Assignment 3

Due date: 16th April

1. Start from the path integral expression for the quantum mechanical propagator,

$$\langle x_f; t_f | x_i; t_i \rangle = \int_{x(t_f) = x_f, x(t_i) = x_i} \mathcal{D}x[t] e^{iS[x]}.$$

a) Evaluate $\langle x_f; t_f | x_i; t_i \rangle$ for the simple harmonic oscillator:

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2.$$

b) Show that the wave function satisfies the Schrödinger equation:

$$i\dot{\psi}(x,t) = -rac{1}{2m}rac{\partial^2\psi(x,t)}{\partial x^2} + rac{1}{2}m\omega^2 x^2 \ \psi(x,t).$$

[Use $\psi(x,t) = \int dy \langle x;t|y;t' \rangle \psi(y;t')$.]

2. Evaluate the integral

$$Z(\lambda) = \int \frac{dx}{2\pi} e^{-x^2/2 - \lambda x^4/4}$$

for small λ by expanding the integrand in λ :

$$Z(\lambda) = \sum_{n} \frac{1}{n!} \lambda^n Z_n.$$

Investigate the convergence properties of the series. (Does the series converge? What is the radius of convergence? Is it an asymptotic series?)

3. The spectral function, $\rho(p_0, \vec{p})$, was defined in the previous assignment.

a) Show that $\rho(p)$ is odd function of p_0 , and that on the forward lightcone it can be written as $\rho_+(p^2)$, where $\rho_+(p^2)$ is real and positive semidefinite.

b) Show that the Feynman propagator in momentum space is given by

$$D_F(p) = \int_0^\infty \frac{dm^2}{\pi} \rho_+(m^2) \ D_F^0(p,m)$$

where $D_F^0(p,m) = i/(p^2 - m^2 + i\epsilon)$ is the Feynman propagator for the free theory.