Assignment 4

Due date: 5th May

1. In the first assignment, you had obtained the conserved charge densities for Lorentz transformation,

$$
M^{\mu\nu} = x^{\mu}P^{\nu} - x^{\nu}P^{\mu}.
$$

Of course, the corresponding quantum mechanical operators are

$$
M^{\mu\nu} = i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu}).
$$

a) Check that $J_i = \frac{1}{2}$ $\frac{1}{2} \epsilon_{0ijk} M^{jk}$ are the rotation generators, and $K_i = -M_{0i}$ are the Boost generators.

b) Form the operators $A_i = (J_i + iK_i)/2$, $B_i = (J_i - iK_i)/2$. Show that $[A_i, A_j] = i\epsilon_{ijk}A_k$, $[B_i, B_j] = i\epsilon_{ijk}B_k$, $[A_i, B_j] = 0$. c) Show that $[J_i, P_j] = i\epsilon_{ijk}P_k$, $[K_i, P_j] = -iP^0\delta_{ij}$. d) Form the operator $W_{\mu} = -\frac{1}{2}$ $\frac{1}{2} \epsilon_{\mu\nu\rho\sigma} M^{\nu\rho} P^{\sigma}$. Show that $W^{\mu} W_{\mu}$ and $P^{\mu}P_{\mu}$ commute with J_i, K_i, P_{μ} and W_{μ} .

2. Define the "vertex functions"

$$
\Gamma_n(x_1, x_2, ..., x_n) = \frac{\delta^n \Gamma[\phi]}{\delta \phi(x_1) \delta \phi(x_2) ... \delta \phi(x_n)}
$$

where $\Gamma[\phi] = \int dx J(x)\phi(x) - W[J], \phi(x) = \delta W[J]/\delta J(x)$ and $W[J]$ is the generator of the connected Green's functions. Express Γ_{2-4} in terms of the Connected Green's functions G_{2-4}^c .

3. The 4-point vertex function to $O(\lambda^2)$, in $\overline{\text{MS}}$ scheme, was evaluated in the class:

$$
\Gamma_4(p_1, p_2, p_3, p_4) = -i \left[\lambda + \frac{\lambda^2}{32\pi^2} \int_0^1 dx \, \log \frac{m^2 - i\epsilon - sx(1-x)}{\mu^2} + (s \to t) + (s \to u) \right].
$$

Show that, for $s > 4m^2$,

$$
-2 \operatorname{Im} i\Gamma_4(p_1, p_2, p_3, p_4) = \frac{\lambda^2}{2} \int \frac{d^3k_1}{(2\pi)^3 2E_1} \int \frac{d^3k_2}{(2\pi)^3 2E_2} (2\pi)^4 \delta^4(p_1 + p_2 - k_1 - k_2).
$$

4. Take the theory of two scalar fields Φ , ϕ , with masses M, m and the interaction term $\mathcal{L} = \mu \Phi \phi \phi$. (Assignment 2, Problem 3.)

a) Work out the Feynman rules for renormalized perturbation theory, and calculate the counterterms (in $\overline{\text{MS}}$ scheme) to one-loop order. Will you need any extra type of counterterm at higher loops?

b) You had calculated the scattering cross-section $\phi(k_1)\phi(k_2) \rightarrow \phi(p_1)\phi(p_2)$ to lowest (nontrivial) order. Write the expression for the cross-section correct to the next (nontrivial) order. (You do not need to evaluate all the finite integrals, it will suffice to give the results in the integral form.)