Fluctuation and Other Probes of Quark Matter and Critical End Point

Masayuki Asakawa

Department of Physics, Osaka University

in collaboration with C. Nonaka, B. Müller, S.A. Bass (PRL in press)

September 2008

@ Goa Workshop

QCD Phase Diagram LHC RHIC QGP (quark-gluon plasma) CEP(critical end point) \bigcirc 160-190 MeV crossover $100 \text{MeV} \sim 10^{12} \text{ K}$ 1st order $(\circ \circ)$ order? Hadron Phase $(\bullet \bullet)$ chiral symmetry breaking **CSC** (color superconductivity) confinement $5 - 10 \rho_0$ μ_{B}

September 2008

@ Goa Workshop

20th Anniversary of CEP in QCD

Nuclear Physics A504 (1989) 668-684 North-Holland, Amsterdam

CHIRAL RESTORATION AT FINITE DENSITY AND TEMPERATURE

Masayuki ASAKAWA and Koichi YAZAKI

Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 2 May 1988 (Revised 24 April 1989)

Where is CEP, if any?

Stephanov, hep-lat/0701002

CEP = 2nd order phase transition, but...

There is no conservation law that slows down the change of those quantities !

Subject to Final State Interactions

Fluctuation and Final State Interaction

Hadronic observables are, in general, easily modified in hadronic phase !

E.g., $\Delta^+ \to p + \pi^0$ (change of particle number) $p + \pi^- \to n + \pi^0$ (change of charged particle number)

Fluctuation of pion multiplicity
Fluctuation of pion slope parameter T
Fluctuation of N₊ / N₋

even if the system goes right through the critical point...

plus critical slowing down

M. Asakawa (Osaka University)

Locally Conserved Charges

- Fluctuations of Locally Conserved Quantities In addition,
- Quantities sensitive to the microscopic structure of the dense matter

What satisfies the conditions, Conserved and Observable ?

- i. Net Baryon Number
- ii. Net Electric Charge
- iii. Net Strangeness

i) and ii) are sensitive to the microscopic structure of matter but

i) and iii) are difficult to measure

Hadron Gas vs. QGP

Hadron Gas Phase

Electric Charge

• ~2/3 of hadrons carry electric charge ± 1

Larger Charge Fluctuation

QGP Phase

• only ~ 1/2 of d.o.f., i.e., quarks and anti-quarks carry electric charge $\pm \frac{1}{3}, \pm \frac{2}{3}$

Baryon Charge

 Baryon charge is only carried by heavy and less abundant baryons

But all of them carry baryon charge ± 1

 All quarks and anti-quarks carry baryon charge

But each of them carries baryon charge only $\pm \frac{1}{3}$

Fluctuation is again larger in Hadron Gas

Fluctuations per Entropy

Heinz, Müller, and M.A., PRL (2000) Also, Jeon and Koch, PRL (2000)

Charge Fluctuation at RHIC

D-measure

Experimental Value
$$D = 2.8 \pm 0.05$$
 (STAR) $D \sim 4$ (PHENIX)

Charge Fluctuation in ReCo

Estimate with Quark Recombination Model

$$\left\langle \delta Q^{2} \right\rangle \equiv \left\langle Q^{2} \right\rangle - \left\langle Q \right\rangle^{2}$$
$$= \sum_{i} q_{i}^{2} \left\langle n_{i} \right\rangle + \sum_{i,j} c_{ij}^{(2)} q_{i} q_{j} \left\langle n_{i} \right\rangle \left\langle n_{j} \right\rangle$$

Białas, PLB(2002) Nonaka, Müller, Bass, M.A., PRC (2005)

correlation term

If correlation can be neglected (2 flavor case)

$$\left\langle \delta Q^2 \right\rangle = \frac{1}{9} (4N_u + 4N_{\overline{u}} + N_d + N_{\overline{d}}) = \frac{5}{18} N_q$$
$$N_{ch} = \frac{2}{3} N_h = \frac{1}{3} N_q$$
$$D = 4 \frac{\left\langle (\Delta Q)^2 \right\rangle}{N_{ch}} = 3.3$$

Quark recombination

$$N_h = \frac{1}{2}N_q$$

close to experimental data

Critical Slowing Down and Final State Int.

Furthermore,

critical slowing down limits the size of fluctuation, correlation length !

Principles to Look for Other Observables

We are in need of observables that are not subject to final state interactions

Emission Time Distribution

Principle II

Universality:

QCD CEP belongs to the same universality class as 3d Ising Model

Lattice QCD at finite density: still in its infancy For critical behavior: need to carry out $V \rightarrow \infty$ limit

What is not universal

- Further Assumptions
 - Size of Critical Region
 - No general universality
 - Lattice calculation: not yet $V \rightarrow \infty$ limit
 - Renormalization group analysis in Effective Models ?

Mapping

need to be treated as an input, at the moment

EOS on Ising Side

Critical Behavior on Ising Side

parametric representation

Singular Part + Non-singular Part

- Matching between Hadronic and QGP EOS
 - Entropy Density consists of Singular and Non-Singular Parts

Only Singular Part shows universal behavior

Requirement:

reproduce both the singular behavior and known asymptotic limits

Matched Entropy Density

$$s_{\text{real}} = (T, \mu_B) = \frac{1}{2} \left\{ 1 - \tanh[S_c(T, \mu_B)] \right\} s_H(T, \mu_B) + \frac{1}{2} \left\{ 1 + \tanh[S_c(T, \mu_B)] \right\} s_Q(T, \mu_B)$$

$$s_H(T, \mu_B) : \text{Hadron Phase (excluded volume model)}$$

$$s_Q(T, \mu_B) : \text{QGP phase}$$

$$T = \Delta \mu_{\text{Bcrit}}$$

• Dimensionless Quantity: S_c $S_c(T, \mu_B) = s_c(T, \mu_B) \sqrt{(\Delta T_{crit})^2 + (\Delta \mu_{crit})^2} \times D$

D: related to extent of critical region

Isentropic Trajectories

 In each volume element, Entropy (S) and Baryon Number (N_B) are conserved, as long as entropy production can be ignored (= when viscosities are small)

Isentropic Trajectories ($n_B/s = const.$)

An Example

Near CEP s and n_B change rapidly

isentropic trajectories show non-trivial behavior

Bag Model EOS case

With Large Critical Region

Focusing of Isentropic Trajectories

Excluded Volume Approximation + Bag Model EOS

used in most hydro calculations

Consequence

 $ightarrow \overline{p}/p$ ratio : near CEP steeper

For a given chemical freezeout point,

Evolution along Isentropic Trajectory

 $2\mu_B$ $\overline{p}/p \sim \exp$

with CEP steeper \overline{p} spectra at high $P_{\rm T}$

Effect on Spectra ?

steeper \overline{p} spectra at high P_{T}

NA49, PRC73, 044910(2006)

Result of One Temperature Fit

NA49, PRC73, 044910(2006)

	E _{beam} (A GeV)	dn/dy	T (MeV)	$\langle m_t angle - m$ (MeV/c ²)
p	158 80 40	$\begin{array}{c} 1.66 \pm 0.17 \\ 0.87 \pm 0.07 \\ 0.32 \pm 0.03 \end{array}$	291 ± 15 283 ± 30 246 ± 35	384 ± 19 385 ± 41 355 ± 51
	30 20	$\begin{array}{c} 0.16 \pm 0.02 \\ 0.06 \pm 0.01 \end{array}$	$\begin{array}{c} 290\pm45\\ 279\pm64 \end{array}$	$\begin{array}{c} 395\pm60\\ 394\pm60\end{array}$
р	158 80 40 30 20	$\begin{array}{c} 29.6 \pm 0.9 \\ 30.1 \pm 1.0 \\ 41.3 \pm 1.1 \\ 42.1 \pm 2.0 \\ 46.1 \pm 2.1 \end{array}$	308 ± 9 260 ± 11 257 ± 11 265 ± 10 249 ± 9	$\begin{array}{c} 413 \pm 13 \\ 364 \pm 16 \\ 367 \pm 16 \\ 362 \pm 14 \\ 352 \pm 13 \end{array}$

• Only one experimental result for \overline{p} slope • Still error bar is large

Summary

Two Principles:

- i) Chemical Freezeout is $p_T(\beta_T)$ dependent
- ii) Isentropic Trajectory behaves non-trivially near CEP (focusing)

 \overline{p}/p ratio behaves non-monotonously near CEP

Information on the QCD critical point: such as location, size of critical region, existence...

We then made a data search

- turned out NA49 \overline{p} data shows non-trivial behavior around 40 GeV/A
- still error bar is large, finer energy scans at SPS, FAIR, RHIC: desirable

Effect on Flow ?

c_s changes differently from the case with EOS used in usual hydro cal. (3D hydro cal. with CEP + UrQMD: C. Nonaka in progress)

M. Asakawa (Osaka University)