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» We understand the field theory on multiple D-branes rather
well, but the one on multiple M-branes not so well.

» The latter should hold the key to M-theory:

» While there is an obstacle (due to (anti) self-dual 2-forms) to
writing the M 5-brane field theory, there is no obstacle for
M 2-branes as far as we know.

» And yet, despite ~ 200 recent papers — and two Strings 2008
talks — on the subject, we don't exactly know what the
multiple membrane theory is.

» Even the French aristocracy doesn't seem to know...
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The question is whether this conformal IR fixed point has an
explicit Lagrangian description wherein all the symmetries are
manifest.

This includes a global SO(8)r symmetry describing rotations
of the space transverse to the membranes — enhanced from
the SO(7) of SYM.

Let us look at the Lagrangians that have been proposed to
describe this limit.
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» Lorentzian 3—a|gebra [Gomis-Milanesi-Russo,
Benvenuti-Rodriguez-Gomez-Tonni-Verlinde, Bandres-Lipstein-Schwarz,
Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]: Based on arbitrary
Lie algebras, have A/ = 8 superconformal invariance.

= Certainly correspond to D2-branes, and perhaps to
M 2-branes. Status of latter unclear at the moment.

» ABJM theories [Aharony-Bergman-Jafferis-Maldacena]: Labelled by
algebra GG x G’ and integer k, with N/ = 6 superconformal
invariance. Is actually a “relaxed” 3-algebra.

= Describe multiple M2-branes at orbifold singularities. But
the & = 1 theory is missing two manifest supersymmetries and
decoupling of CM mode not visible.
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» And they have non-dynamical (Chern-Simons-like) gauge
fields.

» Thus the basic classification is:
(i) Euclidean signature 3-algebras, which are G x G
Chern-Simons theories:

kir(ANdA+3ANANA-ANdA-3ANANA)

BLG : G = SU(2)
ABIJM : G = SU(N) or U(N), any N (+ other choices)

both : scalars, fermions are bi-fundamental, e.g. Xia

(i) Lorentzian signature 3-algebras, which are B A F' theories
based on any Lie algebra.

scalars, fermions are singlet + adjoint, e.g. X1, X'
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» Both classes make use of the triple product X/
Euclidean : XK ~ XIx7TXx% X pi-fundamental

Lorentzian : X'/K  ~ XT[X7 X*]+ cyclic
X1 = singlet, X = adjoint

» The potential is:
V(X) ~ (XIJK)2

therefore sextic.
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One might have expected a simple and unique description for
the theory on N M2-branes in flat spacetime.

» It is basically an analogue of 4d N = 4 super-Yang-Mills!

» The only “excuse” we have for not doing better is that the
theory we seek will be strongly coupled. So it's not even clear
what the classical action means.

However it's also maximally superconformal, which should
give us a lot of power in dealing with it.

In this talk I'll deal with some things we have understood
about the desired theory.
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» For the G x GG Chern-Simons class of theories, the following
holds true [SM-Papageorgakis].

» If we give a vev v to one component of the bi-fundamental
fields, then at energies below this vev, the Lagrangian
becomes:

1(GxG) [ ) 1
Log = 5Lgyy +0 <U3>

vev v n [
and the G gauge field has become dynamical!

» This is an unusual result. In SYM with gauge group GG, when
we give a vev to one component of an adjoint scalar, at low
energy the Lagrangian becomes:

(@) (G'C@)
2 LSY]\I LSYM
9ym vev v gww

where GG’ is the subgroup that commutes with the vev.
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» Let's give a quick derivation of this novel Higgs mechanism,
first for k = 1:

Leg = (A/\dA+ ZANANA—ANdA - %AAAAA)
= tr(A_AF,+tA_NA_NA.)
where AL, = A+ A, F.=dA,+1A. NA,.
» Also the covariant derivative on a scalar field is:
D, X =9,X - A, X +XA,
> If (X) =v 1 then:
_(D/LX)Z ~ _UQ(A—>H(A—)N +oe

» Thus, A_ is massive — but not dynamical. Integrating it out

gives us:
1

42

so A, becomes dynamical.

V3

(PP +0( )
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» For any finite v, there are corrections to the SYM. These
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One can check that the bi-fundamental X! reduces to an
adjoint under A . The rest of A/ = 8 SYM assembles itself
correctly.

But how should we physically interpret this?

1 1
LGXG _ 7LG ’ o=
cs vev v 1)2 SYM + 1)3

> It seems like the M2 is becoming a D2 with YM coupling v.

» Have we somehow compactified the theory? No.

» For any finite v, there are corrections to the SYM. These

decouple only as v — oo. So at best we can say that:

1
LGXG — 1 7LG
cs vev v— 00 UEI;C ’U2 SY M
The RHS is by definition the theory on M2-branes! So this is
more like a “proof” that the original Chern-Simons theory

really is the theory on M2-branes.
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» However once we introduce the Chern-Simons level k then the
analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

k A k

GxG G

ch vev v - ELSY]V[ + O <’03>

> If we take & — oo, v — oo with v?/k = gy, fixed, then in this
limit the RHS actually becomes:

LSYM
! YM

and this is definitely the Lagrangian for D2 branes at finite
coupling.

» So this time we have compactified the theory! How can that
be?
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We proposed this should be understood as deconstruction for
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In our paper we observed that the orbifold C*/Z; has ' = 6
supersymmetry and SU(4) R-symmetry. We thought this
might be enhanced to A/ = 8 for some unknown reason.
Instead, as ABJM found, it's the BLG field theory that needs
to be modified to have N = 6.

One lesson we learn is that for large k we are in the regime of
weakly coupled string theory.

A lot can be done in that regime, but for understanding the
basics of M2-branes, that is not where we want to be.
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Lorentzian 3-algebras

» The Lorentzian 3-algebra theories have the following
Lagrangian:

L9, = tr( "B, F, — D, X D' X!
— (XLIX, X4 XX, X+ xE(xT, x 7))
(Cul — 8MX£)8;¢Xi + Lgauge fixing T Lermions
where

D, Xx'=9,x"-[A4,,X"1-B,Xx!

» These theories have no parameter k.

» They have SO(8) global symmetry acting on the indices
ILJLJKel,2,-- 8.

» The equation of motion of the auxiliary gauge field C’P]L implies
that X = constant.
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» Our Higgs mechanism works in these theories, but it works
too welll [Ho-Imamura-Matsuo]

» On giving a vev to the singlet field X, say:

(x8) =
one finds:
1
L(LG?))A = jLEgGy)M (+ no corrections)
vev v v

» This leads one to suspect that the theory is a re-formulation
of SYM.

» In fact it can be derived [Ezhuthachan-SM-Papageorgakis] starting
from A/ =8 SYM.
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The procedure involves a non-Abelian (dNS) duality
[deWit-Nicolai-Samtleben] on the (2+1)d gauge field.

Start with A/ =8 SYM in (2+1)d. Introducing two new
adjoint fields B, ¢, the dNS duality transformation is:

L_FIWF,, — "B, F,\ — (D, — gwB,)’

_49%//\/1
Note that D, is the covariant derivative with respect to the
original gauge field A.

In addition to the gauge symmetry (G, the new action has a
noncompact abelian gauge symmetry:

(qu — gYMM 5 (SB“ — DMM

where M (z) is an arbitrary matrix in the adjoint of G.

To prove the duality, use this symmetry to set ¢ = 0. Then
integrating out B, gives the usual YM kinetic term for F',,,.
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» The dNS-duality transformed A/ = 8 SYM is:
L = tr(%e””)‘BuFW\ — %(Dud) — gy,\/,Bu)2
LD, X DMXT — BE[X", X7 + fermions )

» We can now see the SO(8) invariance appearing.

» Rename ¢ — X . Then the scalar kinetic terms are:
. . 2
1D, x'DrxT = —1(9,X" —[A,, X"] - ¢L,,B,)

Where g\I/M - (0/ ] ngYM)'
» Next, we can allow g/, to be an arbitrary 8-vector.
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The action is now SO(8)-invariant if we rotate both the fields
X' and the coupling-constant vector gl,:
L = tr(%e’”’ABuFV)\ - %ﬁMX[D“XI
2
& (g0l X7, X5 4 g X5, XT] + gl X, X))

This is not yet a symmetry, since it rotates the coupling
constant.

The final step is to introduce an 8-vector of new
(gauge-singlet) scalars X! and replace:

95/\/1 - X{r(l)

This is legitimate if and only if X/ (z) has an equation of
motion that renders it constant. Then on-shell we can recover
the original theory by writing (XQ = gl,,.
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» Constancy of XJIr is imposed by introducing a new set of
abelian gauge fields and scalars: Ci,Xﬁ and adding the
following term:

Le = (O —axh)o,x1t
» This has a shift symmetry
sxt =\, scl=0.\

which will remove the negative-norm states associated to Ci.

» We have thus ended up with the Lorentzian 3-algebra action

[Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]:
WA 17 17 I
L= tr( ¢ B,F,\ — 1D, X'D,X
2
_ %(XI[XJ XK]+XJ[XK thLXf[XI’XJD )
+ (Cﬂ[ - 8HX£)8;1XJIF + Lgaugofﬁxing + Efermions
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» The final action has some remarkable properties.

> It has manifest SO(8) invariance as well as A = 8
superconformal invariance.

However, both are spontaneously broken by giving a vev
(X1) = gl,, and the theory reduces to A/ = 8 SYM with
coupling |gyu|-

It will certainly describe M2-branes if one can find a way to
take (X1) = oco. That has not yet been done.
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» One might ask if the non-Abelian duality that we have just
performed works when higher order (in ) corrections are
included.

» For the Abelian case [Duff, Townsend, Schmidhuber] we know that
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One might ask if the non-Abelian duality that we have just
performed works when higher order (in ) corrections are
included.

For the Abelian case [Duff, Townsend, Schmidhuber] we know that
the analogous duality works for the entire DBI action and that
fermions and supersymmetry can also be incorporated
[Aganagic-Park-Popescu-Schwarz].

Recently we have shown [Alishahiha-SM] that to lowest nontrivial
order (F*-type corrections) one can indeed dualise the
non-Abelian SYM into an SO(8)-invariant form.

Here of course one cannot do all orders in o’ because a
non-Abelian analogue of DBI is still not known.

However our approach may have a bearing on that unsolved
problem.



» Let us see how this works. In (241)d, the lowest correction to
SYM for D2-branes is the sum of the following contributions
(here X" = [ X", X]):

L§4) - 12;‘%4 {FWFPUFWFW + %FWFVPFMFW
~ LFuF"F )y F" — LF, F " F"|

18" = b [Fu DX F? DX + Fyy DX P DY X
~ 2F,,F" D'X"'D,X"' - 2F,,F" D,X"'D'X"
— Fu P D’X' D X'~ §F,, DX, Fu D, X
— 15 (3Fu F" XY XV 4 1F,, X7 F" XV)

1§ = —4(D* X' D'XF,, + D' X7 Fj D' X

+ F,, D'X' D”Xj> X



L =1L {D X'D,X’ D' X' D"X' + D, X' D, X’ D"X/ D" X'
+ D,X'D,X'D"X’D'X’ - D,X"D'X" D, X’ D" XY
D, X'D,X’ D"X' D" X7
L = @[X’WD X* XU DPX 4+ XY D, X% X% prxI
2X" x* p, X7 prXxt - 2X% X% D, X7 D' X"
- XY XY Dp,x*Drx*-1x%p,x" X" D“Xk}
L((f) _ 9%\,, [Xinleikal i %Xinijleli



» We have been able to show that this is dual, under the dNS
transformation, to:

L = tr|5e"B,F,, — 1D, X D' X'
+ 4 (D, X" D, X7 D' X' DX + DX D, X7 D' X7 D' X!
+D,x'D,x'D'x’ Drx’ - D, x'D*x' D, X’ D" X/
- $D,X" D, X7 DX DX
+ 4 <1XLKJD XK XL puxl 4 1 XL]JﬁMXKXLIKﬁHXJ
o XLKJXLIKDuxJDMX] o XLKIXLJKIA)MXJIA);LX]
B %XLIJXLIJDHXKquK B %XLIJ f)uXKXLIJD;LXK>

s DP X DX DV XK XTR — v (X)
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» Here V(X) is the potential:
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V(X) = SXTRXIE 4 L [ XN X NKE X MIK X
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» We see that the dual Lagrangian is SO(8) invariant.

» It's worth noting that this depends crucially on the relative
coefficients of various terms in the original Lagrangian.



» We see from this that the 3-algebra structure remains intact
when higher-derivative corrections are taken into account.



» We see from this that the 3-algebra structure remains intact
when higher-derivative corrections are taken into account.

» We conjecture that SO(8) enhancement holds to all orders in

o



» We see from this that the 3-algebra structure remains intact
when higher-derivative corrections are taken into account.

» We conjecture that SO(8) enhancement holds to all orders in
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» Unfortunately the all-orders corrections are not known for
SYM, so we don’t have a starting point from which to check
this.
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» But we don't seem to be there yet.

» The existence of a large-order orbifold (deconstruction) limit
provides a way (the only one so far) to relate the membrane
theory to D2-branes. One would like to understand
compactification of transverse or longitudinal directions, as we
do for D-branes.

» An interesting mechanism has been identified to dualise the
D2-brane action into a superconformal, SO(8) invariant one.
The result is a Lorentzian 3-algebra and this structure is
preserved by o/ corrections.
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» A detailed understanding of multiple membranes should open
a new window to M-theory and 11 dimensions.
>

...if you were as tiny as a graviton
You could enter these dimensions and go wandering on

And they’d find you...
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