory.
- A lot can be done in that regime, but for understanding the basics of M2-branes, that is not where we want to be.

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Lorentzian 3-algebra theories have the following Lagrangian:

$$L_{L3A}^{(G)} = \operatorname{tr}\left(\frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I} - \frac{1}{12}\left(X_{+}^{I}[\boldsymbol{X}^{J},\boldsymbol{X}^{K}] + X_{+}^{J}[\boldsymbol{X}^{K},\boldsymbol{X}^{I}] + X_{+}^{K}[\boldsymbol{X}^{I},\boldsymbol{X}^{J}]\right)^{2}\right) + (C^{\mu I} - \partial^{\mu}X_{-}^{I})\partial_{\mu}X_{+}^{I} + L_{\text{gauge fixing}} + L_{\text{fermions}}$$

where

$$\hat{D}_{\mu}\boldsymbol{X}^{I} \equiv \partial_{\mu}\boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu}\boldsymbol{X}_{+}^{I}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Lorentzian 3-algebra theories have the following Lagrangian:

$$L_{L3A}^{(G)} = \operatorname{tr}\left(\frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I} - \frac{1}{12}\left(X_{+}^{I}[\boldsymbol{X}^{J},\boldsymbol{X}^{K}] + X_{+}^{J}[\boldsymbol{X}^{K},\boldsymbol{X}^{I}] + X_{+}^{K}[\boldsymbol{X}^{I},\boldsymbol{X}^{J}]\right)^{2}\right) + (C^{\mu I} - \partial^{\mu}X_{-}^{I})\partial_{\mu}X_{+}^{I} + L_{\text{gauge fixing}} + L_{\text{fermions}}$$

where

$$\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} X^{I}_{+}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ These theories have no parameter k.

The Lorentzian 3-algebra theories have the following Lagrangian:

$$L_{L3A}^{(G)} = \operatorname{tr}\left(\frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I}\right)$$
$$-\frac{1}{12}\left(X_{+}^{I}[\boldsymbol{X}^{J},\boldsymbol{X}^{K}] + X_{+}^{J}[\boldsymbol{X}^{K},\boldsymbol{X}^{I}] + X_{+}^{K}[\boldsymbol{X}^{I},\boldsymbol{X}^{J}]\right)^{2}\right)$$
$$+ (C^{\mu I} - \partial^{\mu}X_{-}^{I})\partial_{\mu}X_{+}^{I} + L_{\text{gauge fixing}} + L_{\text{fermions}}$$

where

$$\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} X^{I}_{+}$$

- ▶ These theories have no parameter k.
- ▶ They have SO(8) global symmetry acting on the indices $I, J, K \in {1, 2, \cdots, 8}$.

The Lorentzian 3-algebra theories have the following Lagrangian:

$$L_{L3A}^{(G)} = \operatorname{tr}\left(\frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I}\right)$$
$$-\frac{1}{12}\left(X_{+}^{I}[\boldsymbol{X}^{J},\boldsymbol{X}^{K}] + X_{+}^{J}[\boldsymbol{X}^{K},\boldsymbol{X}^{I}] + X_{+}^{K}[\boldsymbol{X}^{I},\boldsymbol{X}^{J}]\right)^{2}\right)$$
$$+ (C^{\mu I} - \partial^{\mu}X_{-}^{I})\partial_{\mu}X_{+}^{I} + L_{\text{gauge fixing}} + L_{\text{fermions}}$$

where

$$\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} X^{I}_{+}$$

- ▶ These theories have no parameter k.
- ▶ They have SO(8) global symmetry acting on the indices $I, J, K \in \{1, 2, \cdots, 8\}$.
- ► The equation of motion of the auxiliary gauge field C¹_µ implies that X₊ = constant.

 Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]

<□ > < @ > < E > < E > E のQ @

- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- On giving a vev to the singlet field X_{+}^{I} , say:

$$\langle X_+^8 \rangle = v$$

one finds:

$$L_{L3A}^{(G)}\Big|_{vev\ v} = \frac{1}{v^2} L_{SYM}^{(G)}$$
 (+ no corrections)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- On giving a vev to the singlet field X_{+}^{I} , say:

$$\langle X_+^8 \rangle = v$$

one finds:

$$L_{L3A}^{(G)}\Big|_{vev\ v} = \frac{1}{v^2} L_{SYM}^{(G)} \quad (+ \text{ no corrections})$$

This leads one to suspect that the theory is a re-formulation of SYM.

- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- On giving a vev to the singlet field X_{+}^{I} , say:

$$\langle X_+^8 \rangle = v$$

one finds:

$$L_{L3A}^{(G)}\Big|_{vev\ v} = \frac{1}{v^2} L_{SYM}^{(G)} \quad (+ \text{ no corrections})$$

- This leads one to suspect that the theory is a re-formulation of SYM.
- ► In fact it can be derived [Ezhuthachan-SM-Papageorgakis] starting from N = 8 SYM.

The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the (2+1)d gauge field.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the (2+1)d gauge field.
- Start with N = 8 SYM in (2+1)d. Introducing two new adjoint fields B_μ, φ, the dNS duality transformation is:

$$-\frac{1}{4g_{YM}^2}\boldsymbol{F}^{\mu\nu}\boldsymbol{F}_{\mu\nu} \rightarrow \frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\left(D_{\mu}\boldsymbol{\phi} - g_{YM}\boldsymbol{B}_{\mu}\right)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that D_{μ} is the covariant derivative with respect to the original gauge field A.

- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the (2+1)d gauge field.
- Start with N = 8 SYM in (2+1)d. Introducing two new adjoint fields B_μ, φ, the dNS duality transformation is:

$$-\frac{1}{4g_{YM}^{2}}\boldsymbol{F}^{\mu\nu}\boldsymbol{F}_{\mu\nu} \rightarrow \frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\left(D_{\mu}\boldsymbol{\phi} - g_{YM}\boldsymbol{B}_{\mu}\right)^{2}$$

Note that D_{μ} is the covariant derivative with respect to the original gauge field A.

In addition to the gauge symmetry G, the new action has a noncompact abelian gauge symmetry:

$$\delta oldsymbol{\phi} = g_{ extsf{YM}} oldsymbol{M} \;, \qquad \delta oldsymbol{B}_{\mu} = D_{\mu} oldsymbol{M}$$

where M(x) is an arbitrary matrix in the adjoint of G.

- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the (2+1)d gauge field.
- Start with N = 8 SYM in (2+1)d. Introducing two new adjoint fields B_μ, φ, the dNS duality transformation is:

$$-\frac{1}{4g_{YM}^{2}}\boldsymbol{F}^{\mu\nu}\boldsymbol{F}_{\mu\nu} \rightarrow \frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\left(D_{\mu}\boldsymbol{\phi} - g_{YM}\boldsymbol{B}_{\mu}\right)^{2}$$

Note that D_{μ} is the covariant derivative with respect to the original gauge field A.

In addition to the gauge symmetry G, the new action has a noncompact abelian gauge symmetry:

$$\delta oldsymbol{\phi} = g_{ extsf{YM}} oldsymbol{M} \;, \qquad \delta oldsymbol{B}_{\mu} = D_{\mu} oldsymbol{M}$$

where M(x) is an arbitrary matrix in the adjoint of G.

To prove the duality, use this symmetry to set φ = 0. Then integrating out B_μ gives the usual YM kinetic term for F_{μν}.

$$L = \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \left(D_{\mu} \boldsymbol{\phi} - g_{\mathsf{YM}} \boldsymbol{B}_{\mu} \right)^{2} - \frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i} - \frac{g_{\mathsf{YM}}^{2}}{4} [\boldsymbol{X}^{i}, \boldsymbol{X}^{j}]^{2} + \operatorname{fermions} \right)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$L = \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \left(D_{\mu} \boldsymbol{\phi} - g_{\mathsf{YM}} \boldsymbol{B}_{\mu} \right)^{2} - \frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i} - \frac{g_{\mathsf{YM}}^{2}}{4} [\boldsymbol{X}^{i}, \boldsymbol{X}^{j}]^{2} + \operatorname{fermions} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We can now see the SO(8) invariance appearing.

$$L = \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \left(D_{\mu} \boldsymbol{\phi} - g_{\mathsf{YM}} \boldsymbol{B}_{\mu} \right)^{2} - \frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i} - \frac{g_{\mathsf{YM}}^{2}}{4} [\boldsymbol{X}^{i}, \boldsymbol{X}^{j}]^{2} + \operatorname{fermions} \right)$$

- We can now see the SO(8) invariance appearing.
- Rename $\phi o X^8$. Then the scalar kinetic terms are:

$$-\frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I} = -\frac{1}{2}\left(\partial_{\mu}\boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - g^{I}_{_{YM}}\boldsymbol{B}_{\mu}\right)^{2}$$

where $g^{I}_{_{YM}} = (0, \dots, 0, g_{_{YM}}).$

$$L = \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \left(D_{\mu} \boldsymbol{\phi} - g_{\mathsf{YM}} \boldsymbol{B}_{\mu} \right)^{2} - \frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i} - \frac{g_{\mathsf{YM}}^{2}}{4} [\boldsymbol{X}^{i}, \boldsymbol{X}^{j}]^{2} + \operatorname{fermions} \right)$$

- We can now see the SO(8) invariance appearing.
- Rename $\phi \to X^8$. Then the scalar kinetic terms are:

$$-\frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I} = -\frac{1}{2}\left(\partial_{\mu}\boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - g_{\mathsf{YM}}^{I}\boldsymbol{B}_{\mu}\right)^{2}$$

where $g_{YM}^{I} = (0, ..., 0, g_{YM})$.

• Next, we can allow $g_{\rm YM}^I$ to be an arbitrary 8-vector.

$$L = \operatorname{tr}\left(\frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I} - \frac{1}{12}\left(g_{\mathsf{YM}}^{I}[\boldsymbol{X}^{J},\boldsymbol{X}^{K}] + g_{\mathsf{YM}}^{J}[\boldsymbol{X}^{K},\boldsymbol{X}^{I}] + g_{\mathsf{YM}}^{K}[\boldsymbol{X}^{I},\boldsymbol{X}^{J}]\right)^{2}\right)$$

$$L = \operatorname{tr}\left(\frac{1}{2}\epsilon^{\mu\nu\lambda}\boldsymbol{B}_{\mu}\boldsymbol{F}_{\nu\lambda} - \frac{1}{2}\hat{D}_{\mu}\boldsymbol{X}^{I}\hat{D}^{\mu}\boldsymbol{X}^{I} - \frac{1}{12}\left(g_{\mathsf{YM}}^{I}[\boldsymbol{X}^{J},\boldsymbol{X}^{K}] + g_{\mathsf{YM}}^{J}[\boldsymbol{X}^{K},\boldsymbol{X}^{I}] + g_{\mathsf{YM}}^{K}[\boldsymbol{X}^{I},\boldsymbol{X}^{J}]\right)^{2}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This is not yet a symmetry, since it rotates the coupling constant.

$$\begin{split} L &= \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I} \right. \\ &- \frac{1}{12} \left(g^{I}_{\mathsf{YM}} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + g^{J}_{\mathsf{YM}} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + g^{K}_{\mathsf{YM}} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \right)^{2} \right) \end{split}$$

- This is not yet a symmetry, since it rotates the coupling constant.
- The final step is to introduce an 8-vector of new (gauge-singlet) scalars X^I₊ and replace:

$$g^I_{\rm YM} \to X^I_+(x)$$

$$\begin{split} L &= \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I} \right. \\ &- \frac{1}{12} \left(g_{\mathsf{YM}}^{I} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + g_{\mathsf{YM}}^{J} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + g_{\mathsf{YM}}^{K} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \right)^{2} \right) \end{split}$$

- This is not yet a symmetry, since it rotates the coupling constant.
- The final step is to introduce an 8-vector of new (gauge-singlet) scalars X^I₊ and replace:

$$g^I_{\rm YM} \to X^I_+(x)$$

► This is legitimate if and only if X^I₊(x) has an equation of motion that renders it constant. Then on-shell we can recover the original theory by writing (X^I₊) = g^I_{YM}.

Constancy of X^I₊ is imposed by introducing a new set of abelian gauge fields and scalars: C^I_µ, X^I₋ and adding the following term:

$$L_C = (C_I^{\mu} - \partial X_-^I)\partial_{\mu}X_+^I$$

・ロト・日本・モート モー うへぐ

Constancy of X^I₊ is imposed by introducing a new set of abelian gauge fields and scalars: C^I_µ, X^I₋ and adding the following term:

$$L_C = (C_I^{\mu} - \partial X_-^I)\partial_{\mu}X_+^I$$

This has a shift symmetry

$$\delta X^I_- = \lambda^I, \quad \delta C^I_\mu = \partial_\mu \lambda^I$$

which will remove the negative-norm states associated to C_{μ}^{I} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Constancy of X^I₊ is imposed by introducing a new set of abelian gauge fields and scalars: C^I_µ, X^I₋ and adding the following term:

$$L_C = (C_I^{\mu} - \partial X_-^I)\partial_{\mu}X_+^I$$

This has a shift symmetry

$$\delta X^I_- = \lambda^I, \quad \delta C^I_\mu = \partial_\mu \lambda^I$$

which will remove the negative-norm states associated to C^I_{μ} .

We have thus ended up with the Lorentzian 3-algebra action [Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]:

$$L = \operatorname{tr} \left(\frac{1}{2} \epsilon^{\mu\nu\lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\lambda} - \frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}_{\mu} \boldsymbol{X}^{I} - \frac{1}{12} \left(X^{I}_{+} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + X^{J}_{+} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + X^{K}_{+} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \right)^{2} \right)$$

+ $(C^{\mu I} - \partial^{\mu} X^{I}_{-}) \partial_{\mu} X^{I}_{+} + L_{\text{gauge-fixing}} + \mathcal{L}_{\text{fermions}}$
▶ The final action has some remarkable properties.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- The final action has some remarkable properties.
- It has manifest SO(8) invariance as well as N = 8 superconformal invariance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The final action has some remarkable properties.
- ► It has manifest SO(8) invariance as well as N = 8 superconformal invariance.
- ► However, both are spontaneously broken by giving a vev $\langle X_{+}^{I} \rangle = g_{_{YM}}^{I}$ and the theory reduces to $\mathcal{N} = 8$ SYM with coupling $|g_{_{YM}}|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The final action has some remarkable properties.
- It has manifest SO(8) invariance as well as N = 8 superconformal invariance.
- ► However, both are spontaneously broken by giving a vev $\langle X_{+}^{I} \rangle = g_{_{YM}}^{I}$ and the theory reduces to $\mathcal{N} = 8$ SYM with coupling $|g_{_{YM}}|$.
- It will certainly describe M2-branes if one can find a way to take ⟨X^I₊⟩ = ∞. That has not yet been done.

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

One might ask if the non-Abelian duality that we have just performed works when higher order (in α') corrections are included.

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α') corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α') corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].
- Recently we have shown [Alishahiha-SM] that to lowest nontrivial order (F⁴-type corrections) one can indeed dualise the non-Abelian SYM into an SO(8)-invariant form.

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α') corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].
- Recently we have shown [Alishahiha-SM] that to lowest nontrivial order (F⁴-type corrections) one can indeed dualise the non-Abelian SYM into an SO(8)-invariant form.

Here of course one cannot do all orders in α' because a non-Abelian analogue of DBI is still not known.

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α') corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].
- Recently we have shown [Alishahiha-SM] that to lowest nontrivial order (F⁴-type corrections) one can indeed dualise the non-Abelian SYM into an SO(8)-invariant form.
- Here of course one cannot do all orders in α' because a non-Abelian analogue of DBI is still not known.
- However our approach may have a bearing on that unsolved problem.

Let us see how this works. In (2+1)d, the lowest correction to SYM for D2-branes is the sum of the following contributions (here X^{ij} = [Xⁱ, X^j]):

$$\begin{split} L_{1}^{(4)} &= \frac{1}{12g_{YM}^{4}} \Big[\boldsymbol{F}_{\mu\nu} \boldsymbol{F}_{\rho\sigma} \boldsymbol{F}^{\mu\rho} \boldsymbol{F}^{\nu\sigma} + \frac{1}{2} \boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\nu\rho} \boldsymbol{F}_{\rho\sigma} \boldsymbol{F}^{\sigma\mu} \\ &- \frac{1}{4} \boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\mu\nu} \boldsymbol{F}_{\rho\sigma} \boldsymbol{F}^{\rho\sigma} - \frac{1}{8} \boldsymbol{F}_{\mu\nu} \boldsymbol{F}_{\rho\sigma} \boldsymbol{F}^{\mu\nu} \boldsymbol{F}^{\rho\sigma} \Big] \\ L_{2}^{(4)} &= \frac{1}{12g_{YM}^{2}} \Big[\boldsymbol{F}_{\mu\nu} D^{\mu} \boldsymbol{X}^{i} \, \boldsymbol{F}^{\rho\nu} \, D_{\rho} \boldsymbol{X}^{i} + \boldsymbol{F}_{\mu\nu} \, D_{\rho} \boldsymbol{X}^{i} \, \boldsymbol{F}^{\mu\rho} \, D^{\nu} \boldsymbol{X}^{i} \\ &- 2 \boldsymbol{F}_{\mu\rho} \, \boldsymbol{F}^{\rho\nu} \, D^{\mu} \boldsymbol{X}^{i} \, D_{\nu} \boldsymbol{X}^{i} - 2 \boldsymbol{F}_{\mu\rho} \, \boldsymbol{F}^{\rho\nu} \, D_{\nu} \boldsymbol{X}^{i} \, D^{\mu} \boldsymbol{X}^{i} \\ &- \boldsymbol{F}_{\mu\nu} \, \boldsymbol{F}^{\mu\nu} \, D^{\rho} \boldsymbol{X}^{i} \, D_{\rho} \boldsymbol{X}^{i} - \frac{1}{2} \boldsymbol{F}_{\mu\nu} \, D_{\rho} \boldsymbol{X}_{i} \, \boldsymbol{F}_{\mu\nu} \, D_{\rho} \boldsymbol{X}_{i} \Big] \\ &- \frac{1}{12} \left(\frac{1}{2} \boldsymbol{F}_{\mu\nu} \, \boldsymbol{F}^{\mu\nu} \, \boldsymbol{X}^{ij} \, \boldsymbol{X}^{ij} + \frac{1}{4} \boldsymbol{F}_{\mu\nu} \, \boldsymbol{X}^{ij} \, \boldsymbol{F}^{\mu\nu} \, \boldsymbol{X}^{ij} \right) \\ L_{3}^{(4)} &= -\frac{1}{6} \Big(D^{\mu} \boldsymbol{X}^{i} \, D^{\nu} \boldsymbol{X}^{j} \, \boldsymbol{F}_{\mu\nu} + D^{\nu} \boldsymbol{X}^{j} \, \boldsymbol{F}_{\mu\nu} \, D^{\mu} \boldsymbol{X}^{i} \\ &+ \boldsymbol{F}_{\mu\nu} \, D^{\mu} \boldsymbol{X}^{i} \, D^{\nu} \boldsymbol{X}^{j} \Big) \, \boldsymbol{X}^{ij} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$L_4^{(4)} = \frac{1}{12} \left[D_\mu \mathbf{X}^i D_\nu \mathbf{X}^j D^\nu \mathbf{X}^i D^\mu \mathbf{X}^j + D_\mu \mathbf{X}^i D_\nu \mathbf{X}^j D^\mu \mathbf{X}^j D^\nu \mathbf{X}^i \right. \\ \left. + D_\mu \mathbf{X}^i D_\nu \mathbf{X}^i D^\nu \mathbf{X}^j D^\mu \mathbf{X}^j - D_\mu \mathbf{X}^i D^\mu \mathbf{X}^i D_\nu \mathbf{X}^j D^\nu \mathbf{X}^j \right. \\ \left. - \frac{1}{2} D_\mu \mathbf{X}^i D_\nu \mathbf{X}^j D^\mu \mathbf{X}^i D^\nu \mathbf{X}^j \right]$

 $L_{5}^{(4)} = \frac{g_{YM}^{2}}{12} \left[\boldsymbol{X}^{kj} D_{\mu} \boldsymbol{X}^{k} \boldsymbol{X}^{ij} D^{\mu} \boldsymbol{X}^{i} + \boldsymbol{X}^{ij} D_{\mu} \boldsymbol{X}^{k} \boldsymbol{X}^{ik} D^{\mu} \boldsymbol{X}^{j} \right. \\ \left. - 2 \boldsymbol{X}^{kj} \boldsymbol{X}^{ik} D_{\mu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{i} - 2 \boldsymbol{X}^{ki} \boldsymbol{X}^{jk} D_{\mu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{i} \right. \\ \left. - \boldsymbol{X}^{ij} \boldsymbol{X}^{ij} D_{\mu} \boldsymbol{X}^{k} D^{\mu} \boldsymbol{X}^{k} - \frac{1}{2} \boldsymbol{X}^{ij} D_{\mu} \boldsymbol{X}^{k} \boldsymbol{X}^{ij} D^{\mu} \boldsymbol{X}^{k} \right]$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

$$L_6^{(4)} = \frac{g_{\mathsf{YM}}^4}{12} \left[\boldsymbol{X}^{ij} \boldsymbol{X}^{kl} \boldsymbol{X}^{ik} \boldsymbol{X}^{jl} + \frac{1}{2} \boldsymbol{X}^{ij} \boldsymbol{X}^{jk} \boldsymbol{X}^{kl} \boldsymbol{X}^{li} - \frac{1}{4} \boldsymbol{X}^{ij} \boldsymbol{X}^{ij} \boldsymbol{X}^{kl} \boldsymbol{X}^{kl} - \frac{1}{8} \boldsymbol{X}^{ij} \boldsymbol{X}^{kl} \boldsymbol{X}^{ij} \boldsymbol{X}^{kl} \right]$$

We have been able to show that this is dual, under the dNS transformation, to:

$$\begin{split} L &= \operatorname{tr} \left[\frac{1}{2} \epsilon^{\mu\nu\rho} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu\rho} - \frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I} \\ &+ \frac{1}{12} \Big(\hat{D}_{\mu} \boldsymbol{X}^{I} \, \hat{D}_{\nu} \boldsymbol{X}^{J} \, \hat{D}^{\nu} \boldsymbol{X}^{I} \, \hat{D}^{\mu} \boldsymbol{X}^{J} + \hat{D}_{\mu} \boldsymbol{X}^{I} \, \hat{D}_{\nu} \boldsymbol{X}^{J} \, \hat{D}^{\mu} \boldsymbol{X}^{J} \, \hat{D}^{\nu} \boldsymbol{X}^{I} \\ &+ \hat{D}_{\mu} \boldsymbol{X}^{I} \, \hat{D}_{\nu} \boldsymbol{X}^{I} \, \hat{D}^{\nu} \boldsymbol{X}^{J} \, \hat{D}^{\mu} \boldsymbol{X}^{J} - \hat{D}_{\mu} \boldsymbol{X}^{I} \, \hat{D}^{\mu} \boldsymbol{X}^{I} \, \hat{D}_{\nu} \boldsymbol{X}^{J} \, \hat{D}^{\nu} \boldsymbol{X}^{J} \\ &- \frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \, \hat{D}_{\nu} \boldsymbol{X}^{J} \, \hat{D}^{\mu} \boldsymbol{X}^{I} \, \hat{D}^{\nu} \boldsymbol{X}^{J} \Big) \\ &+ \frac{1}{12} \Big(\frac{1}{2} \boldsymbol{X}^{LKJ} \hat{D}_{\mu} \boldsymbol{X}^{K} \boldsymbol{X}^{LIJ} \hat{D}^{\mu} \boldsymbol{X}^{I} + \frac{1}{2} \boldsymbol{X}^{LIJ} \hat{D}_{\mu} \boldsymbol{X}^{K} \boldsymbol{X}^{LIK} \hat{D}^{\mu} \boldsymbol{X}^{J} \\ &- \boldsymbol{X}^{LKJ} \boldsymbol{X}^{LIK} \hat{D}_{\mu} \boldsymbol{X}^{J} \hat{D}^{\mu} \boldsymbol{X}^{I} - \boldsymbol{X}^{LKI} \boldsymbol{X}^{LJK} \hat{D}_{\mu} \boldsymbol{X}^{J} \hat{D}^{\mu} \boldsymbol{X}^{I} \\ &- \frac{1}{3} \boldsymbol{X}^{LIJ} \boldsymbol{X}^{LIJ} \hat{D}_{\mu} \boldsymbol{X}^{K} \hat{D}^{\mu} \boldsymbol{X}^{K} - \frac{1}{6} \boldsymbol{X}^{LIJ} \, \hat{D}_{\mu} \boldsymbol{X}^{K} \boldsymbol{X}^{LIJ} \hat{D}^{\mu} \boldsymbol{X}^{K} \Big) \\ &- \frac{1}{6} \epsilon_{\rho\mu\nu\nu} \hat{D}^{\rho} \boldsymbol{X}^{I} \, \hat{D}^{\mu} \boldsymbol{X}^{J} \, \hat{D}^{\nu} \boldsymbol{X}^{K} \boldsymbol{X}^{IJK} - V(\boldsymbol{X}) \Big] \end{split}$$

▶ In the previous expression,

$$\begin{aligned} \hat{D}_{\mu} \boldsymbol{X}^{I} &= \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} \boldsymbol{X}^{I}_{+} \\ \boldsymbol{X}^{IJK} &= X^{I}_{+} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + X^{J}_{+} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + X^{K}_{+} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \end{aligned}$$

▶ In the previous expression,

$$\begin{split} \hat{D}_{\mu} \boldsymbol{X}^{I} &= \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} \boldsymbol{X}^{I}_{+} \\ \boldsymbol{X}^{IJK} &= X^{I}_{+} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + X^{J}_{+} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + X^{K}_{+} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \end{split}$$

• Here V(X) is the potential:

$$V(X) = \frac{1}{12} \mathbf{X}^{IJK} \mathbf{X}^{IJK} + \frac{1}{108} \Big[\mathbf{X}^{NIJ} \mathbf{X}^{NKL} \mathbf{X}^{MIK} \mathbf{X}^{MJL} \\ + \frac{1}{2} \mathbf{X}^{NIJ} \mathbf{X}^{MJK} \mathbf{X}^{NKL} \mathbf{X}^{MLI} \\ - \frac{1}{4} \mathbf{X}^{NIJ} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \mathbf{X}^{MKL} \\ - \frac{1}{8} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \Big]$$

In the previous expression,

$$\begin{split} \hat{D}_{\mu} \boldsymbol{X}^{I} &= \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} \boldsymbol{X}^{I}_{+} \\ \boldsymbol{X}^{IJK} &= X^{I}_{+} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + X^{J}_{+} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + X^{K}_{+} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \end{split}$$

• Here V(X) is the potential:

$$V(X) = \frac{1}{12} \mathbf{X}^{IJK} \mathbf{X}^{IJK} + \frac{1}{108} \Big[\mathbf{X}^{NIJ} \mathbf{X}^{NKL} \mathbf{X}^{MIK} \mathbf{X}^{MJL} \\ + \frac{1}{2} \mathbf{X}^{NIJ} \mathbf{X}^{MJK} \mathbf{X}^{NKL} \mathbf{X}^{MLI} \\ - \frac{1}{4} \mathbf{X}^{NIJ} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \mathbf{X}^{MKL} \\ - \frac{1}{8} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \Big]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• We see that the dual Lagrangian is SO(8) invariant.

In the previous expression,

$$\begin{split} \hat{D}_{\mu} \boldsymbol{X}^{I} &= \partial_{\mu} \boldsymbol{X}^{I} - [\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}] - \boldsymbol{B}_{\mu} \boldsymbol{X}^{I}_{+} \\ \boldsymbol{X}^{IJK} &= X^{I}_{+} [\boldsymbol{X}^{J}, \boldsymbol{X}^{K}] + X^{J}_{+} [\boldsymbol{X}^{K}, \boldsymbol{X}^{I}] + X^{K}_{+} [\boldsymbol{X}^{I}, \boldsymbol{X}^{J}] \end{split}$$

• Here V(X) is the potential:

$$V(X) = \frac{1}{12} \mathbf{X}^{IJK} \mathbf{X}^{IJK} + \frac{1}{108} \Big[\mathbf{X}^{NIJ} \mathbf{X}^{NKL} \mathbf{X}^{MIK} \mathbf{X}^{MJL} \\ + \frac{1}{2} \mathbf{X}^{NIJ} \mathbf{X}^{MJK} \mathbf{X}^{NKL} \mathbf{X}^{MLI} \\ - \frac{1}{4} \mathbf{X}^{NIJ} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \mathbf{X}^{MKL} \\ - \frac{1}{8} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \mathbf{X}^{NIJ} \mathbf{X}^{MKL} \Big]$$

- We see that the dual Lagrangian is SO(8) invariant.
- It's worth noting that this depends crucially on the relative coefficients of various terms in the original Lagrangian.

We see from this that the 3-algebra structure remains intact when higher-derivative corrections are taken into account.

- ► We see from this that the 3-algebra structure remains intact when higher-derivative corrections are taken into account.
- We conjecture that SO(8) enhancement holds to all orders in α'.

- ► We see from this that the 3-algebra structure remains intact when higher-derivative corrections are taken into account.
- We conjecture that SO(8) enhancement holds to all orders in α'.
- Unfortunately the all-orders corrections are not known for SYM, so we don't have a starting point from which to check this.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of N = 8 SYM.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of N = 8 SYM.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

But we don't seem to be there yet.

- Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of N = 8 SYM.
- But we don't seem to be there yet.
- The existence of a large-order orbifold (deconstruction) limit provides a way (the only one so far) to relate the membrane theory to D2-branes. One would like to understand compactification of transverse or longitudinal directions, as we do for D-branes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of N = 8 SYM.
- But we don't seem to be there yet.
- The existence of a large-order orbifold (deconstruction) limit provides a way (the only one so far) to relate the membrane theory to D2-branes. One would like to understand compactification of transverse or longitudinal directions, as we do for D-branes.
- An interesting mechanism has been identified to dualise the D2-brane action into a superconformal, SO(8) invariant one. The result is a Lorentzian 3-algebra and this structure is preserved by α' corrections.

► A detailed understanding of multiple membranes should open a new window to M-theory and 11 dimensions.

► A detailed understanding of multiple membranes should open a new window to M-theory and 11 dimensions.

...if you were as tiny as a graviton You could enter these dimensions and go wandering on

And they'd find you...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <