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Abstract 

An account is given of the new insight into the theory of magnetic monopoles 
originating from the work of 't Hooft and Polyakov. Their magnetic monopole, 
associated with the conventional electromagnetic gauge group U( l), occurs as a 
finite-energy smooth soliton solution to an SU(2) gauge theory. A precise picture of 
its internal structure, the values of its magnetic charge and its mass are obtained. 
These new developments bring together previously unrelated fields of study, namely 
the Dirac monopole (with point structure) and the Sine-Gordon soliton in two- 
dimensional space-time. 

Properties of more general monopoles, associated with large gauge groups now 
thought to be relevant in physics, are discussed. Particular attention is paid to 
topological properties. Based on this new viewpoint, conjectures can be made about 
a future quantum theory of monopoles. 
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1. Introduction 

Two reasons can be given for the recent upsurge of interest in the theory of 
magnetic monopoles. One was the possible experimental observation of such an 
object which was unfortunately not confirmed by closer analysis. The  second and 
more profound reason is that recent developments in the understanding of monopoles 
has brought together a number of apparently unrelated ideas. Such a synthesis is 
always attractive to theoreticians, and the new insights gained hold promise of further 
progress which could be of enormous importance in, for example, understanding the 
inter-relationship between the strong and weak interactions. Even if this last hope is 
not fulfilled, one is learning more about the structure of non-Abelian gauge theories 
and how they should be interpreted, at least at the classical level. Although many of 
the more important effects which are anticipated are thought to be intrinsically 
quantum-mechanical (e.g. colour confinement), it is reasonable to expect that the 
experience gained at the classical level will be an important aid in understanding the 
quantum mechanics. 

The organisation of our review is as follows. In  $2 we go back to the beginning 
of the modern theory of magnetic monopoles by giving an account of the way they 
were introduced by Dirac (1931). Our treatment will be more detailed in some 
respects; we will pay particular attention to some interesting lessons that can be 
learnt from his work, namely ( a )  that a gauge-invariant field theory can accommodate 
line singularities in the vector potential quite consistently, a point which has been 
largely ignored in quantum field theory; (b)  that in the presence of a monopole a 
term has to be added to the orbital angular momentum in order to obtain a conserved 
quantity; and ( c )  that the possibility of monopoles effectively modifies the global 
structure of the electromagnetic gauge group so that it is a compact group, U(1). This 
last statement, which is just equivalent to the quantisation of electric charge, could 
also be understood if the electric charge operator, Q, were a generator of a non-Abelian 
compact gauge group which has been spontaneously broken by an asymmetric vacuum 
to the electromagnetic U( 1) subgroup generated by Q. 

In  $3, we start a superficially unrelated line of discussion by reviewing briefly 
the existence of soliton solutions to the Sine-Gordon equation in a two-dimensional 
space-time, and the intriguing relationship of this theory to the Thirring model at 
the quantum-mechanical level. In  attempting to generalise this phenomenon to four- 
dimensional space-time one is led quite naturally to spontaneously broken gauge 
theories once again. 

Thus, remarkably, these two independent discussions converge upon the class 
of theories, currently believed to be relevant to the strong, weak and electromagnetic 
interactions of elementary particles. The  simplest theory which illustrates how the 
ideas explained in $92 and 3 have been synthesised is that originally suggested by 
't Hooft (1974) and Polyakov (1974). In  $4 we discuss this theory and, in particular, 
the solution to which 't Hooft and Polyakov drew attention. This has a natural 
interpretation as an extended object, which at large distances provides an explicit 
model of a Dirac monopole, but whose short-distance structure has been modified 
so that it has finite energy. We explain carefully how electromagnetism is embedded 
in the theory and the way topological properties of the asymptotic values of the Higgs 
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field lead to the Dirac quantisation condition for the magnetic charge. We derive the 
lower bound on the mass of any solution to this theory in terms of its electric and 
magnetic charges, first found by Bogomolny, and discuss the exact solution found by 
Prasad and Sommerfield in the limit in which the self-interaction of the Higgs field 
vanishes. Dyons and candidates for the magnetic current inside the monopole are 
also discussed. 

Armed with the insight gained from the 't Hooft-Polyakov monopole we begin 
to consider its possible generalisations in which, for example, the exact symmetry 
group H, remaining after spontaneous symmetry breaking, may itself be non-Abelian. 
First we briefly review the formalism for a theory with a general gauge symmetry 
group, G, assumed compact and connected. The  rest of $5 is devoted to studying 
the large-scale, or macyoscopic, properties of monopoles. Here it is H rather than G 
that plays the crucial role. We begin by describing these properties in terms of the 
way the Higgs field realises its boundary conditions asymptotically, i.e. outside 
the monopole. In  any finite-energy solution the Higgs field must approach a minimum 
of the potential function, V ,  describing its self-interaction, as we approach infinity 
along any radial direction. In  this way we associate with each direction in space a 
minimum of V,  and we may think of this association as defining a map from the unit 
sphere in three-dimensional space to the set of minima of V. The topological charac- 
teristics of this map define topological conservation laws for these solutions generalis- 
ing those we met in $3. The  appropriate topological concept is that of homotopy; 
relevant aspects of homotopy theory are outlined in this section and summarised 
more precisely in appendix 1.  Results from homotopy theory enable us to take the 
description of the topological conservation laws in terms of the way the Higgs field 
approaches the set of minima of V and rephrase it in terms of topological properties 
of H. Using a non-Abelian version of Stokes' theorem we then go further and re- 
express the topological quantum number entirely in terms of H gauge fields. This 
expression is then used to derive generalisations of Dirac's quantisation condition 
firstly assuming that H has, at least locally, a U( 1) factor which may be identified with 
electromagnetism and, secondly, assuming a generalised inverse square law form for 
the field tensor. 

In  a sense, the theme of $5 is the progressive relegation of the Higgs field and broken 
symmetry group G in the discussion of the macroscopic properties of solutions. We 
end with everything expressed in terms of H and we are then able to relate the Higgs 
field formalism we have used to that of Wu and Yang, in which only the exact 
symmetry group, H, appears. 

In  $6 we consider the micvoscopic properties of monopoles, their internal structure. 
Here the statements we can make are less complete though it seems that the Higgs 
field and full symmetry group G now play a crucial role in obtaining finite-energy 
solutions. As in the 't Hooft-Polyakov case the solutions that have been found and 
analysed tend to possess certain spherical symmetry properties which we discuss. We 
review the corresponding possibilities for G= SU(3) discussing both H =  U(2) and 
H=S0(3) .  The features of these SU(3) solutions are set in a more general context 
by quantisation conditions for spherically symmetric monopoles which we derive. 
In  particular we discuss the relationship of these results to the analysis of Wilkinson 
and Goldhaber. 

Thus $$3-6 attempt to survey what is known about classical soliton (monopole- 
like) solutions to field theories in three space and one time dimensions. The last 
Section deals with two remaining questions. Firstly, what other sort of soliton solu- 
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tions can be constructed in other dimensions of (flat) space-time? Secondly, and this 
is probably the most important question posed by consideration of this subject, what 
is the quantum theory of monopoles? Little can be said despite an extensive literature, 
but there exist some speculations based on the lesson of the Sine-Gordon theory 
described in $3. These at least serve to show how interesting the answer might be. 

2. The Dirac monopole 

2.1. The duality of electricity and magnetism 

The equations governing the electromagnetic field, Maxwell’s equations : 

V . E = p  V A B - E = j  
V.B=O V A  E + B = o  

may be written in the compact relativistic notation : 

where FP” is the electromagnetic field tensor: 

i.e. 

( j P ) = ( p , j )  is the electric current four-vector and *FPV is the dual tensor of FPv: 

*FP = ~ E P V P U F  PU (2.7) 
which may be obtained formally from Fav by replacing E by B and B by -E.  (We 
use the conventions that eApup is totally antisymmetric with ,0123 = 1, and Greek indices 
take the values 0, 1, 2, 3, whilst Latin indices only take the values 1, 2, 3.) 

In  vacua, where j p  vanishes, the Maxwell equations are symmetric under the 
‘duality’ transformation : 

(2.8) FPV+ * F P v  *FIL” 3 - Fcv 

or, equivalently, E 4  B and B-+ -E,  which, roughly speaking, interchanges electricity 
with magnetism. Could such a symmetry be valid even in the presence of matter? I n  
such a theory we would have to introduce a magnetic current (kp)=(a, k), on the 
right-hand side of equation (2.2) and (2.4), giving the new field equations: 

avFPV= - j p  a,,*Ff”’= -kP. (2 * 9) 
Equations (2.9) are symmetric under the duality transformation of equations (2.8) 
augmented by: 

jp+kP kP-+ - j p .  (2.10) 
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If the electric and magnetic currents result from point particles at space-time points 
22, as we shall suppose: 

iP(x) = 42 j d%fl84(X - xz) (2. l l (a>> 
2. 

where the integral over xi is taken along the world line of the ith particle whose 
electric and magnetic charges are qi and gi, respectively. In  conventional electro- 
dynamics the Lorentz force law for a particle of (electric) charge q and rest mass m 
leads to the equation of motion: 

In  a symmetric theory this equation would be generalised to : 

(2.12) 

(2.13) 

where g is the particle’s magnetic charge. Equations (2.9), (2.11) and (2.13) com- 
pletely specify the dynamics of a classical (i.e. non-quantum-mechanical) system of 
electrically and magnetically charged particles interacting with the electromagnetic 
field in such a way that it possesses the dual symmetry of equations (2.8) and (2.10). 

In  discussing further whether nature might indeed possess such a duality it is 
natural to ask at this point whether it is consistent with quantum theory. Actually 
Dirac (1931) was led naturally to a theory possessing this symmetry by considering a 
quantum mechanics in which the wavefunction had a non-integrable (or path- 
dependent) phase factor. (This formalism has been exploited by other authors more 
recently; see, for example, Mandelstam (1962, 1968) and Christ (1975).) Dirac’s 
work pointed out the profound theoretical consequences of the existence of magnetic 
monopoles at the quantum level. One can see immediately that quantisation may not 
be straightforward since this procedure usually exploits the canonical (Hamiltonian) 
formalism. Now the canonical variables for the electromagnetic field are not the 
components of FPv but rather the components of the four-vector potential (AP) = (4, A ) ,  
whose defining property is: 

FILV = - a v A P .  (2.14) 

This equation itself implies the vanishing of av*Fflv and, consequently, the magnetic 
current, kfl, destroying the dual symmetry. 

Dirac was able to circumvent this difficulty, showing that a dually symmetric 
electromagnetic theory could be quantised, provided that for any electric charge q 
and magnetic charge g in theory, the condition: 

n an integer (2.15) 

was satisfied. This is the celebrated Dirac quantisation condition. The occurrence of 
the modified Planck constant, h, emphasises that, in Dirac’s approach, it is quantum- 
mechanical in origin. Much of the rest of this review will be devoted to deriving and 
re-deriving this condition and its generalisations with progressive degrees of sophistica- 
tion. Dirac’s approach assumed that a particle had either electric or magnetic charge 
but not both; we will also assume this henceforth unless it is otherwise stated. 
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Finally in this section we comment on the units we have employed. They are the 
units conventionally used in modern quantum field theory with, in particular, the 
velocity of light e= 1. In  this we differ from Dirac (1931, 1948). T o  obtain his 
quantities we must multiply our field tensor by 44 l r  and divide our charges and 
currents by d4lr .  Thus his Maxwell equations involve a factor of 4 7 ~  on the right- 
hand side but the Lorentz force law is unaltered. Further, in Dirac’s convention the 
factor of 4lr in condition (2.15) disappears. In  recent literature on monopoles an 
intermediate convention has been adopted implicitly which differs from that given 
here only in that the unit of magnetic charge is greater by a factor of 47. This permits 
the retention of both the conventions of modern field theory and Dirac’s original form 
of equation (2.15) but is unsatisfactory because of its asymmetry. 

Previous reviews and surveys of literature on Dirac monopoles can be found in 
Goldhaber (1965), Zumino (1966), Amaldi and Cabibbo (1972) and Goldhaber and 
Smith (1975). Amaldi and Cabibbo (1972) give a survey of experimental evidence. 

2.2. The motion of an electrically charged particle in a radial magnetic field 

Our first derivation of Dirac’s quantisation condition will be the most naive. As 
is usual in physics, we begin by examining the simplest possible solution, that of a 
particle of mass m and electric charge q moving in the field of a magnetic monopole 
of strength g fixed at the origin: 

(2.16) 

The equation of motion of the particle is: 

mi:= q i  A B. (2.17) 

The magnetic field of equation (2.16) is spherically symmetric and one therefore 
expects something like the conservation of angular momentum. However, it is not 
quite the orbital momentum that is conserved because equation (2.17) is not a central 
force (i.e. not directed towards the origin). In fact, the rate of change of orbital 
angular momentum: 

d 
- ( r A  mi.)=rA mi: 
dt 

,d (“ 3j  
d t  4lr 

where 3 = ujr. These results, first due to PoincarC (1896), suggest that we should define 
the total angular momentum to be: 

J = P A  mi.--- qg 3 
41r 

(2.18) 

and then it will be conserved. T o  give a physical interpretation to the second term in 
this equation we must consider the only other possible source of angular momentum, 
the electromagnetic field. Classically the angular momentum of the electromagnetic 
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field is obtained by integrating the moment of the Poynting vector, EA B, over all 
space : 

Here B is the radial field given by equation (2.16) and E is the field due to the electric 
pole q at Y. Thus: 

J e m =  J” d 3 ~ ~  A (EA B).  

giving 
qg A J,,= -- Y 
4n 

since V.E=q6(x - r ) .  Thus the total angular momentum which is conserved is 
indeed the sum of the orbital angular momentum of the particle and the angular 
momentum of the electromagnetic field. 

From equation (2.18) we see that the radial component of J is: 

qg i .  J =  --. 
4n 

(2.19) 

Since J i s  a constant of the motion this means that the particle moves on a cone with 
semi-vertical angle cos-l(qg/4nJ) and axis - J with its apex at the monopole. The 
charges q and g behave rather as if repelled by one another. 

So far our discussion has been in the context of classical mechanics (and, indeed, 
non-relativistic electromagnetic theory in that we have neglected radiation effects). 
In  quantum mechanics we would expect the components of J to satisfy the usual 
angular momentum commutation relations and hence to have eigenvalues which are 
integral multiples of *A. Since one might suppose that the orbital part of J has 
eigenvalues which are integral multiples of A we are left with (Saha 1936, 1949; see 
also Zumino 1966): 

qg = 1 A G zn 
n an integer 

the Dirac quantisation condition, equation (2.15). This argument is plausible but 
too vague to be convincing as it stands. For example, since no fermions are involved 
it might seem more reasonable to have the components of J quantised in integral, 
rather than half-integral, multiples of A. Before giving a rigorous derivation of 
equation (2.15) we will discuss the reasons why it is so significant. 

2.3. The fascination of the Dirac quantisation condition 

Consider a world in which particles may carry either electric or magnetic charge 
but not both, the possible values of the electric and magnetic charges being gl and gi, 
respectively. In  such a situation the form the Dirac quantisation condition takes is: 

q28:, = 1, 2 2  .jh nij an integer (2.20) 
4n 
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and we shall see that this appears to be a necessary and sufficient condition for the 
existence of a quantum theory with these charges. 

Taking any fixed magnetic charge gg, all electric charges q2 must be integral 
multiples of 2-;rh/gj and we may construct the highest common factor nog of the 
integers nig. All electric charges are multiples of qo = nog2-;rh/gg: 

41 = niqo. (2.21) 
But further (by Euclid's algorithm in number theory) nog must be a linear combina- 
tion of the nag with integer coefficients. Consequently qo is a linear combination of 
the qi with integer coefficients (which may not all be positive). Since combining 
states yields a state with the sum of the charges of the states combined, and charge 
conjugation yields a state with the opposite charge, qo must be the charge of a state 
which can be physically realised. Similar considerations lead to the conclusion that 
the magnetic charges, gg, are all integral multiples of a physically realisable unit of 
magnetic charge, go. Clearly 40 and go are uniquely determined up to sign and must 
satisfy the Dirac quantisation condition themselves : 

no an integer. (2.22) 

This conclusion of Dirac (1931), that the mere existence of an isolated magnetic 
charge implies the quantisation of electric charge, is very powerful and striking. The 
reason for its impact is that no other reason for the quantisation of electric charge 
had been discerned and, experimentally, it seems to be true in nature with 40 being 
(plus or minus) the charge on the electron, usually denoted by -ee. More recently 
the possibility of fractionally charged quarks has slightly altered the situation to the 
extent of possibly revising the basic unit, but we shall return to this point later. 

Two electric charges of strength qo, a distance Y apart, repel each other with a 
force of strength qo2/4nr2. There would be a similar force between two magnetic 
charges, and if their strength were go, the magnetic force would be, as a fraction of the 
force for similarly situated electric charges : 

(2.23) 

If qo is the charge on the electron qo2/4rh is the fine-structure constant, approxima- 
tely 1/137, giving a value for the ratio of forces of 5 x lo3 no2, which is large even if 
no is one. So, although there is a theoretical symmetry between electricity and 
magnetism once magnetic monopoles are introduced, using experimental knowledge 
of the value of the fine-structure constant we see that the magnetic force is much 
stronger and there is a consequent practical asymmetry. As Dirac (1931) pointed out 
this should mean that magnetic monopoles are much more difficult to pair-produce 
than electrically charged particles and also much heavier. (In $4.6 we shall find a 
precise estimate for the mass in the context of a particular theoretical model.) Dirac 
had hoped that his theoretical considerations would lead to an understanding of the 
value of the fine-structure constant rather than an understanding of the possible 
relation between electric and magnetic forces given that value. He saw these con- 
siderations, leading to the quantisation of electric charge through the existence of 
magnetic monopoles, as being in many ways comparable to his arguments leading 
to the relativistic wave equation from which the existence of positrons was deduced. 

A very peculiar situation results if it is possible to make a system, composed of an 
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electric and a magnetic pole, for which qg/47rh is half an odd integer. Indeed at the 
level of argument used in the last subsection we might be tempted to discard this 
possibility but our more rigorous arguments given in $2.5 do admit it. I n  such a 
situation there is a half-odd-integral angular momentum contribution from the electro- 
magnetic field and the composite system has angular momentum which is not an 
integral multiple of A. Thus, accepting the connection between spin and statistics, 
the composite system is a fermion and it has been constructed out of bosons. This 
has been a long standing paradox. Recently Goldhaber (1976) has given a subtle 
explanation of why this is possible (see also Jackiw and Rebbi 1976, Hasenfratz and 
’t Hooft 1976). 

Schwinger (1966a,b, 1968, 1969) has presented arguments that the integer n in 
the Dirac condition (2.15) should be an even integer or even a multiple of four, but 
these arguments are not generally accepted and he has since withdrawn his stand on 
the latter stronger restriction (Schwinger 1976). 

2.4. The canonical formalism and quantisation 

Having appreciated the significance of the Dirac quantisation condition we 
proceed towards a rigorous derivation of it. T o  this end we discuss the quantisation 
of the motion of a particle in a given electromagnetic field. The conventional way 
to do this is to set up the Hamiltonian formalism of mechanics and replace the Poisson 
brackets by commutators. The  non-relativistic equations of motion for a particle of 
mass m, electric charge q (and no magnetic charge) can be derived from the Lagrangian : 

L=Jmi2+qi.A-q4 (2.24) 

where (Ah) = (4, A )  is the electromagnetic four-potential, introduced in equation 
(2.14), describing the given electromagnetic field. This Lagrangian leads to the 
non-relativistic limit of the Lorentz force law of equation (2.12). The canonical 
momentum i3LIai is : 

(2.25) 
and the Hamiltonian 

(2.26) 

p = mi  i- qA 

1 
2m H=p.#-L= - (p-qA)2+q$h 

which is indeed the energy, the sum of the kinetic and the potential energy. It may 
be obtained from the Hamiltonian for a free particle by the substitutionph-tpp-qAp 
in four-vector notation. 

Notice that this formalism depends heavily on the existence of the electromagnetic 
potential Ah and we have already remarked in $2.1 that this assumption is false in the 
presence of magnetic charge. For the moment we ignore this difficulty. 

The  Poisson bracket of two dynamical variables (Y and p is defined by: 

so that 
{ T i ,  Y’} = {pi,  p j }  = 0 { T i ,  pj}  = 8 i j .  (2.27) 

All the quantities occurring in the field equations (2.3) and (2.4) and the equations 
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of motion (2.12) are gauge-invariant, i.e. they are unchanged if we perform the 
following gauge transformation on the vector potential : 

AP-+A,‘=A,+8,x (2.28) 

where x is an arbitrary (suitably smooth single-valued) function of position and time. 
But, unlike r and FP”, p p  is not gauge-invariant because Ap itself enters into equations 
(2.25) and (2.26). For this reason it is more convenient and aesthetic to recast 
equations (2.27) in terms of mi rather than p :  

{ Y i ,  d }  = 0 

{rz, mij} = 6ij 

{mii, mi91 = - q( 8 A j  - 8jAi) = qqjkBk. (2.29) 

From these Poisson brackets we may compute those of r and mi = p  - qA with the 
orbital angular momentum L = r A mi:  

{Li, y j> = Ei jkYk  

{Li, mrj> = ctjkmik + q(6ijr. B - Bid). (2.30) 

Thus mi does not transform as a vector with respect to the orbital angular momentum. 
Now suppose that B has the specific radial form of equation (2 I 16). For such a B we 
cannot construct a single-valued vector potential everywhere but we may inside some 
suitable region not containing the origin. The last term in equation (2.30) reads : 

Hence, introducing the total angular momentum J =  L -gq8/4a, we obtain: 

{Ji ,  m+j> = qjkm+k 

{Ji, Y.?} = q j j k ~ k  (2.31) 

{Ji ,  Jj> = Eijk Jk. 

In particular as for this B, H =  BmP, we see that the Poisson brackets of J with the 
Hamiltonian vanish and thus we have rederived its conservation, first obtained in 
$2.2. The Poisson brackets of the components of Jyield the familiar angular momen- 
tum algebra. 

The canonical procedure of quantising the motion of the charged particle (treating 
the electromagnetic field classically) is to replace Poisson brackets by commutators : 

(2.32) 

A representation of the canonical commutation relations resulting from equations 
(2.27) is provided by: 

p =  -ihV 
so that 

mil = ih 96 = ift ai - qA6 
where 

G@’ = 8c + ieAt 

(2.33) 

is called the covariant derivative and we have introduced e = q / A .  (In our units with 
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c= 1, q and g have the units of the square root of action, i.e. (mass x length)l/2, so 
that e has the units of inverse charge.) Consistently with equation (2.29) : 

[ W ,  gv] = ieFPu. (2.34) 

This equation and its generalisations are of fundamental importance in further 
developments. 

The Schrodinger equation for the wavefunction of the charged particle is: 

(2.35) 

and consequently not gauge-invariant. However, we may show the equivalence of 
Schrodinger equations for different gauges and make equation (2.35) gauge-covariant 
if we specify that under the gauge transformation of equation (2.28): 

#-+ +’ = exp ( - iex) $. (2.36) 

Thus in quantum mechanics it is not merely the electromagnetic potential that 
changes in a gauge transformation but also the wavefunction of a charged particle 
and the way it transforms depends on the electric charge q=Ae of the particle it 
describes. 

2.5. The vector potential fop a monopole: the Dirac string 

In  the last two subsections we have seen the crucial role played by the vector 
potential in the Hamiltonian mechanics and canonical quantisation of the motion of 
an electrically charged particle in a magnetic field. But as we remarked in $2.1 such 
a potential cannot exist everywhere if there are isolated magnetic charges. In  particular 
if we again consider the radial magnetic field of equation (2.16), for any closed 
surface, S, containing the origin : 

g=Ss B.dS (2.37) 

but if B = V A  A this integral would have to vanish. Thus A cannot exist everywhere 
on S, even though V. B is only non-zero at the origin, and the best we can do is to find 
an A defined everywhere except on a line joining the origin to infinity, such that 
B=V A A .  T o  see that this is possible consider the field due to an infinitely long and 
thin solenoid placed along the negative x axis with its positive pole which has strength 
g at the origin. Its magnetic field would be: 

where 2 is a unit vector in the x direction and e(,$) = 0 if ,$ < 0, e(()  = 1 if ,$ > 0. This 
magnetic field differs from B only by the singular magnetic flux along the solenoid 
but it is clearly source-free; V.Bs,l vanishes, even at the origin. Thus it may be 
represented by a vector potential, A say, everywhere and we may write: 

-9- i= V A A -go( - x) 6(x) 6(y) 2. 
4Tr2 

(2.38) 

The line occupied by the solenoid is called the ‘Dirac string’. The effect of equation 
(2.38) is graphically represented in figure 1. We should think of the field B as being 
represented not just by A but by A together with a string 9 on which it is singular. 
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Figure 1. 

+ 

Given our choice of the position of the string as the negative z axis we can easiIy 
calculate an explicit form for A by exploiting the axial symmetry. Using spherical 
polar coordinates (Y, 8, 4) we expect by symmetry to be able to find a vector potential 
A(r)  = A(Y, 6) 4, 4 being a unit vector in the 4 direction. The magnetic flux through 
a circle, C, corresponding to fixed values of Y and 6, and 4 ranging over the values 0 
to 27r, is given by the solid angle subtended by C at the origin multiplied by g/47, 
namely $g(l -cos 6). Consequently: 

$g( 1 - cos 6) = J B .  dS=  27A(r, 6) Y sin 6 
and 

4 g p c O s e )  A(r)=-  -~ 4 m  sin 6 (2.39) 

showing the anticipated singularity on the negative x axis. 
Dirac (1931) suggested that the vector potential obtained in this way be used to 

set up the Schrodinger equation for the motion of a charged particle in the field B. 
T o  show consistency it is necessary to show that the resulting equations are equivalent 
for different choices of the position of the Dirac string, 9. In  the next subsection 
we will show that this is consistent if the Dirac quantisation condition is satisfied. 
For the moment we will remark that using equation (2.39) in the canonical quantisa- 
tion procedure we find, from equation (2.18) : 

and thus : 

(2.40) 

(2.41) 

This is not itself singular on the z axis but for the wavefunctions to be single-valued 
the eigenvalues of J ,  must be nh-gg/4n for integral n. But the angular momentum 
commutation relations satisfied by J ensure that these must be of the form BNh where 
N is integral. This strengthens the argument following equation (2.19) leading to 
the Dirac quantisation condition. 

2.6. Generalised gauge transformations and a ~ i g o ~ o u s  derivation of the Dirac condition 

The vector potential of equation (2.39) is not unique, of course. Firstly, we make 
a non-singular gauge transformation, as in equation (2.28), A --+A +Ox, where x is 
a non-singular, single-valued function of position. The  term V A A in equation (2.38) 
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will remain unchanged and so, therefore, must the Dirac string term. But the position 
of the string is arbitrary and so we must find the relationship between the singular 
potentials corresponding to different positions of the string, which need not even be 
straight, We will need to extend the concept of gauge transformation in order to 
be able to move the string. We rewrite equation (2,38) as: 

B ( r ) = v A  A+h( Y ,  r )  (2.42) 

where h( y, r )  represents the contribution of the Dirac string 9, a flux of strength g 
passing out along the string Y from the origin to infinity: 

h( 9, v) =g jy dx 83(r-x). (2.43) 

As defined in $2.5 the string Y runs along the negative Y axis. Consider another 
string 9” running from the origin to infinity. Let I? denote the curve - 9‘ (9‘ 
taken in the reverse direction) followed by 9. We may treat this as a closed curve, 
either by making suitable assumptions about what happens at infinity or by assuming 
that 9’ differs from Y only over a finite range. Let R(r) denote the solid angle sub- 
tended at v by some particular surface spanning I?. Various choices of spanning 
surface will lead to values of Q differing by multiples of 477 but will yield the same 
value for VQ, except on I’ itself where C2 and VQ are always ill-defined. So consider 
the extended gauge transformation defined by 

when r is not on I?. Then V A A’ =V A A = B except on the two strings. Applying 
Stokes’ theorem to a small loop encircling r we see that the flux of V A (A’ - A )  along I? 
is g, and so: 

V A  @ ’ - A ) = @ (  9, r)-h(  Y’, v)) 

B = V A  A + h ( Y , r ) = V r \  A ’ + h ( Y ’ , r ) .  (2.45) 

Thus a gauge transformation of the form of equation (2.44) shifts the Dirac string, 
and using such multivalued gauge transformations we may relate any pair of Dirac 
potentials for a monopole. 

If we have a magnetic field with a number of magnetic monopoles with charges 
gt we will need a string for each. The general gauge transformation will then take 
the form: 

(2.46) 
i 

where xo is single-valued and Cl&) is the angle subtended at v by the reversed final 
string followed by the initial string attached to the ith monopole. 

The  crucial consistency condition is that the general gauge transformation should 
yield an equivalent quantum mechanics. This will be so if the effect of the gauge 
transformation on the wavefunction : 

$+t,b’=exp (-iex) $ 

is not to produce a multivalued result. Since there is an ambiguity of 4 7  in the !& in 
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equation (2.46) we need 
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ni an integer 

which, since q = he, is Dirac's quantisation condition. 
Strictly speaking, to show the existence of the quantum mechanics it is necessary 

to show that the singular Hamiltonian is self-adjoint. The  sufficiency of the Dirac 
condition for this purpose was demonstrated by Hurst (1968). 

2.7. Further comments on the Dirac monopole 

2.7.1. The Aharonov-Bohm effect. The increased significance of the vector potential 
at the quantum level was greatly emphasised by the work of Aharonov and Bohm 
(1959, 1961). They showed that there would be quantum interference effects between 
two parts of a beam of charged particles, charge q say, which had passed either side 
of a region through which passes a magnetic field confined to a narrow tube in a 
direction transverse to the beam. This effect was subsequently experimentally verified 
(Mollenstedt and Bayh 1962). The magnetic field produces an interference effect 
even though the beam only passes through regions of zero field. The  condition for 
the absence of the Aharonov-Bohm effect is that qQ/2vh be an integer where Q is 
the total magnetic flux. The Dirac quantisation condition is thus precisely the con- 
dition that the flux along the Dirac string should give rise to no Aharonov-Bohm 
effect. The  magnetic field of the monopole then differs from that of the infinitely 
long solenoid used to define the vector potential by an unobservable tube of flux and 
we may regard replacing B by V A A as changing the field in an unobservable way. 

2.7.2. Dyons. So far we have considered particles with either electric or magnetic 
charge but not both. Dirac (1948) was uncertain whether they could exist. Schwinger 
(1969) has called them dyons. Consider a dyon with charges (QI, 91) fixed at the origin 
with another with charges (q2,gz) orbiting about it. The naive angular momentum 
analysis of 42.2 can be repeated. The contribution of the electromagnetic field to the 
angular momentum is now: 

(q1g2 - q2g1) 2/47 

and the quantisation condition becomes : 

n12 an integer, 

This condition is invariant under a rotation in the (q, g)-plane generalising the sym- 
metry under the duality transformation of equation (2.10) (Schrodinger 1935, 
Schwinger 1968), which is just a rotation through Q 7 .  

It has been suggested that quarks are dyons. For example, in the magnetic string 
model of hadrons, the quarks lie at the end points of the string and must have magnetic 
charges which are the sources of the flux along the string, as well as the ordinary 
electric charges (Schwinger 1968, 1969, Artru 1977). 

2.8. The moral of the monopole 

The discussion of this section can be regarded as a progressive development and 

92 
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elevation of the concept of gauge invariance. An important consequence of the 
quantisation of electric charge is that the group of possible gauge transformations, at 
a given point, can be thought of as a compact group, U(1), the group of complex 
numbers of unit modulus or, equivalently, of displacements round a circle, rather 
than the non-compact group, R, of real numbers under addition. The  action of a 
gauge transformation on a wavefunction is to multiply it by a phase factor: 

where q= nqo, n an integer and qo is the basic unit of electric charge. We can think of 
exp ( - iqoX/A) as the basic gauge transformation and all other gauge transformations 
on wavefunctions as representations of it; if exp ( - iqox/h) = 1, the gauge transforma- 
tion has no effect on any wavefunction. Thus we see that the compactness of the 
gauge group, being a consequence of charge quantisation, follows from the existence 
of a magnetic monopole (Yang 1970). In  the later sections we shall see how the global 
topology of a gauge group is intimately connected with the existence of monopoles. 

In  his original paper Dirac (1931) only treated the case, discussed here, of an 
electrically charged particle moving in a fixed magnetic monopole field. Dirac (1948) 
proceeded further and developed the relativistic classical and quantum dynamics of 
a system of moving magnetic monopoles and electric charges in interaction, based 
on an action principle. This is an impressive achievement because of the difficulties 
presented by the strings. Some problems remained. There were the familiar ones 
which occur when there are point particles with divergent self-energy. In  order to 
derive the equations of motion from an action principle it was necessary to postulate 
that a charged particle must never pass through a string, the ‘Dirac veto’. Recently, 
Brandt and Primack (1977a,b) have discussed how the Dirac veto may be avoided. 
Despite the difficulties, a quantum field theory of electric and magnetic charges has 
been developed (Weinberg 1965, Zwanziger 1965, Schwinger 1966a, b, c). 

We shall not follow these developments here because there is another, more 
recent, line of approach which it is the central purpose of this review to expound. In  
our discussion the concept of gauge invariance has played a fundamental role and it is 
natural to enquire about its possible generalisations from U( 1) to other compact gauge 
groups such as SU(2). The  crucial step in this direction was taken by Yang and Mills 
(1954) and Shaw (1955). If the electric charge operator is one of the generators of a 
compact gauge group such as SU(2), its eigenvalues, which are proportional to the 
possible electric charges of the particles in theory, would be quantised by the familiar 
arguments used in angular momentum theory. At first sight, nature does not seem 
to possess such a wide gauge invariance; for each generator of the gauge group we 
would expect a massless vector meson, but the only spin-one particle with zero or 
near zero mass is the photon. For this reason gauge groups larger than U( 1) seemed 
to lack physical interest, The  situation changed with the work of Higgs (1964a,b, 
1966) (see also Englert and Brout 1964, Guralnik et al 1964, Kibble 1967); if the 
vacuum state corresponds to a non-zero value of some scalar (Higgs) field, which is 
an SU(2) vector, it can break the SU(2) symmetry down to U(1). The electric charge 
operator would be the generator of this compact subgroup. Obtaining the electro- 
magnetic gauge group as a necessarily compact subgroup of a compact gauge group 
seemed to provide an alternative explanation of charge quantisation which did not 
rely on the existence of magnetic monopoles. But this appearance is superficial for 
it is in exactly these Higgs models that ’t Hooft (1974) and Polyakov (1974) found 
solutions corresponding to magnetic monopoles. However, these models do have an 



Magnetic monopoles in gauge Jield theories 1375 

advantage over the original theory of Dirac: the solutions no longer require point 
sources to be put in by hand and the magnetic charge is smoothed out, with a finite 
mass due to self-energy. Further the same Lagrangian describes any number of 
interacting monopoles. 

Before studying these developments we shall follow in the next section an 
apparently different line of thought which again leads to the same conclusion: the 
interest of a non-Abelian gauge theory in which the symmetry is spontaneously 
broken by the vacuum. 

3. An unusual relationship: the Sine-Gordon and Thirring models 

3.1. The Sine-Gordon model 

In  this section we shall review some interesting and intriguing properties of the 
Sine-Gordon equation in one space and one time dimension. This section is less 
detailed than the others since this is a subject in itself dealt with in other reviews 
(Scott et aZ1973, Coleman 1975b). I t  is when we try to generalise the results described 
here to a physical space-time of three space and one time dimensions that we shall 
be led again to a non-Abelian gauge theory with the vacuum spontaneously breaking 
the symmetry. 

The  Sine-Gordon equation : 

seems to describe a scalar field with ‘mass’ m=1/c$ and a non-polynomial self- 
interaction. The equation may be derived from the Lagrangian density: 

where 

V(+) = 01 (1 - cos P+). P (3 ‘ 3 )  

I t  is very easy to visualise a physical system which would be described by such an 
equation. Consider a long straight, horizontal ‘clothesline’ with identical pegs attached 
at equal distances along its length. Adjacent clothes pegs are connected by equal 
springs and each peg is acted on by gravity. If P ~ ( x ,  t )  is the angle between the peg, 
at the point x, and the downward vertical at time t then 9 is indeed the appropriate 
Lagrangian density in the continuum limit (in which the distance between the pegs 
tends to zero). The terms in 9 represent the kinetic energy, the potential energy 
stored in the springs and the gravitational potential energy, respectively, provided 
units are suitably chosen. 

Obviously the ‘ground state’ of the system is when all pegs hang down motionless. 
The constant in equation (3.3) has been chosen so that the Hamiltonian constructed 
from equation (3 .2)  has zero as its lower bound, which is attained in this ground 
state. Consider a situation in which the pegs hang down everywhere except in a finite 
central region in which ,f3+ increases by 2n-, so that there is a twist (‘kink’ or ‘soliton’) 
where the pegs flip over. This configuration could never decay into the previously 
described ground state since it would require an infinite amount of energy to flip 
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over all the pegs to the left (or right) of the kink in a finite time. Therefore one would 
expect a stable motionless state corresponding to this kink to exist as a solution to 
equation (3.1) and this may be constructed by direct integration under the assumption 
of time independence. 

This state resembles a particle, with structure, in several respects: its energy 
density is concentrated in a finite region; it can be made to move with any velocity 
less than unity (the velocity of light) since equation (3.1) is Lorentz-invariant (so 
that any solution will remain a solution after a Lorentz boost has been applied). 
Further, one can consider solutions in which several kinks move with different 
velocities, eventually colliding and scattering. Such solutions can be constructed 
explicitly, and using the mechanical model described above and other physical 
systems described by equation (3.1) they may be studied experimentally. 

The  mass of the kink is the energy of the time-independent solution in which /3+ 
goes through 2.rr as we go along the line: 

M = / : ,  [; (g)2+ V(+)] dx. 

For a time-independent solution the first integral of equation (3.1) is: 

using the boundary condition that the pegs hang down at large distances. Hence the 
mass can be written: 

Thus there is an unexpected particle-like solution to the Sine-Gordon equation, 
with a mass which increases as the coupling strength p decreases. I t  has little to do 
with the excitations of the + field which correspond to particles of mass mR afteY we 
have passed to quantunz mechanics. It is a classical object which can be given both a 
specific position and a specific momentum. 

3.2. Topological versus Noether conservation laws 

With a view to generalising to three space and one time dimensions, we shall try 
to understand and isolate the peculiar features of the Sine-Gordon theory which are 
responsible for its interesting behaviour. 

The potential V(+) of equation (3.3) has the form illustrated in figure 2 and so 
has an infinite set of degenerate minima : 

M o = { 2 m / P :  n=0, & 1, +2, . . .>. (3.5) 
Physically the various elements of this set, M O ,  of minima are equivalent. Since /3+ 
is an angular variable they all correspond to hanging down. Mathematically the fact 
that /3+ is an angular variable manifests itself in the fact that 9 is invariant with 
respect to the discrete transformations : 

+ + +’ = + + 2nn//3 n=0, +1, + 2 , .  . . . (3 .6)  
These transformations form a discrete group, the group of integers under addition, 
which we will denote by Z. Any two elements of M O  can be related by an element of 
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Figure 2. 

this group; that is, any two degenerate ground states can be related by a symmetry of 
the theory. 

I n  order for a solution to equation (3.1) to have finite energy 4 must tend to 
limits in A 0  as x tends to f 00, respectively; that is, the pegs must hang down at 
infinity. So: 

1 - 4( - .o> = 2nWP for some N E Z (3.7) 

always. This integer can be regarded as a 'quantum number' characterising the state 
of the system. I t  takes the value 0 for the ground state, + 1 for a kink, - 1 for an 
antilrink (in which /34 flips through -2n),  and so on. It is conserved as the system 
evolves in time since the pegs would need an infinite amount of energy to vary their 
position at positive or negative infinity. Given this conserved quantity one may seek 
a corresponding conserved current. Consider 

where epv is antisymmetric with &I= 1. Then ji. is automatically conserved (i.e. 
a p j p  = 0) and the corresponding charge : 

(3.9) P =-  [4 (00) -4 ( - .o ) ]=N.  
277 

Thus we have constructed a conserved current corresponding to N.  However, it 
differs from the usual sorts of currents derived from symmetries; we shall call it 
topological for reasons that will become clearer later. I t  has the following distinctive 
features. 

(i) It is conserved independently of the equations of motion. 
(ii) j o  contains only canonical coordinates and no momenta. Therefore its 

Poisson brackets with coordinates vanish and it generates no symmetry. 
(iii) j 0  is a spatial divergence. Its spatial integral is non-zero only if the field 

satisfies the boundary conditions, +( f 00)  E MO,  in a (topologically) non-trivial way. 
These features distinguish a topological current from a Noether current associated 
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with a continuous symmetry of the Lagrangian (indeed equation (3.2) has none) 
which has the following properties. 

(i) Its conservation follows from the equations of motion. 
(ii) j 0  contains canonical momenta. 
These comments suggest the conclusion that when there are degenerate vacua 

there can exist a new sort of conserved current, a topological current, transporting a 
conserved quantity which, unlike a Noether current or charge, is not associated with 
any manifest symmetry of the Lagrangian. 

3.3. The Thirring model 

We shall now see that the conclusion of the last subsection is, in a sense, false, 
but in a very subtle and interesting way. 

One strange aspect of the analysis of $3.2 is that we obtained a quantum number, 
i.e. a conserved quantity which takes only integer values, but in a classical rather than 
a quantum-mechanical system. Usually the existence of such a quantity is a quantum 
phenomenon, the discrete values crowding together to form a continuum in the 
classical limit. Consider, for example, the Thirring model (Thirring 1958) given by 
the Lagrangian density : 

9 = b h p  ap* - m$* - k$Yfl*$Yp** (3.10) 

(Like the Sine-Gordon model this would define a renormalisable quantum field theory 
in one space and one time dimension.) This theory has a continuous (global) U(1) 
symmetry : 

++ +’ = exp (ia) 1c, (3.11) 

which begets the conserved Noether current : 

and the associated charge : 
Q= J?, JO dx. 

This charge has a spectrum which is quantised in integral multiples of h, in the 
quantum field theory of the Thirring model (where # is a Fermi field), because of the 
commutator: [a *(.)I= --h*(.>* (3.13) 

Up to the factor of h, this equation says that the field $J carries unit quantum number, 
and so Q can be thought of as a sort of baryon number associated with the elementary 
field of the theory. 

The two currents JpIh = $p#/h  and j p  = Pepv av+/2n each have charges whose 
spectrum is just Z, the integers, yet one is a Noether current whilst the other is 
topological. Surprisingly they are the same if the Sine-Gordon model is quantised, 

Jp = gyp* (3.12) 

(3.14) 

and other parameters suitably adjusted. 
The equivalence of these currents and, more generally, of the Sine-Gordon and 

Thirring models, has a long history, originating in the pioneering work of Skyrme 
(1958, 1959, 1961a,b) and culminating in the work of Coleman (1975a) and Mandel- 
stam (1975), which again brought it to the attention of particle physicists. I t  is a new 
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sort of equivalence theorem because quantum mechanics is an essential feature and 
because the relationship between #J and i,h is non-local. 

In  the quantum Sine-Gordon model, j P =  , ~ E P ”  aV#J/2v is linear in the quantum 
fields and there is no ambiguity in the quantum operator or in calculating its equal- 
time commutators : 

[ jO(x ,  t ) ,  jo (y ,  t)I = [W, 4, j l ( y ,  t)l = O  (3 * 1 5 ( 4  

a [jO(x, t ) ,  j l ( y ,  t)] = iC -- ~ ( x - Y )  
ax 

with C= pzh/4772. The corresponding commutators for the Thirring model are more 
subtle to calculate but are known to be of the same form with C= (v+gh)-l. Hence 
the equal-time algebra generated by the currents coincides if equation (3.14) is 
satisfied and consequently this is a necessary condition for the identification of the 
two currents. 

Now the energy-momentum tensors in the two theories may be written in the 
Sugawara form (Sugawara 1968, Callan et a1 1968, Dell’Antonio et a1 1972): 

with U = (a//3)( 1 - cos ,8+) and m$+, respectively. If the parameters are suitably 
adjusted, the equal-time algebra generated by j P =  JP/h and U coincides in the two 
theories. This is sufficient to guarantee the identity of the Green functions for currents 
in the two theories. 

More details and the explicit relationship between + and i,h can be found in the 
literature (Coleman 1975a,b, Mandelstam 1975). i,!~ is the quantum field operator for 
the kink (or soliton) of the Sine-Gordon theory since it is a local field operator creating 
unit topological quantum number. Further it is fermionic though the distinction 
between bosons and fermions is less clear in one space and one time dimension. 

3.4. Generalising to four-dimensional space-time 

The structure we have described so far in this section is very interesting in itself 
but this interest would be enhanced if it could be generalised from two- to four- 
dimensional space-time. We shall find that in order to have topological quantum 
numbers resulting from the non-trivial boundary conditions asymptotically satisfied 
by the scalar field, long-range fields of magnetic type must be present. As the ana- 
logues of the kinks of the Sine-Gordon model we shall be led again to magnetic 
monopoles, but with some further insights. The  analogue of the Thirring model, i.e. 
the field theory of monopoles, has not yet been discovered (but see Montonen and 
Olive (1977) for a recent conjecture). 

We consider first finite-energy solutions to a scalar field theory : 

9 = Ha+>2 - V ( 4 )  V(#J) 3 0. (3.16) 

We use JtGo to denote the set of values of + which minimise the potential function 
V(+) describing the self-interaction of 4: 

d o = { + :  V(+)=O). (3.17) 
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We shall assume that these values are related by elements of the symmetry group, G, 
of 9, just as in the Sine-Gordon theory. 

There are difficulties in obtaining finite-energy solutions to the theory specified 
by equation (3.16) if the dimension of space-time is bigger than two. The  first 
arguments in this direction were presented by Derrick (1964) who demonstrated the 
absence of static solutions of this type by exploiting scale transformations. We will 
review the conclusions which can be reached in this way in $7.1. Here we will present 
a more general argument against the existence of topologically stable finite-energy 
solutions to the theory of equation (3.16). 

T o  understand the influence of the dimension of space-time consider it to have D 
space and one time dimension. If we have a finite-energy solution to the theory of 
equation (3.16)) 4 must tend to a point of A 0  as we go to infinity in any direction. 
The  possible directions in which we may go to infinity are labelled by the unit vectors 
in D-dimensional space : 

Finite energy then implies : 
SD-l=(V":V"2= 1). (3 * 18) 

&(i i>= lim +(RP) E A 0  P E so-1. (3.19) 

This is the analogue of the statement that eventually the pegs hang downwards at 
large distances in the Sine-Gordon theory. (Finite energy also requires a+/ar- tO 
faster than r-D/z; so that the limit in equation (3.19) exists at least for D > 3.) In  the 
Sine-Gordon theory D =  1, and SO is a discrete set consisting of two points, 1- 1. For 
D > 2, S D - 1  is a connected set and this is a very crucial difference. For suppose that 
D > 2 and A0 is discrete. Assuming +03 to be continuous, it would have to be constant 
and so topologically trivial. To get an interesting situation A0 must be some sort of 
manifold of non-zero dimension. T o  achieve this the scalar field must have several 
components, taking its values in some representation space of G. 

A good example of this is to take G= S0(3), the three-dimensional rotation group 
acting in an internal space, which we will refer to as isospin figuratively. Then 

R- t  m 

3 

2 = 1  

4 = (41, 4 2 ,  4 3 )  and 
9 = 4 (a4,)z- V ( 4 )  (3 -20) 

with 
v ( ~ ) = ~ x ( ~ l z + ( 6 2 2 $ ~ 3 2 - a 2 ) 2 .  (3.21) 

Then Ao, as defined by (3.17)) is given by: 

"a=(+ : 41' + + Z 2  + 9532= a'} (3.22) 

that is a sphere in three dimensions (essentially Sz), the sort of manifold required by 
the arguments we have just given. Note further that any two points of A 0  can be 
related by an element of SO(3). This example will constantly be used as a paradigm 
in the rest of this review. 

We shall now argue that it is necessary to extend this model further in order to 
get topologically stable finite-energy solutions. The energy of a given configuration is : 

H =  JdD~[&$z++(v+)2+ V ( 4 ) ]  
(3.23) 

(No assumption has been made about time independence and the inequality (3 -23) 

> J" dDx[$(Q4)2+ V(+)]. 
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will remain true even if the model is modified by the addition of further fields, pro- 
vided that the effect of these fields on H is the addition of further terms which are, by 
themselves, positive.) Now we may write (V+)2 as the sum of a radial and a transverse 
term, which for D = 3 take the forms: 

(3 -24) 

and if $m is not constant this latter term is of order Y-2  as r + w .  For 0 2 2  this 
contribution is sufficient to ensure the divergence of (3.23), and the finite-energy 
requirement forces 4 to be topologically trivial at infinity. 

At the quantum-mechanical level this model would have some undesirable 
features : there would be Goldstone bosons, massless particles associated with excita- 
tions in the field components tangential to d o .  This problem can be avoided with the 
Higgs mechanism where G is changed into a gauge symmetry and the massless gauge 
particles ‘eat up’ the scalar Goldstone bosons, becoming massive. The massless 
particles which remain are the gauge mesons associated with the generators of the 
little group, H ,  of bm. (This is discussed in greater detail later on; for a general review 
of gauge theories see Abers and Lee (1973) and Taylor (1976).) 

Replacing the global symmetry by a gauge symmetry also circumvents the diffi- 
culties presented by the inequality (3.23), since we must replace %+ by: 

where the covariant derivative, W, involves the gauge potentials, Wap, and the repre- 
sentatives, D(T@) ,  of the generators, Ta, of G in the representation, D, of G which 
acts on +, (V4)2 no longer occurs as a separate positive contribution to the energy. 
I t  is possible to have @+ decreasing like Y-2 whilst Wag and V+ both decrease like 
Y-1. In this way we may have both finite-energy and non-trivial behaviour at infinity 
for D = 3 but a subtle cancellation has to be arranged. Note that since the potentials 
decrease like r-1, we expect the field strengths to decrease like r-2, an inverse square 
law. We shall see this explicitly in the next subsection for D=3 .  For 0 = 2  this 
leads to the vortex line solutions of Nielsen and Olesen (1973), which are discussed 
further in 97. 

Finally we should mention that there are other interesting ways of generalising 
the features of the Sine-Gordon theory to three space dimensions. One approach 
is to regard the angular field variable, 4, as taking its values on the circle, 5’1; the 
topological quantum number is the number of times 4 covers the circle as x covers 
space, identifying positive and negative infinity. In  this approach one-dimensional 
space has been compactified to make a circle, and the topological quantum number 
is the ‘winding number’ of the map 4 defines from SI to SI. Skyrme (1958, 1959, 
1961a, b) generalised this to three-dimensional space by considering the non-linear 
0 model in which + takes its values in 5’3, Assuming 4 tends to a constant at infinity 
space may be compactified to form another three-dimensional sphere and a topo- 
logical quantum number is obtained from the winding number of the map +: S3-+S3, 
the number of times it covers the image space. I t  is also possible to produce models 
in which there are time-dependent extended solutions which owe their stability to 
conventional Noether conservation laws (Lee 1976, Friedberg et al 1976a, b, c; see 
also Coleman 1975a, b). 
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4. The 't Hooft-Polyakov model of a monopole 

4. I. The mode2 

Each of the apparently independent lines of thought followed in the two preceding 
sections has led us to consider a gauge theory with the symmetry group, G, spon- 
taneously broken by the vacuum to a subgroup H.  From $2 we expect to find electric 
charge quantisation (at least if the electric charge, Q, generates H =  U(1)) and magnetic 
monopoles, whilst according to $3 we expect to find extended 'soliton' solutions to 
such theories with long-range magnetic fields. In  this way we are led to anticipate 
a non-singular extended solution which at large distances looks like a Dirac monopole, 
and further that its magnetic charge will be related to the topological quantum number 
specified by the boundary conditions on the scalar fields. This section will show how 
these expectations are indeed realised. 

The  sort of theory which we have been led to consider is of considerable interest 
in its own right. Such theories are currently thought to provide a framework for the 
unification of weak and electromagnetic interactions. The simplest example, the 
one which we will discuss in this section, is known as the Georgi-Glashow model 
(Georgi and Glashow 1972). It consists of an SO(3) gauge field interacting with an 
isovector Higgs field +, and the Lagrangian is: 

.Y= -$Ga"Gapv++ gfi+. gP+- V(+) (4.1) 

(4 * 2) 

with V(+) given by equation (3.21). Gap is the gauge field strength: 

Gap= L@ Wav- 8 WaP-  e€g,bcWbPWcv (a= 1 ,  2, 3) 

and Wall is the gauge potential. The  covariant derivative, W+, of + is given by: 

( gp$) a = aP+a - e Ea bc wbP+c 

The quantities $a, Gap and (Bp+)a all transform as vectors with respect to local 
SO(3) rotations. (These statements are elaborated in $5.2 when we discuss the general 
case.) The  equations of motion are: 

(gpGpv)a= - e%b@$b(gP+)c (4.3) 
(W aP+)a = - &(+2 - a2). (4.4) 

gP"GP = 0. (4 5 )  

e ~ ~ = g { ( & a ~ ) ~ + ( ~ ~ ~ ~ ) ~ + ( I T a ) ~ f [ ( ~ ~ + ) a ] ~ > +  v(+) (4 6) 

GaOi= - eat Ga'3 = - EZjk lak  (4.7) 

Further we have the Bianchi identities : 

The energy density corresponding to the Lagrangian of equation (4.1) is: 

where 

in analogy with equations (2.6), and IT, = (@"')a, Notice that 800 2 0 and vanishes 
if, and only if: 

Gap = 0 (4 * 8) 

(gP+)a = 0 (4.9) 
V(+)=)X(+2-&)2=0. (4. lo) 
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A field configuration which satisfies 000 = 0 everywhere, and thus equations (4.Q 

4a=aaa3 Wa@=Oo. (4.11) 

Since 000 = 0 is a gauge-invariant condition, any gauge transform of equation (4.11) 
will also provide a vacuum configuration. 

An important concept in what follows is that of the Higgs vacuum. We shall say 
that the fields in a certain region of space-time are in the Higgs vacuum if equations 
(4.9) and (4, lo), but not necessarily equation (4. S), are satisfied. We have seen that 
the condition of finite energy enforces these equations asymptotically at large distances. 
In  particular this requires + E ~ k t o ,  the set of + which minimise V(+), which we 
introduced in equations (3.17) and (3.22). MO is a two-dimensional sphere of radius 
a in isotopic space. The little group H#, of + E A o ,  consisting of those elements in 
G= SO(3) which leave the given + invariant, is just the group of rotations about the 
4 axis and so is isomorphic to SO(2) or, equivalently, U(1). Since the H$ for + E MO 
are all isomorphic we shall denote any one of them by H. Physically H is of prime 
importance; it is the exact symmetry group of the theory. The original symmetry G 
is spontaneously broken down to H by +. 

Thus after symmetry breaking we are left with a U( 1) gauge theory which, conse- 
quently, has all the characteristics of Maxwell’s electromagnetic theory. It is reason- 
able to identify the U(l)  with the electromagnetic gauge group. If T a  (a=  1, 2, 3) 
are the SO(3) generators, this U(1) is generated by +. T/a  which will therefore be 
proportional to the electric charge Q. This precise correspondence with Maxwell’s 
theory only holds in the Higgs vacuum. When equations (4.9) and (4.10) fail to 
hold new phenomena can occur, amongst them, as we shall see, magnetic monopoles. 

We must emphasise that in seeking solutions with particle attributes we shall be 
treating the equations purely classically. We shall never discuss quantising them, 
although we should like to do this, because as yet it is not understood how to do this 
properly. Thus we will not have to face the difficulties of renormalisation. Neverthe- 
less the language provided by the particle interpretation, which fields acquire on 
quantisation, is ingrained and we can use it to obtain heuristically expectations of what 
might happen if one could quantise. The  spectrum that would be expected conven- 
tionally in the theory specified by equation (4.1) is shown below, the physical proper- 
ties being related to the parameters of the Lagrangian to lowest order. 

(4.9) and (4. lo), is what we shall call a vacuum configuration. An example is: 

Electric 
Mass Spin charge 

Higgs particle p = 4 2 4 1 1 2  f 0 0 
Photon 0 Tt 0 
Massive gauge particles M=aeh=aq f + q =  + e h  

The masses are calculated from the Lagrangian in the usual way by recognising 
that when we expand about the vacuum the coefficient of the quadratic term in the 
boson fields is the square of the mass divided by 2A2. Because I + I  = a  in the vacuum, 
the Higgs mechanism (Higgs 1964a, b, 1966, Englert and Brout 1964, Guralnik et al 
1964, Kibble 1967; for reviews see Coleman 1973, O’Raifeartaigh 1979) operates; i.e. 
charged components of the Higgs field are absorbed into the charged components 
of the gauge field giving it the specified mass and leaving a single massless vector 
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field as well as the remaining massive Higgs scalar particle. The mass divided by A 
is the inverse of the Compton wavelength (of the particle concerned) which will play 
an essential role in determining the scale of the finite-energy solutions. 

The  electric charge is obtained by comparing the SO(3) covariant derivative: 

% + ie Wu@Ta where (T# = - ic,ij 

with the electromagnetic covariant derivative of equation (2.33), a@ + iQR@/h. 
Identifying + . W @ / a  with A@ we find: 

Q = e+. Thla (4.12) 
which yields the results given above. 

The expression for Q given in equation (4.12) is valid in any representation. If 
extra fields are added to the model, Ta may have any eigenvalue which is half an 
integer. Thus the possible eigenvalues of Q are multiples of 3ek and electric charge is 
quantised in these units. 

The  factors of A in the expressions we have given for masses and charges makes 
their quantum nature explicit. 

4.2. Search for solutions using a simplifying ansatz 

We are seeking finite-energy non-singular classical solutions to the equations (4.3) 
and (4.4) which will be simple, but unlike the vacuum solution of equations (4.9)- 
(4.1 l) ,  not constant. Since the equations of motion are complicated and non-linear 
some sort of strategy is required. As we argued in Ss3.4 and 4.1 the finite-energy 
requirement forces the fields to be in the Higgs vacuum asymptotically at large 
distances : when this has been reached only the electromagnetic characteristics survive. 

Physically one would expect the solution with lowest non-zero energy to be time- 
independent and to have a high degree of symmetry. We shall now seek to make this 
expectation more concrete by using it to derive a simplifying ansatz for the fields. 
The reader who is prepared to accept tlzis ansatx without further rationalisation may 
proceed immediately to the next subsection. It was originally made by 't Hooft (1974) 
and Polyakov (1974) (but see Wu and Yang 1969). 

The symmetries of a given solution form a group, 90 say, which is a subgroup 
of the full group, 9, of symmetries of the equations of motion. Bo cannot be the full 
group 9 since only the trivial zero solution has this symmetry. Let us consider what 
Bo might be for the solution of lowest non-zero energy. Time independence pre- 
supposes a choice of Lorentz frame in which the fields are at rest. Given this choice 
the equations of motion have an SO(3) spatial rotational symmetry and a translational 
symmetry. Further there is an internal SO(3) symmetry associated with spatially 
constant gauge transformations. Finally there are certain discrete symmetries : 

P :  qL(r) --f 4 4  - r )  w,yr>-+ - Way-v) W,O(r) -+ W,O( - r )  (4 * 13)  

2: &(r)-+ - &(r) WaP(r) -+ WaP(r). (4.14) 
(which generate ZZ x ZZ, where ZN denotes the cyclic group of order N ) .  The action 
of P and 2 on F P Y  = + .GPvIa, which we identify as the electromagnetic field tensor 
in the Higgs vacuum, is given by: 

P: F y r )  -+ F y  - r )  
2: P ( r )  -+ - W ( r )  

F y r )  3 - F y  - v) 
FiO(r)-+ -FtO(r), 
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We may identify P with the parity transformation since it has the appropriate action 
on the electromagnetic field. Both P and Z reverse the sign of V .  B and, consequently, 
the magnetic charge of any solution. If either P or Z is included in 90 the solution 
must have zero magnetic charge. This objection does not apply to PZ and we will 
seek to include this in 90. 

Let us turn to the possible continuous symmetries. The solution will be localised 
and this breaks translation invariance. This leaves us with SO(3) x S0(3), the product 
of spatial and isotopic rotations, but this group is itself too big. It has various co- 
variant SO(3) subgroups : those consisting of either spatial or isotopic rotations alone, 
and the diagonal subgroup consisting of simultaneous and equal rotations in real and 
isotopic space. Invariance with respect to spatial rotations forces C#J to be constant 
asymptotically, leaving the boundary conditions satisfied in a topologically trivial 
way. Isotopic invariance forces t+ to vanish everywhere and the boundary conditions 
are not satisfied at all. The  general ansatz invariant with respect to the diagonal 
group, which has generators - ir A V + T, is : 

+a(r) = H(aer)  @/er2 Wao(r) = J(aer) @/er2 (4.15) 
1.i r22iai - r W  r W  

er ey 3 er3 
W,i(r)= - E ~ . I ~  -2 [l-K(aer)]+-----B(aer)+- C(aer).  (4.16) 

Invariance with respect to PZ forces B = C = 0. The solution then has an invariance 
group 9 0 %  SO(3) x Z2, the SO(3) being the diagonal group in the product of spatial 
and isotopic rotations and the Z 2  being the group generated by PZ. 

Another argument leading to this ansatz has been given by Corrigan et a1 (1976). 
Their argument starts from the assumption of invariance under simultaneous isotopic 
and spatial rotations but does not implement PZ invariance. The  assumed invariance 
leads to equations (4.15) and (4.16). These are gauge-dependent statements and, to 
that extent, the assumptions imply the use of a conventionally chosen gauge. Further, 
they do not fix the gauge in that local gauge transformations generated by Y. T respect 
the assumed invariance. Gauge transformations of this sort may always be used to 
set B to zero. The vanishing of C then follows from the equations of motion. 

Finally we note that it is possible to anticipate that the solution is a magnetic 
monopole with charge - 4.rr/e. The ansatz we have obtained is spherically symmetric 
in that any spatial rotation may be compensated for by a global gauge transformation. 
Thus we may regard - ir A V + T as a sort of generalised rotation generator and if we 
identify this with J/h, where J is the angular momentum of a charged particle moving 
in the given field as in 92.2, we obtain: 

P.J=i:.Tii=Q/e. 

Comparing with equation (2.19) we see this equals - Q g / 4 ~  and thus the magnetic 
charge, g, has the stated value, - 4 ~ / e .  We shall develop these considerations in a less 
heuristic fashion in 96. 

4.3. The monopole solution 

We shall now consider 
the time being: 

the ansatz obtained in the last subsection, with 

Waf= - E a i j  ey2 rf P - K ( a e r ) l  WaO=O. 

J=O for 

(4.17) 
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The  asymptotic condition (4.10) implies that: 

(4.18) 

Thus dm maps each point on the sphere, S2, of possible directions in which Y may go 
to infinity, to the corresponding point on A o ,  which is also essentially S2. It is not 
possible to continuously deform this into the constant map given by the vacuum 
configuration of equation (4.11). This, in itself, means that the monopole is stable 
against decay into the vacuum state. 

E =  - f 9  d3r 

For the ansatz of equation (4.17) the energy takes the form: 

(4.19) 

using f for the argument, aer, of H and K. The conditions for E to be stationary with 
respect to variations of H and K are: 

(4.20) 

(4.21) 

In  fact, equations (4.20) and (4.21) are the equations of motion for the ansatz (4.17). 
This may be directly verified by laboriously substituting from equations (4.17) into 
equations (4.4) and (4.5). However, there is a general principle given by Faddeev 
(1976a) and Coleman (1975b) which obviates the necessity of doing this. Roughly 
(that is, without the necessary smoothness assumptions) it may be described as 
follows. Suppose we wish to find the stationary points of some function F (here 
a functional) whose argument ranges over some set X. Let 90 be a group acting on 
X which consists of symmetries of F. If X O  denotes those points of X which are left 
fixed by all elements of 90, then a stationary point of F restricted to XO is also a 
stationary point of F over X. Here X is the set of all possible field configurations, 30 
is the SO(3) x Z2 group described in $4.2 and X O  are those configurations given by 
equations (4.17). 

The  appropriate boundary conditions for a finite-energy solution are 

K -  1 < O ( t )  H< O([) as ( -0  (4.22) 

K+O H N 5 sufficiently fast as e+ a. (4.23) 

That the system of equations defined by equations (4.20)-(4.23) has a solution was 
first indicated by computation. A simple argument that E has a lower bound of 
4rrale will be given in $4.6. That solutions do indeed exist is physically plausible and 
a rigorous proof has been given by Schwarz (1976). The  forms of H and K are sketched 
in figure 3. 

The total energy of the solution, which will be interpreted as the classical mass, is 
given by equation (4.19) where the integral is a function, f(hIe2) say, of h/e2, so: 

4n-a Mass=--f(h/e2), 
e 
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Figure 3. 

The following values for f have been calculated 

f (0) = 1 (Prasad and Sommerfield 1975) 
f ( O . l ) =  1.1 ('t Hooft 1974) 

f(0.5) = 1.42 

f(lO)= 1.44 ('t Hooft 1974). 
(Julia and Zee 1975) 

For a detailed numerical study of the monopole solution (and the dyon solutions 
discussed in $4.8) see Bais and Primack (1976). Numerical work on the monopole 
mass function, f, is also reported in Bogomolny and Marinov (1976). 

Using the conditions (4.23) we find that, to leading order at large distances: 
I I 

Only the component of G,$ associated with the neutral vector meson, the photon, 
survives yielding the magnetic field : 

(4.24) 

and, on comparing with equation (2.16), we see that we have indeed a magnetic charge 
of magnitude: 

g= -4vle. 

The  question of how this result relates to Dirac's quantisation condition immedia- 
tely presents itself, particularly in view of the fact that the 't Hooft-Polyakov mono- 
pole has been constructed within an entirely classical framework and Planck's constant 
nowhere enters into consideration. Now the constant e is a coupling constant not an 
electric charge; it has the inverse dimensions to those of charge and it is related to the 
charge q of the charged vector bosons by q= i e h ,  as explained in $4.1. Thus pg= 
- 4 4  consistent with Dirac's condition (2.15). However, q is not the smallest 
possible charge which might enter the theory, i.e. qo=&q because equation (4.12) 
relates the possible electric charges to the eigenvalues of the isotopic spin generators. 
This gives: 

(4 25) 
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and g assumes the lowest value compatible with the Dirac condition. Thus we say 
that the ’t Hooft-Polyakov monopole carries one Dirac unit of magnetic charge. 
A solution with the opposite charge is obtained by applying either of the transforma- 
tions P and 2 (see (4.13) and (4.14)) to the solution we have described. Note that 
the ’t Hooft-Polyakov solution is not invariant under the operation, P, although the 
original equations were. 

Finally we consider how the asymptotic values (4.23) are approached as 5-m. 
Asymptotically the radial equations (4.20) and (4.21) become : 

d2h 2X d2K- jy- - - d52 e2 h=o -- - 
dt2  

where H = h + 5. Consequently we deduce : 

K= O[exp ( - f ) ]  O[exp ( - Mr/h)] (4.26) 
H - ( = 0 [exp ( - p5/M)] = 0 [exp ( - p / h ) ]  

where we introduced p = (2X)1/2 ah and M =  aeh in $4.1. The approach to the asymp- 
totic form is thus given by the Compton wavelength of the massive particle associated 
in the field in question. This means that we can think of the ’t Hooft-Polyakov 
monopole as having a definite size determined by these Compton wavelengths, inside 
which the massive fields play a role in providing a smooth structure and outside which 
they rapidly vanish, leaving a field configuration indistinguishable from that of the 
Dirac monopole. 

4.4. klagnetic charge and topology 

I t  follows from equations (4.26) that the ’t Hooft-Polyakov monopole has a finite 
radius, RO say, determined by the Compton wavelengths h/M and h / p ,  of the heavy 
particles of the theory, such that outside the radius RO the field configuration is 
exponentially close to a Higgs vacuum; that is: 

gfiCp=8P+--eWfiA + = O  $2 = a2 for r + &  (4.27) 

with an error of order exp ( -r/Ro). 
We shall now assume that my finite-energy solution satisfies equations (4.27) 

very closely, except in a finite number of compact localised regions in space corre- 
sponding to monopoles, even if the solution is time-dependent. As yet no proof of 
this statement exists. We shall now analyse equations (4.27) with a view to clarifying 
our previous remarks about the Higgs vacuum. 

Given Cp outside the localised regions corresponding to the monopoles the general 
form of WP satisfying equation (4.27) is (Corrigan et al 1976) : 

(4.28) 

where Ab is arbitrary. I t  follows that: 

(4.29) 1 GP = - CpFw 
a 

where 

(4.30) 1 
a3e 

FP” = - 9. (%+ A 8.9) + afiA” - a’AP. 
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Further it follows from equation (4.27) and the field equation (4.4) that: 

a,FFv = 0 and a,”FhV = 0 

which are precisely the Maxwell equations (2.3) and (2.4). We have reached the 
important conclusion that in the Higgs vacuum (4.27) the only non-zero component 
of the gauge field tensor is the component associated with the U( 1) group of rotations 
about +, FPV, which satisfies Maxwell’s equations. In  this sense, outside the regions 
of the monopole, the SQ(3) gauge theory is locally indistinguishable from con- 
ventional electromagnetic theory. This conclusion is unaltered by the introduction 
of additional charged fields. 

Now we shall consider the global attributes of the Higgs vacuum by studying 
the magnetic flux, g,, through the closed surface C. By Maxwell’s equations g, 
will be non-zero only if E surrounds a region in which equations (4.27) fails, a 
potential monopole: 

(4.31) 

using equation (4.30) and the fact that the contribution of Afi vanishes by Stokes’ 
theorem, Notice that the derivatives ai+ occurring in equation (4.31) are those 
tangential to C, so that the magnetic charge within C depends only on the values of 
the Higgs field on C. In  fact, it depends on less, for if we consider a slightly different 
Higgs field satisfying equation (4-27)  : 

(4.32) 

The integral of the last two terms in this expression vanishes by Stokes’ theorem. 
Further, since aj+ is perpendicular to +, aj+ A ak+ is parallel to + and so the remain- 
ing term vanishes by equation (4.32). Consequently a small variation in the Higgs 
field +, subject to equations (4.27), produces no change in the flux, g. This is a 
fundamental result. I t  extends to any change in + which can be built up by small 
deformations. Such a deformation is called a homotopy. Examples of homotopies in 
the physical context under discussion are: (i) the time development of +, (ii) the change 
in + under a continuous gauge transformation, and (iii) the change induced by 
altering C continuously within the Higgs vacuum. Consequently g, is time-inde- 
pendent, gauge-invariant, and unchanged under any continuous deformation of the 
surface C containing the monopole or monopoles. 

In  particular with reference to figure 4, in which the unshaded regions are close 
to the Higgs vacuum and the shaded regions are the monopoles: 

gc,z =gc, +gc2. (4.33) 
Thus g is an additive ‘quantum number’; to see that it is quantised note that we may 
write g, = - 4nNje where : 

(4.34) 

N has the geometrical interpretation (Arafune et a1 1975) of being the number of 

93 
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Figure 4. 

times +(U) covers the sphere A 0  as r covers 2 once (the number of times Z is 
wrapped about A 0  by the map 4 :  2-  dlo), since the integrand is the Jacobian of +. 
Thus N must be an integer; it is called by mathematicians the Brouwer degree or 
PoincarC-Hopf index of the map. 

T o  show that every integer N may be realised for suitable + consider: 

+ ~ ( r )  = a(cos Nx sin 0, sin Nx sin 0, cos e) (4 a 35) 

where ( Y ,  0, x) are spherical polar coordinates. This covers dlo N times as v^ covers 
S2 once, and yields N in equation (4.34). 

The maps + : S2+ d20 can be divided into equivalence classes under homotopy ; 
two maps are in the same homotopy class if and only if they are homotopic. It is 
a result in homotopy theory that if d o  is a sphere, S2, the integer N in equation (4.34) 
completely determines the homotopy class. Thus the magnetic charge g ,  depends 
only on the homotopy class of  the map +: S2-+ A o .  

We have seen that the magnetic charge is topologically conserved and quantised 
in units of 4 r / e  for topological reasons. This is very reminiscent of the Sine-Gordon 
theory described in $3, Further, since the smallest electric charge that we expect on 
quantising the theory is 40 = +eh we have obtained Dirac's quantisation condition : 

exactly the same as in $2, but in a different context and by topological methods. 
It is believed that the homotopy classes of the Higgs field are separated by infinite 

potential barriers which prevent quantum transitions between them. In  this case 
magnetic charge will be conserved quantum mechanically as well as classically. 

4.5. The gauge relation between the Dirac string and the Higgs Jield 

The Dirac and 't Hooft-Polyakov monopoles differ in their internal structure. 
The  Dirac monopole has a point singularity for which a source has to be 'put in by 
hand' whilst the 't Hooft-Polyakov monopole has a smooth internal structure satisfying 
the SO(3) gauge theory equations without the need for external sources. Outside the 
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structure there is just one physical degree of freedom, the electromagnetic field, which 
satisfies Maxwell’s equations and yields a non-zero magnetic flux in each of the two 
cases. The only difference in this outer region is a technical one; the electromagnetic 
field tensor is expressed in terms of the vector potential AP by: 

Ffi’ = @Av - PAfi + (extra term) 

where in the one case the extra term is singular and involves the Dirac string (equation 
(2.38)) or, in the other case, is smooth and involves the Higgs field (equation (4.30)). 
(In the former case the string singularity cancels between the two terms, of course.) 
We shall now show that the ’t Hooft-Polyakov form of equation (4.30) can be put 
into the Dirac form of equation (2.38) by a gauge transformation. 

We saw in 92 that the Dirac string could be moved by a gauge transformation 
singular on the initial and final strings. We shall now see that the SO(3) gauge trans- 
formation which makes the Higgs field constant, thus formally putting +. (@+ A a.+) 
to zero in equation (4.30), is necessarily singular and automatically creates a Dirac 
string along its line of singularity. Conversely one can say that the ’t Hooft-Polyakov 
approach succeeds in ‘smoothing out’ the Dirac string into the other SO(3) directions 
and we shall see how this stops the Bianchi identities preventing a net flus. A calcula- 
tion similar to that now to be presented has been given by Boulware et ul (1976), 
who also considered scattering on the ’t Hooft-Polyakov monopole in some detail, 
showing that deviations from the Dirac theory occur only in deep scattering. 

Consider rotating the directions of + and Gfiv, which are parallel at each point to i 
in the Higgs vacuum, so that everywhere they point in the same direction, that of 
the x axis, say. This cannot be done continuously throughout all space; indeed it 
cannot be done continuously on any sphere containing the origin. For it is impossible 
to find a rotation defined continuously over the unit sphere S2 which rotates i to 
the fixed direction 8. But it can be done throughout the whole of space outside a 
cone with arbitrary small semi-vertical angle surrounding the negative x axis. In  
the limit as the solid angle contained by the cone tends to zero we regain the Dirac 
potential of equation (2.39) and the expression for the radial magnetic field is just that 
of equation (2.38), complete with the Dirac string. We shall see in detail how this 
comes about, starting with asymptotic forms of the fields, valid in the Higgs vacuum, 
obtained in $4.3. (We use 0 for the Pauli matrices; for further details of the formalism 
of gauge theories see $5.2.) 

Let us define, in the Higgs vacuum: 

and 

Under a gauge transformation, 

U = cos &b+ i sin 2~# k . O  E SU(2) 

i 
e 

where k2= 1 

(4.36) wfi -+ uW.%-l+ - ( a k )  24-1 

GF” --+ uG Ihuu-1. 
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(4 * 37) 

Now 

So that if we choose: 

uau-l=a cos $ + k A  Q sin $+(1-cos $) k(k.u). 

k =  k=iA P/sin t) 

ur. au-l= r . Q sin (w)+rf,Q s* 
sin 8 sin 8 

where i . P =  cos 8. We now choose $(e) to be a suitable differentiable function of 8 
with $(n) = 0 and $( 8) = 8 for 0 < 8 < .n - E ,  and consider a sequence of such functions 
with €40 so that $(S)t 8 (see figure 5 ) .  In the limit G d j - t 8 a 3 ~ t j k Y ~ / f ? r ~ .  

Figure 5. 

Under the gauge transformation U: 
1 w,+o WO+ --(1-$’) 2er 2.0 

and 
1 sin(O-$) - 1 (l-cos$)i.Qe Wx+- 0.Q-- ~- 

2er sin 8 ~ E Y  sin 8 

Let us introduce the potential A/L=+. Wpja. In the limit of $? 0, A!‘ becomes the 
Dirac potential of equation ( 2 . 3 9 )  : 

The field tensor: 
FflY = + . GPv/a 

In  the limit in which $f8: 
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yielding the Dirac representation of the magnetic field complete with the string, 
which cancels between the two terms in the expression for Fpv. 

4.6. The Bogomolny bound on the monopole muss 

An important feature of a monopole solution with a smooth internal structure is 
that its mass is calculable, in contrast to the Dirac monopole which, because an ex- 
ternal source has to be supplied in an ad hoc fashion, has an arbitrary mass. Further 
this arbitrary mass suffers an infinite renormalisation due to the fact that the self 
mass of the inverse square law magnetic field diverges at its origin. 

In  the Higgs vacuum the electromagnetic tensor Fp’ = 9. Gpv/a. For any solution 
the magnetic charge: 

(4 .38)  
= A  J gak(Bk+)ad3Y 

a 

where the surface integral is to be understood as taken in a limiting sense over the 
sphere at infinity. l a ’  is as defined in equation ( 4 . 7 )  and we have used the Bianchi 
identities of equation ( 4 . 5 )  which give 9’9ak= 0. Similarly, employing the equations 
of motion ( 4 . 3 ) ,  the electric charge : 

Consider the centre-of-mass frame of the monopole. Its mass is given by: 

Z S d3~${(”ak)2+ (go,’)’ + (9‘9)’) 
=$  J d 3 ~ ( & ~ k - ( & $ ) ,  sin 8}2+& Jd3u{aak--(@+), cos O}z+a(p sin 8+g cos 8) 

2 a(q sin 8+g  COS e) (4 .40)  

for any real angle 8. Choosing 8 to obtain the most stringent inequality: 

M 2 a(q2 +g2)1/2. (4 .41)  

For the ’t Hooft-Polyakov monopole : 

M2 a l g l .  (4 .42)  

These bounds were first obtained by Bogomolny (1976) and Faddeev (1976a) b). 
Here we have followed the treatment of Coleman et a1 (1977). 

The existence of a lower bound on the mass in a given sector does not necessarily 
guarantee the existence of a time-independent solution in that sector. For example, 
the sector with g = 2( - 4x/e)  and q = 0 presumably contains solutions describing the 
interaction of two like monopoles whose energy can always be reduced by further 
separation. Only in the single monopole sectors withg = k 4x/e  have time-independent 
solutions been found. 

Using the value of the magnetic charge Igl = 4 x / e  we can relate the monopole 
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mass %Ig to the mass of the heavy gauge boson M ,  = aeh = qa : 

where a: is the fine-structure constant and v =  1 or $ depending on whether the charge 
on the electron is q or iq Mg is thus much larger than Mq, which itself would be 
very large if we estimate its value at that usually assigned to the intermediate vector 
boson in unified theories. This puts the monopole well outside the range of current 
observations, 

4.7. The Bogomolny-Pyasad-SommerJield monopole 

We shall now consider whether it is possible to saturate the bound (4.42) and 
obtain a solution with M =  a I g I .  From the analysis of $4.6 this clearly requires the 
following to hold throughout space: 

Lao+ = 0 = 0 (4.43) 

(4.44) 
(4.45) 

The last condition can only be realised if the coupling constant h vanishes. However, 
we will understand this condition in the limiting sense h$O and thus retain, as a 
vestige of V,  the boundary condition: 

141 +a as Y+ 00. (4.46) 
This guarantees that the charges are still defined and quantised as in $54.4 and 4.6. 
It is easy to show that equations (4.43) and (4.44), together with the Bianchi identities, 
(@@)a = 0, imply the equations of motion (4.3) and (4.4) with h = 0 : 

BV@” = e+ A LaF+ LBp a k +  = 0. (4.47) 

Equation (4.44) has the virtue of being a first-order differential equation (Bogomolny 
1976, Coleman et al 1977). Substituting the ansatz of equation (4.17) into this 
equation yields : 

d H  E -= H-(K2- 1) d K  
dE 

E-=-KH 
dE 

(4.48) 

which naturally imply equations (4.20) and (4.21). The change of variables 
- H =  1 + (h  and K= (k leads to k‘ = hK and h‘ = k2. Using the asymptotic boundary 
condition (4.23) we obtain h2-k2= 1, leading to the solution 

H=Ho(()=f coth E- 1 K = Ko(5) = (/sinh 6. (4.49) 

This remarkable and useful solution in terms of elementary functions was first 
obtained by Prasad and Sommerfield (1975) by guesswork during some numerical 
investigations. 

As E-+ CO, H approaches its asymptotic form rather slowly: 

H - 5 = 1 + O[exp ( - E ) ]  
much slo_wer than the exponential behaviour given by equations (4.26) in general. 
There is no contradiction however since here p = 0. The Higgs field is now massless 
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and long range like the photon. Further, because of equation (4.44) the contributions 
of these two fields to the mass density are equal, giving a density in the tail which is 
double that of the Dirac or 't Hooft-Polyakov monopole (for h > 0). This would have 
observable consequences within the context of the model, e.g. by gravitational inter- 
actions. Further the long-range force exerted by the Higgs field is always attractive 
and is found to be (Manton 1977) equal in magnitude, for static BPS monopoles, to 
the inverse square law magnetic force. For oppositely charged monopoles these 
effects reinforce one another but for equally charged monopoles they exactly cancel. 
Thus the Bogomolny-Prasad-Sommerfield (BPS) monopole, unlike the general 
't Hooft-Polyakov monopole, differs in essential features from the Dirac monopole 
even at large distances and is not localised in the same way. 

Note that for the BPS monopole the mass density is simply: 

(@+)2= ay+. @+) 

But H(t)=&?+O(P) for small 
merely integrable. 

and so the mass density at the origin is finite, not 

4.8. Dyons 

The monopole solution of 't Hooft and Polyakov obtained in $4.3 was electrically 
neutral because the condition W,O=O was imposed in equation (4.17). This is not 
a necessary consequence of spherical symmetry in the sense of $4.2. Julia and Zee 
(1975) obtained spherically symmetric solutions with WuO= J(aer) +/er2 as in equa- 
tion (4.15). Because of the arguments of 94.4 the magnetic charge is quantised and 
further because of the symmetry is g = - 4n/e. But the electric charge is arbitrary, at 
least classically. Following Schwinger (1969) such solutions are called dyons (see 
92.7). The expression for the energy now takes the form: 

+ p ( H 2  - J 2 )  + - A - (H2-  [2)2 
4e 

Using again the argument of Faddeev (1976a) and Coleman (1975b) we can 
obtain the equations of motion by applying the variation principle directly to equation 
(4. S O ) .  The resulting equations : 

(4.51) 
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The appropriate boundary conditions for finite-energy solutions are : 

(4.52) 

In  integrating these equations there arises an arbitrary constant related to the 
electric charge, q, The bound (4.41) applied to the resultant mass and may be 
saturated by taking X = 0 : 

K -  1 < O(f),  H <  O(Q, J <  O(6) as 6+0 
K+ 0, H N  6 sufficiently fast, J < O(6) as f +  Co. 

g o +  = 0 8,k = (@+)a sin 8 g l a k  = ( g k + ) a  cos e. (4.53) 

Using the spherically symmetric ansatz in these equations leads to (Prasad and 
Sommerfield 1975, Bogomolny 1976) : 

~ ( 5 )  = ~ ~ ( 5  cos Bycos  e 

q e )  = ~ ~ ( 6  cos 8) 

J(6)  = H o ( ~  cos €!)/tan 0 

where HO and KO are the functions given in equations (4.49). From equations (4.38), 
(4.39) and (4.53) we see that the electric charge of the dyon is related to its magnetic 
charge by : 

q=g tan 8= - - tan 8. 

Semiclassical arguments have been used to argue that in a proper quantum-mechanical 
treatment q must be quantised (Tomboulis and Woo 1976, Gervais et a1 1976): 

477 
e 

q = nhe n=0, f 1 ,  f 2 ,  . . . .  (4.54) 

It is interesting that n= & & is excluded even though allowed by the Dirac condition. 

4.9. Candidates for  the magnetic current 

It has been argued in 994.1 and 4 .4  that in the Higgs vacuum (specified by 
LW+ = 0, 4 2  = a2) the electromagnetic tensor Fav should be identified with the com- 

ponent of GP” in the direction of +, which corresponds to the unbroken symmetry. 
Further we saw that this was the only remaining component, Gav= +F@”/a. We shall 
now discuss the extent to which it is possible to identify Fpv inside a monopole. From 
the equation : 

we see that this is equivalent to determining the magnetic charge density throughout 
the monopole. 

It has been made clear by Coleman (1975b) that there is no unique prescription 
for FPv outside the Higgs vacuum. If we could probe the interior of the monopole 
with a magnetometer what it would measure would depend on its detailed mechanism 
and how it responded to the other degrees of freedom such as the + field. We will 
consider two proposals that have been made. 

Originally ’t Hooft (1974) suggested : 

a,,XFPV = - JZP 

(4 * 55) 1 
e 

FP” = 4 . GF” + - $ . ( %’$ A .W$) 4 =+/I + I * 
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This is gauge-invariant and reduces to the desired form in the Higgs vacuum. Further 
it has the interesting property: 

aV*Fpu = 0 if + # O .  (4.56) 

T o  see this note that it is always possible to gauge transform $ to a constant in a 
neighbourhood of any point at which + # O .  In  that gauge: 

F P  = a p A v  - avAfi for Afi=I+. wfi 
and equation (4.56) follows in that gauge and, because it is gauge-invariant, in any 
gauge. Thus with this definition of Fpv, magnetic charge can only reside at zeros of the 
Higgs field. For the ’t Hooft-Polyakov solution it must be all concentrated at the 
origin. The definition of equation (4.55) seems to us unsatisfactory for the reason 
that it leads to point singularities when the essential difference between the ’t Hooft- 
Polyakov and Dirac monopoles seems to be that in the former case singularities have 
been smoothed out. 

Another proposal (Bogomolny 1976, Faddeev 1976a, b) is simply: 

Ffi’ = + . GILv/a. (4.57) 

The  corresponding magnetic current is: 

ks = a’( + . * CpU) / a  

=(Bv+).”Gpu/a (4.58) 

using the Bianchi identities of equation (4.5). The conservation of the magnetic 
current follows, without use of the equations of motion, from its definition as the 
divergence of an antisymmetric tensor. Further, A0 involves no canonical momenta 
and is the spatial divergence of the magnetic field q5agaB/a, as in equation (4.38). 
Thus it has much in common with the topological current (3.8) of the Sine-Gordon 
theory, in particular the properties we listed in $3.2. Finally we note,that for the BPS 
monopole this charge density is everywhere proportional to the mass density and so 
completely smooth. 

5. Macroscopic: properties of generalised monopoles 

5.1. Larger gauge groups 

The ’t Hooft-Polyakov monopole, described in the previous section, gives a clear 
picture of a magnetic monopole associated with an exact electromagnetic U( 1) gauge 
group that has a definite internal structure and a calculable mass, even though it is 
too heavy to be directly relevant to contemporary physics. 

Since the time of Dirac’s original work on monopoles it has become increasingly 
apparent that gauge symmetry groups play an important and perhaps universal role 
in the theory of elementary particle interactions. The exact gauge symmetry group 
of nature may very well be larger than the U(1) of electromagnetism. There might 
be an exact strong gauge symmetry group, the SU(3) of colour, and a weak gauge 
group, exact in some approximation. I t  is therefore worthwhile asking what sort of 
generalised monopoles can occur for these gauge groups, and to investigate their 
properties. The groups which appear to be of physical interest at the moment seem 
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to be sufficiently complicated and uncertain that it appears to be sensible to work with 
an arbitrary exact gauge group, H ,  requiring only that it be compact. We might even 
gain information about possible interrelations between strong and weak interactions, 
which would be of the greatest interest. 

In  order to classify the way in which the Higgs field realises its possible boundary 
conditions we shall have to go further into homotopy theory (which we mentioned in 
$4.4). This sharpening of our mathematical equipment will enable us to relate the 
homotopy class to a more physical concept, a generalised magnetic charge. The present 
section is devoted to this analysis. 

The properties discussed in this section may be thought of as macroscopic in that 
they are large-scale properties, which may be characterised by calculating generalised 
flux integrals in the Higgs vacuum, without probing the internal structure of the 
monopole. This internal structure is largely determined by the gauge group G 
within which H is embedded and which is spontaneously broken down to H by the 
vacuum. In this section we shall always assume that G is compact and connected. 
We shall return to the study of internal structure in $6 when we discuss smooth 
solutions to theories with gauge group G larger than SU(2). There G will play an 
important role but in this section we shall see how its importance can be suppressed 
and the exact gauge group, H,  brought to the fore. 

We shall describe these macroscopic properties first in terms of the values of the 
Higgs field outside the monopole. In  $5.4 this leads us to topological quantum 
numbers, generalising the soliton number of the Sine-Gordon theory which, under 
suitable assumptions, satisfy Abelian combination laws. Using the structure of the 
Higgs vacuum, analysed in $5.3, and certain results on homotopy theory, it will be 
argued in $5.5 that the structure of the topological conservation laws depends essen- 
tially on the global properties of the exact gauge group H.  This suggests that it 
should be possible to dispense with the Higgs fields and reformulate the topological 
quantum number entirely in terms of the H gauge fields. This construction will be 
performed in $5.6, using a sort of non-Abelian version of Stokes’ theorem. It is 
interesting in itself and also has important applications. In  $5.7 we shall use it to 
derive a generalisation of Dirac’s quantisation condition in the case where H has the 
structure U(1) x K, at least locally; we may think of U(1) as the electromagnetic 
group and K as the colour group. 

One difficulty with attaching physical significance to these topological quantum 
numbers is that they appear to be always Abelian. However, there are indications 
that this may not be the whole truth. It is possible that a non-Abelian group structure 
may play some role but that only vestiges of it remain at the classical level. Using 
again the analysis of $5.6 to obtain a rather general quantisation condition, we shall 
outline in $5.8 the possibility that a hidden ‘dual’ gauge group, Hv, may play a role 
in classifying monopole states. 

Having related the macroscopic properties to H we shall be able to relate the 
formalism used here, based on the Higgs mechanism, with that of Wu and Yang 
(1975, 1976) in $5.9. 

5.2. Review of general gauge theory formalism 

We discussed the formalism of gauge theories for the U( 1) of electromagnetism 
in $2 and, briefly, for SO(3) in $4 (Yang and Mills 1954, Shaw 1955). We now wish to 
give a more detailed treatment of a general gauge group G (Utiyama 1956, Glashow 
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and Gell-Mann 1961) assumed compact and connected, following Coleman (1973, 
197513). 

We can regard G as a group of matrices by taking any faithful (i.e. one to one) 
representation of G. Suppose { T U }  is a set of Hermitian generators of G, i.e. a basis 
for the Lie algebra, L(G), of G. Let 5, be a Lorentz scalar field transforming under a 
(real or complex) representation, D, of G: 

d+D(g) d* (5.1) 

Local gauge transformations are defined by taking g in equation (5.1) to be a function 
over space-time: g =g(x). Under such transformations : 

a$ + D(g) al.+ + a”D(g) 5,. 

To remove the unwanted second term in the result of this transformation we intro- 
duce gauge fields W a p  and associate with them a matrix in the Lie algebra of G: 

WP= WafiTa E L(G) (5.2) 

using the summation convention. If we specify that under a gauge transformation: 

(5.3) 
1 w/” +gWpg-l+ - (afig) g-1 
e 

then the modified derivative: 

W5, = a@$ + ieD( Wp) 5, 
(5.4) 

-+ W { a P  + ieD(W”)) 5, + { W g )  W-l) - ~ ( a i ” g g - 9  D(g) d 
= W )  gfi5, (5.5) 

and so transforms covariantly ; it is called the covariant derivative. 

transformation properties clear, consider : 
To define the field tensor for non-Abelian gauge fields in a way which makes its 

[w, 9 0 1  5, = W(95,) - LP(”1”#) 

= [ 8~ + ieD( W#U), 8’ + ieD( Wu)] 5, 
= ie{D( aiLWu) - D( 8Wfi) + ieD([Wp, WV])} +. 

Consequently, if we define the antisymmetric gauge field tensor by: 

we have : 
GP = GaiLVTa = aiLWv - a”fi + ie[Wa, W”] 

[ W, gU] 5, = ieD( Gpv) 4. 
(5 6 )  

(5.7) 
From this equation, which holds for any 4, we may deduce the effect of a gauge 
transformation on Gapu. From equation (5.5) we see that under a gauge transforma- 
tion, Bfi B’5,+D(g) 9fi -9’5, and, consequently, from equation (5.7): 

Gl”v-+gGPvg-l, (5.8) 
Notice that Gfi’ transforms covariant& according to the adjoint representation of the 
group; it is only invariant for an Abelian group. The adjoint representation of a Lie 
group is the representation of the same dimension as the group and defined by: 

fa+fa’=Dab(g) f b  where g’ = fa’ Ta=ggg-l. (5  * 9) 
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The generalisation of the homogeneous Maxwell equations of equations (2.2) 
and (2.4) follows from the Jacobi identity for the differential operators Oh. The 
Jacobi identity reads : 

[BA,  [P, P I ]  + [9./”, [@, .@]] + [P, [@, By] = 0. 

We can apply this to any + using equation (5.7): 

[BA, [BP, Ov]] + = ie[BA, D( Ga’)] + 
= ieD( gA GP”) 4 

where 
= @GpU + ie[WA, GILu] (5. lo) 

the appropriate form of the covariant derivative for the adjoint representation. Thus 
the Jacobi identity yields : 

@-Gay + W G u A  + P G A P  = 0. 

We can rewrite these Bianchi identities in a concise form by using the dual field tensor: 

(5.11) 

*GAP = fr &UP G 
U P p ‘  

Then equation (5.11) becomes: 
Ou* GPv = 0 

(5.12) 

(5.13) 

in exact analogy with equation (2 -4). 
This completes the discussion of the kinematics of gauge fields, but before we 

proceed to discuss the dynamics following from a gauge-invariant Lagrangian, we 
give the form of infinitesimal gauge transformations for the sake of completeness. 
Under the infinitesimal gauge transformation : 

(5.14) 

(5.15) 

(5.16) 

SGaaV = CbcaEbGCau. (5.17) 

In  these equations Cab, are the structure constants of the group (corresponding to 
the basis (Ta} of the Lie algebra): 

[Ta, Tb]=iCab,Tc. (5.18) 

1 
e 

6 WaP = CbC,Eb W,P + ~- a%, 

Since the group G is assumed to be compact we can always arrange that 

T r  (TaTb) = ~ S a b  (5  * 19) 

and then Cabc is totally antisymmetric in a, b and c. 
The Lagrangian density: 

9= -- ;GaYGapu + (BP+)+ B p +  - v(+) (5.20) 

where V(+) 0, is gauge-invariant provided that V is symmetric under G;  i.e. : 

V(D(g) 4) = V(+> (5.21) 
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and we choose the basis (Tal so that equation (5.19) holds. The invariance of the 
field tensor term follows from: 

1 GaPUGapp=- T r  (GpvG,,) 
K 

1 

K 
---f - T r  (gGpvg-lgGPug-l) 

=! T r  (Gfi’Gpu). 
K 

The Lagrangian density of equation (5.20) leads to the equations of motion: 

p g p + > a =  - w a 4 a  (5.23) 

gvGpv= - jP (5.24) 
where 

jafi = ie+tD( Tu) W+ - ie( . ~ + ) t  D( Ta) (b. (5.25) 

(In the case of a real scalar field the Lagrangian (5 -20) is conventionally replaced by 

(5.26) z= -1G 4 a P vGapv + 3(2fi+)T qL+ - V(+) 
leading to equations of motion given by equations (5.24) and (5.25) with: 

j a y  = ie+TD( Ta) -I%-’+.) (5 -27) 
The symmetric energy momentum tensor corresponding to the Lagrangian of 

(5.28) 

equation (5 .20) is : 

epjv= - ~ ~ / ’ u ~ ~ v ~  + * ( W ~ ) T  P+ + : ( av+ )+  W +  - g f i v p ,  

5.3. The structure of the Higgs vacuum 

We shall be examining finite-energy, though not necessarily time-independent, 
solutions of the theory defined by the Lagrangian of equations (5.20) or (5 -26). At 
any given time we shall expect them to satisfy the simpler equations : 

V(4) = 0 (5.29) 

B P +  = 0 (5.30) 

to a very good approximation everywhere in space apart from a finite number of 
compact regions which we shall call monopoles. (We are assuming the zero level of 
energy has been chosen to coincide with the minimum value of V,  as it was in $4.) 
The expectation just stated was true for the explicit solutions discussed in the last 
section but, since no general proof exists as yet, we must treat it as an assumption. 

As before, in any region of space where the fields satisfy equations (5.29) and 
(5.30) we shall say that they are in the Higgs vacuum. We now proceed to discuss 
the general features of the Higgs vacuum. Because V(4)  is invariant under the 
action of G, if $0 satisfies (5.29) so does D(g) 40 for any g E G. So, defining the 
vacuum manifold as in equation (3.17): 

MO={+: V(+)=O) (5.31) 
we see that G acts on d o ,  i.e. every g E G takes each point of MO to another point 
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of &o. The interesting cases are those in which dlo is non-trivial in the sense of 
consisting of more than one point; this is equivalent to saying that 4 is a Higgs field 
in the sense of having a non-vanishing vacuum expectation value. 

Two points 41, qSz which can be related by an element g E G: 

41 = w dz (5.32) 

are said to be on the same orbit. In  what follows we shall, in general, make an addi- 
tional assumption, namely that d l o  consists of a single orbit of the gauge group G. 
Another way to express this is to say that G acts transitively on d o ;  that is, given: 

41, $2 E Ado, 3giz E G such that 41=D(g12) $2. (5.33) 
This sounds like a rather technical assumption but we shall see that it is desirable 
physically. It is roughly the same as saying that all of the vacuum degeneracy is a 
consequence of the gauge symmetry group G and not of any accidental discrete or 
continuous global (as opposed to gauge) symmetry of V (Coleman 1975b). In  the 
Georgi-Glashow model which contains the 't Hooft-Polyakov monopole the action 
of the gauge group SO(3) on the vacuum manifold, a sphere in three-dimensional 
space, is clearly transitive because any given point of a sphere can be rotated to any 
other, An example of a non-transitive action, the sort we are excluding by assumption, 
is supplied by taking 4 to be an octet in an SU(3) gauge theory and 

V(4)  = i A ( 4 2  - a 2 ) 2  (5.34) 

d l o  is a sphere, S 7 ,  in eight-dimensional space. It is not difficult to see that the 
action of the eight-dimensional group SU(3) cannot be transitive on this seven- 
dimensional manifold. 

A fundamental, physically important, concept is that of the little group H,, of 
a point 4 E &lo. For a given + E dlo we define: 

Hb={h E G:D(h) +=+}. (5.35) 

As 4 varies within dlo, H+ varies within G but in a very convenient way, provided 
that the action of G on &lo is transitive. For if 41, 4 2  E AZO are related as in (5.33) : 

H$l = g12-1Ei,,,g12. (5.36) 

Thus HQ varies within G by conjugation and, consequently, is isomorphic for different 
4. Since I$$ is the exact, and therefore the directly observable, gauge symmetry group 
it is highly desirable that its structure should be independent of 4. In  particular, its 
dimension is the number of massless gauge particles and the eigenvalues of its genera- 
tors determine the possible values of the various physical charges, electric, etc. There 
would be problems of interpretation if these varied with 4. This undesirable situa- 
tion could obtain if the action of G on &lo were not transitive. In  the example of 
equation (5.34), with G =  SU(3), H,$ could be U(2) or U(l) x U(1), depending on the 
particular 4 E MO chosen. 

The assumption that the action of G is transitive means that the structure of &O 
is determined by G and H =  H40 for any given $0 E &o. In  fact: 

dlo = G / H  (5.37) 

the space of right cosets of H in G. (gl, g2 E G are said to be in the same right coset 
of H in G if and only if there exists an h E H such that gl=gzh. This defines an 
eqvivalence relation on G and the equivalence classes are the right cosets.) T o  see that 
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MO does indeed have the structure specified in equation (5.37), associate with g E G 
the point: 

4 = D(g) 9 0  (5.38) 

in Ao. The elements g l ,  g2 E G will be associated with the same 4 E A 0  if and only 
if: 

D(g1-1g2) 9 0  = $0 

that is, if and only if g1-1g2 E H or, equivalently, g l  and gz belong to the same right 
coset of H in G. Thus equation (5 .38)  associates points of M O  with right cosets of 
H in G in a one-to-one fashion and, since transitivity implies that every point of M O  
is associated with some coset, we may identify A 0  with the right coset space G/H. 
The result (5,37) means that once H has been determined the other details associated 
with the Higgs field may be ignored, at least as far as the structure of M O  is concerned. 

Now let us turn to the implication of equation (5.30). Using equation (5.7) we 
deduce that: 

D( GF”) 4 = 0 (5.39) 

in the Higgs vacuum. Since, from the definition of equation (5,35), the generators of 
H6 are those which annihilate 4, the only non-zero components of the gauge field 
tensor are those corresponding to H$. Thus only the H gauge fields permeate the 
Higgs vacuum, the region outside the monopoles; the other components of GI‘V are 
unexcited. (Note that in the ’t Hooft-Polyakov case equation (5.39) implies equation 
(4.29), a result we had obtained by direct calculation.) 

Later on, in $5.6, we shall demonstrate that equation (5.30) implies that if ~1 and 
YZ are two points outside the monopole regions then +(VI) and ~ ( Y z )  are necessarily 
on the same orbit of G in MO, irrespective of the assumption of transitivity. Of 
course, completely different finite-energy solutions could select different orbits of 5, 
in Ao, but such solutions could not be fitted together in the same universe unless the 
orbit was the same. To  this extent the transitivity assumption may be irrelevant. 

5.4. Topological quantum numbers and the Higgs field 

As before consider a field configuration, at a given time, consisting of several 
extended monopoles occupying compact regions M I ,  Mz, . . . ) M N  surrounded by 
a region, 2, in which the equations (5.29) and (5.30), defining the Higgs vacuum, 
hold to a good approximation. T o  this approximation: 

4(v) E AZO if Y E 2. (5 .40) 

Consider a closed surface C, lying within and enclosing M I  once. Then $ defines 
a continuous map from C to A o .  

As time evolves the monopoles may move and change shape. As long as they do 
not intersect E, v-+$(Y, t )  defines a map 2:- A 0  which varies continuously with 
time. (We are implicitly assuming continuity as a consequence of the classical field 
equations.) As we mentioned in 94.4, such a change is called a homotopy and +(Y, t l ) ,  
+(Y, t z )  are said to define homotopic maps 2: -+ Ao. Homotopy defines an equivalence 
relation and the resulting homotopy classes provide a classification of monopoles 
according to the way the Higgs field realises its boundary conditions. For the ’t Hooft- 
Polyakov monopole we saw in $4.4 that +:2:--+Mo was essentially just a mapping 
between spheres, S2, and the homotopy classes were labelled by the winding or 
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wrapping number of the map. Further the magnetic charge was just -4.rrle times 
this wrapping number N ,  defined by equation (4.34). 

To avoid pitfalls whilst developing these ideas further we must provide more 
precise definitions of the mathematical concepts. Two maps, between topological 
spaces X and Y ,  f 1 ,  f2 :X- t  Y are said to be homotopic if there exists a continuous 
map F sending (x, t )  .--) F(x ,  t )  E Y,  where 0 < t < 1 and x E X, such that : 

F(x7 0) =f1(x) and F(x ,  1) =fz(x). (5.41) 

Thus F maps X x [0, 11 -+ Y and constitutes a continuous deformation of the map fi 
into the map fi. It is called a homotopy. 

Frequently X will be taken to be an n-dimensional sphere, Sn, and the homotopy 
classes of maps Sn-+ Y will be denoted by Wn( Y ) .  Since, in homotopy theory, maps 
related by continuous deformations are equivalent, it is adequate, and it is frequently 
convenient, to regard Sn as a unit cube in n-dimensional Euclidean space with all 
points of its surface identified (as a single point). Thus S2 may be regarded as the 
unit square with its perimeter identified. In  particular, this construction provides us 
with a coordinate system on the sphere. I t  is singular at the point to which the whole 
of the perimeter of the square has been identified, but every coordinate system on 
the sphere must have at least one singularity. 

The  surface E surrounding the monopole and the sphere 8 2  are equivalent for 
the purposes of homotopy theory (indeed they are homeomorphic). Thus +: Z-t  A 0  
defines an element of W2(&0). Further, this element is gauge-independent. For 
any gauge transformation defines a continuous map C .--) G which hence defines an 
element of n,(G). But it is a celebrated result of E Cartan that every map S2-+ G is 
homotopic to a constant map, and since we are assuming G to be connected this 
constant may be taken to be the identity element of G. This homotopy demonstrates 
that 4 and its gauge transform define the same element of f i i ~ ( A 0 ) .  

Thus the homotopy class in nz(A~), defined by the map C - t d i o  provided by 
the Higgs field, gives a classification of monopoles which is gauge-invariant, conserved 
in time and independent of the particular surface C used to enclose the monopole, 
provided that it only does it once. (The orientation of C must also be specified to 
avoid sign ambiguities.) In  other words the homotopy class associated with a mono- 
pole is a topological ‘quantum number’, appearing at the classical level, similar to the 
soliton number (3.9) of the Sine-Gordon theory and generalising the magnetic charge 
(4.31) of the ’t Hooft-Polyakov model. In  contrast to those cases we have not found 
an integral formula which characterises the quantum number in terms of the Higgs 
field and, as far as we are aware, no such formula exists at present. However, for 
many purposes this does not matter. 

The relevance of homotopy classes in classifying generalised ’t Hooft-Polyakov 
monopoles was pointed out by Tyupkin et aZ(l975) and Monastyrskii and Perelomov 
(1975). Amongst other discussions and developments of homotopy in this context 
are Arafune et al (1975), Patrascioiu (1975) and, particularly, Coleman (1975b) and 
Goldstone (1976). Earlier work on the relevance of homotopy to the classification 
of solutions to field theories is to be found in Finkelstein and Misner (1959), Enz 
(1963), Lubkin (1963) and Finkelstein (1966). 

Now a physical question of crucial importance arises, namely, how do the topo- 
logical quantum numbers combine? Since information about the structure of particles 
is gained from scattering experiments, a quantum number is of little use unless 
we know the answer. Put more precisely, if the Higgs field 4 defines homotopy 
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classes C1, C2 and Cl2 by its values on the surfaces XI, & and l c l 2  respectively in 
figure 4, how (if at all) can one determine C12 from knowledge of C1 and C2 alone? 
This question has been discussed extensively by Coleman (1975b) and Goldstone 
(1976). In  general, Cl2 is not uniquely determined by C1 and C2, but a sufficient 
condition for it to be so determined is that be simply connected. This condition 
is just that f i~( .& 'o)  be trivial in the sense that all paths in M O  are homotopic to each 
other (Steenrod 1951). (A closed path is just a continuous map from the circle SI.) 
Given this condition the combination law corresponds to the group operation which 
plays a central role in homotopy theory, as we shall now describe. 

The  homotopy classes, f i n (  Y ) ,  which we have defined are called absolute homo- 
topy classes. This concept, which is the physically relevant one, is not the one which 
is most convenient mathematically. In  homotopy theory the more important concept 
is that of the relative homotopy classes, I In(  Y ) .  T o  define these relative homotopy 
classes one considers only maps in which the image of one particular point of the 
sphere is kept fixed at a certain base point yo E Y.  (This constraint applies to the 
homotopies as well as the maps being divided into classes.) If the space Y is connected 
(as indeed .MO is, as a result of transitivity and the connectedness of G) I In(  Y )  is 
essentially independent of the base point, yo. The reason for fixing a base point is 
that this makes it possible to define a binary operation on I I n (  Y )  turning it into a 
group, the nth homotopy group of Y.  For a summary of this and other aspects of 
homotopy theory see appendix 1. Two maps which are relatively homotopic are 
certainly absolutely homotopic. So IIn( Y )  provides a finer classification than fin( Y ) ,  
in general. However, if Y is simply connected, the distinction between relative and 
absolute homotopy disappears (Steenrod 1951, p86). Consequently, if we assume 
that the first homotopy group of .&'o is trivial: 

1( MO) = 0 (5.42) 

the values of the Higgs field C$ on 2 define an element of IIz(.&'o). It is possible to 
construct models in which equation (5 -42) fails (Coleman 197513, Goldstone 1976), 
but these are rather abstruse, and we relegate a discussion of these to appendix 2 
and henceforth assume equation (5.42). 

The  group operation on II~(&'~z,) corresponds precisely to the combination law 
for monopoles, which is well-defined given equation (5.42) (Coleman 1975b). For 
n 2 2, ITn( Y )  is always Abelian and the topological quantum numbers may always be 
thought of as additive : 

Cl2 = c1+ c2. 

Typically II2(.&'0) might be the integers, Z, the integers modulo some integer N ,  ZN, 
or some product of such groups. The  structure of &'o as a coset space provides us 
with much information about II2(&'0) which we shall discuss in the next section. 
Then, in subsequent parts of this section, we shall show how the topological quantum 
number can be calculated in suitable circumstances. 

(5 .43) 

5.5.  Topological quantum numbers and the structure of H 

We shall now see how the structure of A o ,  which we analysed in $5.3, enables 
us to relate the group of topological quantum numbers, seen in $5.4 to be isomorphic 
to II2(&0), to properties of H.  
94 
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In  the last subsection we outlined the definition of the homotopy groups, n,( Y ) ,  
n >  1. (For a more precise summary see appendix 1.) For various reasons it is both 
convenient and natural to define no( Y) to be the set of path components of Y.  (Two 
elements of Y are in the same path component if they can be joined by a continuous 
path in Y.) When considering a group I?, IIo(r) can be made into a group by defining 
the product of two components to be the component containing the product of any 
two elements, one taken from each of the two components. Then: 

no(r) r/ro (5.44) 
where Po is the path component of the identity, the largest connected subgroup of r 
containing the identity. 

We now seek to use the knowledge that JHO can be identified with the right coset 
space GIH. Let us assume for the moment that G is simply connected as well as 
connected ; these statements may be summarised as : 

ITo(G) = 0 II1(G) = 0. ( 5  .45) 

A theorem in homotopy theory then tells us that: 

and 
(5.46) 

(5.47) 

The isomorphism (5.46) tells us that the assumption that is simply connected is 
equivalent to assuming that H is connected. We made this assumption in the last 
subsection to ensure that the combination law for topological quantum numbers is 
well-defined. The  isomorphism (5.47), first employed in this context by Tyupkin 
et al (1975), Monastyrskii and Perelomov (1975) and Coleman (1975b), is very 
important physically because it expresses the structure of topological quantum 
numbers in terms of H only. 

The second isomorphism will be discussed and explicitly constructed, in the 
context of the Higgs mechanism, in the next subsection and both isomorphisms are 
outlined from a more abstract viewpoint in appendix 1. In  the remainder of this 
subsection we shall exemplify ( 5  .47) and discuss its significance. 

The assumption that G is simply connected can be removed if we replace ITl(H) 
in (5.47) by the subgroup of closed paths in II1(H) which are trivial (i.e. may be 
contracted to a point) in G. If we denote this by I I ~ ( H ) G  we may replace (5.47) by: 

n2(G/H)-  ~ I ( H ) G  (5.48) 

which is true independently of equations (5.45). The assumption that G is simply 
connected may not be too severe since given any Lie group G we may replace it by 
an essentially unique simply connected group, (the universal covering group of G), 
just as we may always replace SO(3) by SU(2). If G is compact and semi-simple 
(i.e. has no local U(l) factors), e will also be compact. 

It is clear that for solutions to gauge field theories of the class so far considered 
(namely without Dirac strings) (5.47) and (5.48) provide the same information. That 
is, for a theory with gauge group G and with the little group of the Higgs field in &lo 
being H,  we could instead use and obtain a little group I? of the Higgs field. Then 
Q/B= G/H and III(H)GN Ill(@). On the other hand, if Dirac strings are allowed all 
the elements of IT1(H) may be realised independently of G, and then there is some 
difference between the approaches. 
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Let us illustrate these observations in the context of the simplest example: the 
Georgi-Glashow model which contains the 't Hooft-Polyakov monopole. Here the 
gauge group G=SO(3), though we could replace it by SU(2) to obtain a simply 
connected group. The  homotopically distinct closed paths in H are: 

h(t) = exp (it$. T4nNt/a) O < t < l  (5.49) 
where (Ta)dj= -ieaij for G=S0(3) and T=&a for G=SU(2). For G=SU(2), 
H- U(l) and N can be any integer. For G =  S0(3), N =  SQ(2), which is isomorphic 
to U(l)  and N can be any hal€-integer (as the eigenvalues of Ta are now integral 
rather than half-integral). In  the latter case only those paths for which N is an integer 
are trivial in G =  SO(3). The  path with N =  4, for example, is just a rotation through 
27r and it is the familiar fact that this is a non-trivial closed path that allows spinor 
wavefunctions to change sign under such a rotation. So we see that Il1(S0(2)),,,3, 
differs from Ill(SO(2)); it contains just half the paths in the latter, although both are 
isomorphic to the additive group of integers, Z. 

We can see that both approaches yield the same information if we use the fact 
that, for both SU(2) and S0(3), the magnetic charge is related to the N occurring in 
equation (5 .49) by : 

g = 4nN/e. (5. SO) 

In  each case N must be an integer. Equation (5  .SO) will be established in the next 
subsection. For an SU(2) theory the unit of electric charge is 40 = *eh and equation 
(5.50) is just the Dirac quantisation condition. For a genuine SO(3) the unit of 
electric charge would be 40' eh and to obtain all the possibilities allowed by Dirac's 
condition we would have to consider solutions with strings. This would permit half- 
integral values of N in equation (5.50). 

A more drastic example of the restriction implied by the isomorphism (5.48) 
occurs in the Salam-Weinberg model (Salam 1968, Weinberg 1967) where G Y  
SU(2) x U(1) and HyU(1) with electric charge, Q, being a sum of an SU(2) and the 
U(l) generator, so that H does not lie entirely within the U(1) factor. Any closed 
path in H may be deformed in G to lie completely inside the U(l) factor and unless it 
is trivial there it cannot be deformed to a point in G. Thus, although ITl(H) N- Z, 
I I ~ ( H ) G = O  and any topologically non-trivial monopole must have a string which 
cannot be gauged away in G ('t Hooft 1974). 

In  this subsection we have seen that the structure of the topological quantum 
numbers can be characterised in terms of the fundamental group of H, I l l (H) .  This 
is the maximum possible structure, and if the original broken symmetry group G 
is not simply connected it will require solutions with string singularities to obtain all 
the possibilities corresponding to I I l (H) .  On the other hand, if Il1(H)=O no solu- 
tions with non-trivial topological quantum numbers are possible. Thus for H =  SU(2) 
there are no topological quantum numbers, whilst for H =  S0(3), nl(So(3)) = Z2, 
the cyclic group with two elements. In  general, for any semi-simple compact group 
H we may write H=A/K(H)  where k ( H )  is a subgroup of Z(R), the centre of R 
(the finite Abelian group consisting of those elements of R which commute with all 
others). It is not difficult to show that: 

Ul(H) k ( H )  (5.51) 
which is a finite Abelian group and this makes the structure of such topological 
conservation laws rather unusual. 



1408 P Goddard and D I Olive 

5.6.  Topological quantum numbers and the H gauge fields 

So far in this section we have progressed from having the topological quantum 
number defined in terms of the way the Higgs field realises its boundary conditions 
to seeing how the structure of such quantum numbers is determined by the global 
properties of the exact symmetry group, H. Now we will go further and show how to 
formulate the topological quantum number in terms of the H gauge fields, dispensing 
with the Higgs field. Physically this is eminently reasonable since, as we argued in 
$5.3, only the H gauge fields survive outside the monopole and thus they carry the 
long-range characteristics of the monopole. 

This construction is interesting in itself since it involves ‘path-dependent’ or 
‘non-integrable’ phase factors which were originally introduced by Dirac (193 1) 
in the electromagnetic context as we discussed in $2.1. They are, roughly speaking, 
exponentiated magnetic fluxes and, thus, enable us to relate topological quantum 
numbers to generalised magnetic charges in various situations. An important tool 
in this is a non-Abelian generalisation of Stokes’ theorem which we shall establish 
in this subsection and apply in the next two. The construction of the topological 
quantum number in terms of H fields was foreshadowed in the work of Lubkin (1963). 

Consider again the situation which we studied in $5.4 with a closed surface C 
surrounding a monopole. On and around E, in the Higgs vacuum, equation (5 .30)  
holds : 

9?F+ = 0 ( 5 . 5 2 )  

and this is the equation which will enable us to express the topological quantum 
number in terms of the H gauge fields. As we explained in $5.4, C is topologically 
equivalent to a sphere. We may parametrise Z in the way we said it was often con- 
venient to parametrise S2, i.e. by regarding it as the unit square with its perimeter 
identified to a single point. Thus: 

Z;=(Y(S, t ) : O < s <  1, o < t <  1) (5.53) 

where (s, t)-+Y(s, t) is one to one, save that the whole of the perimeter is mapped to 
a single point Y O  E C. For each fixed s, Y ( S ,  t )  describes a loop on C, starting and finish- 
ing at YO as t varies from 0 to 1. Then, as s varies from 0 to 1, these loops trace out the 
whole of E, starting and finishing with trivial loops consisting of a single point at 
YO.  Apart from Y O ,  each point of C lies on precisely one of these loops. 

The topological quantum number of the monopole within C is determined by the 
map +: C -+ &o. If we write $0 = +(YO) and 

(5 * 54) 

this map can be defined by the partial differential equation: 

subject to the boundary condition : 
9$+ = 0 (5.55) 

+(s, 0)  = 4 0  0 6 S < l  (5 .56)  

where +(s, t)=+(r(s, t)). Equation (5.55) can be written in the same form as the 
Schrodinger equation: 
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and our approach to solving it is to introduce the analogue of the time evolution 
operator. It is an element of the group, defined by the equation: 

%(s, t ) = O  subject to g(s, 0)=1. (5.57) 

This is solved by Dyson's formula: 

(5.58) 

where the T operation indicates that the exponential is symbolic; to evaluate the 
right-hand side of equation (5.58) the exponential must be expanded and the factors 
of Wi ordered with larger values of t occurring to the left of smaller ones before the 
integrations are performed. 

Equation (5.58) provides us with the unique solution to equation (5.57) but it is 
important to remember that it is well-defined over the unit square rather than Z. 
For g to be defined as a function on Z, we would need it to have the same value on 
the whole of the perimeter of the unit square. In  fact, g= 1 on three sides of it, 
because of the boundary conditions in equation (5.57) and because &{/at = 0 on s= 0 
and 1, But on t = 1, g(s, 1) will not be equal to '1 in general and we define: 

h(s)=g(s, 1)= 9- exp ie Wi - dt [ (. 1: z )I (5.59) 

The quantity h(s) is the path-dependent phase factor associated with the closed loop 
Y(S, t ) ,  0 < t < 1, s fixed. Further, as s varies from 0 to 1, h(s) describes a closed loop 
in the group, since: 

h(O)=h(l)= 1. (5 .60) 

The  object in constructing g was to find 4: X - + A o .  Indeed 4 is given by: 

4(s, = W S ,  t ) )  4 0  (5.61) 

as it follows from equation (5.57) that 4 then satisfies equations (5.55) and (5.56). 
Further it provides an expression for 4: X -+ M O  entirely in terms of the gauge fields, 
apart from 40, which may be varied without changing the topological quantum 
number, assuming only that MO is connected. (It also demonstrates the truth of the 
comment made in 95.3 that if YI and YZ are any two points in the Higgs vacuum 2, 
assumed connected, +(rl) and ~ ( Y z )  are necessarily on the same orbit of G in MO,  
irrespective of any assumption of transitivity.) 

Equation (5.61) may be interpreted another way by inverting D ( g ) :  

D(g(s, t1-l) 4(s, t )  = 40. (5.62) 

This says that D(g(s,  t)-l) is the gauge transformation which rotates #U) to the fixed 
direction 40 for Y E Z. Because h(s)# 1 this gauge transformation is singular at 
Y =  YO in general. If such a singularity were not forced on us in general all topological 
quantum numbers would be trivial since they would be related by gauge transforma- 
tions. This singularity may be regarded as occurring at a point at which a Dirac 
string crosses Z; g(s, t )  is just a generalisation of the gauge transformation explicitly 
constructed in $4.5. Although h(s)# 1 in general, it is restricted, because 4(s, 1)=& 
so that from equation (5.61) we see that h(s) E H. So using equation (5.60) we see 



1410 P Goddavd a i d  D I Olive 

that h(s) defines a closed loop in H.  This closed loop in turn defines an element of 
1T1(H). I t  is this element which corresponds to the element of IIz(G/H), defined by 
$: 2-  A,-, under the isomorphism (5.47) or, more generally, (5.48).  

We saw that g was uniquely determined by equation (5 .57)  given Wg. Now we 
wish to argue a somewhat different point, namely that, although the construction of 
equation (5 .59)  only involves Wi, the homotopy class of h(s) only depends on 
$: C.- MO. What makes this possible is the intimate relation between + and Wi 
brought about by equation (5.55).  Suppose that both g=gl(s, t )  and g=gz(s, t )  
satisfy equation (5 .61)  and the conditions: 

Then : 
g(s, O)=g(O, t )=g( l ,  t )=1.  

D(g1(s, 0)  $0 = D(gz(s, t ) )  do 

(5.63) 

so that gl(s, t)-1 gz(s, t )  E H.  Now, writing hi($) =gi(s, l), consider: 

?(S, t )  = A l p )  gds, 4-1  g2(s, t )  E H.  

It is continuous as a function of s and t and ~ ( s ,  O)=hl(s) whilst ~ ( s ,  l)=hz(s). This 
shows that hl and h2 are homotopic, defining the same element of II1(H), and estab- 
lishing that 4 determines the homotopy class of h. I t  is possible to argue further along 
these lines to show that this homotopy class depends only on the homotopy class of 
4, the element of IIz(G/H) that it defines and that the map lTz(G/H)+II1(H) 
constructed in this way is a group homomorphism. 

The loops in H obtained in this way are clearly trivial in G since g(s, t )  itself defines 
a homotopy in G between the trivial path g(s, 0) = 1 and h(s) =g(s, 1). Finally, to 
establish (5 .47)  and (5.48) it is necessary to show that the map ITz(G/H)-II1(H) 
is one-to-one. This depends on the result of Cartan that IIz(G)=O and, together 
with the other assertions we have made, is discussed further in appendix 1. In  this 
way we arrive at a proof of the theorem quoted in $5.5 but with a very useful explicit 
expression for the element of II1(H) in terms of the gauge potentials. 

We will now develop equation (5.59) further to obtain an expression for h(s) in 
terms of the field tensor W. In  equation (5.64) we view both 9 t  and g(s, t )  as 
acting on some further vector or matrix and replace equation (5.57) by: 

%g=g at where 

Consequently : 

and, defining g8 by an equation similar to equation (5 .54)  : 

g-1 9 t =  atg-1 

qg-1 %g) =g-1=% %g 

=g-Wt, =%I g by equation (5.57) 

ari al.? 
at as 

= ieg-1Gijg -- -. 

Now integrating with respect to t from 0 to 1 and using the facts that: 

(5 .64)  
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we obtain 

(5.65) 

This expression was given by Goldstone (1976)) but there is an earlier version by 
Christ (1975)) and it is possible that there are others. It provides a sort of non-Abelian 
Stokes' theorem. 

Equation (5.65) gives an expression for h(s) in terms of H gauge fields. (This 
is clear from the left-hand side of that equation and may be verified for the right-hand 
side using equations (5.39) and (5.61).) For H=U( l )  it reduces to: 

h(s) = exp (ie Jc B .  dS) 

and h(1) = 1 becomes the Dirac quantisation condition, eg = Znx, n E Z. 

5.7. Quantisation of chaqe in the presence of a colour gauge group 

An interesting possibility to consider is that H consists, at least locally, of two 
factors: U(l), which may be thought of as the electromagnetic gauge group, and K,  
say, which may be thought of as a colour gauge group and is such that the electric 
charge Q, which generates the U(1), is a colour singlet. With K=SU(3) this could 
well be the exact gauge symmetry of nature. We now consider how the colour gauge 
symmetry influences the electromagnetic charge quantisation conditions and how 
this might relate to the fractional charges of the quarks. 

The  local. information given so far fixes the Lie algebra of H but not its global 
structure. We shall see that this relates both to the possible monopoles which may 
exist and the specific electric charge assignments of the irreducible representations 
of K. 

A natural way of realising the situation we have just described is to have the Higgs 
field in the adjoint representation of G, the full gauge symmetry group, before 
symmetry breaking. The condition that M E L(G), the Lie algebra of G, be a generator 
of H ,  the little group of 4) is that M4 vanishes, which may be rephrased: 

(5.66) 

where $, = r&7'a. Evidently & E L ( H )  and, further, it commutes with all other genera- 
tors of%. Thus + generates an invariant U(1) subgroup of H ,  which we identify as 
the electromagnetic gauge group. Because every M E L ( H )  satisfies equation (5.66) 
we may write L(H)=u( l )  @ L(K)  where u(l)={Q}=L(U(l)) and K is the colour 
group, defined as being generated by those generators of H orthogonal to - +: 

L ( K )  = { M  E L(f.1) : T r  (+M) - = O}. 
WF has the expansion : 

Wfi = AP+/a + XiL - 

(5.67) 

(5.68) 

where a is the length of C$ in A 0  and T r  (&Xp)=O. Comparing the U(1) covariant 
derivative a@ + iQA@/h with the G covariant derivative a@ + ieW/', just as in equation 
(4.12), we see that the electric charge operator: 

(5.69) 

't Hooft (1976) has constructed a model with H having the structure just described 
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but in which the Higgs field is not in the adjoint representation. The electromagnetic 
direction is picked out by a vector x ,  in the adjoint representation, constructed out of 
the Higgs field in such a way that it is covariantly constant when the Higgs field is. 
Our analysis applies equally well to such a situation, replacing - + with 26 in equations 
(5.68) and (5.69). 

Now consider the situation described in the previous subsection, in which q3 is 
covariantly constant on a surface X surrounding a possible region of magnetic charge. 
Since h-l(dh/ds) is a generator of H,  we may write: 

a($) &o + iPa(s) K a  (5.70) 

where (Ka) is a basis for L(K) ,  for suitable coefficients a(s) and Pa(s). Using the 
non-Abelian Stokes' theorem (5.65) we shall show that the coefficient a($) has a 
simple physical interpretation: it is the derivative of the U(1) magnetic flux, @(s) 
through a surface spanning the loop FS, defined by s=constant. By equations (5.65) 
and (5 .7Q),  using T r  (TaTb)=&b: 

dh ie 
ds a 

h-1 - =- 

aK 

Since 4 is covariantly constant, rephrasing equation (5.61) : 

so that 

We identify the electromagnetic tensor FPV with the component of GP' in the direction 

FPU= - T r  (&GIu) 

(which satisfies the homogeneous Maxwell equations in the Higgs vacuum). Then: 

of - +: 
1 

aK 

as claimed. Integrating equation (5.70) : 

h(s) = K(s) exp - @(s) +O ($ - 1  
= k(s) exp (iQ@(s)/h) 

using equation (5.69), where k(s) E K, the colour group, is obtained by integration. 
Now h(1) = 1 and @(l) =g, the total U( 1) magnetic charge enclosed within X. Hence 
we obtain the quantisation condition (Corrigan and Olive 1976): 

exp (igQ/A) = K E K.  (5.71) 

This generalises the Dirac condition of previous sections, which corresponds to the 
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case where K is trivial and so k = 1. Note that this condition has been derived without 
reference to the equations of motion. 

We shall now proceed to discuss the consequences of equation (5.71) in some 
detail. A feature which is, at first sight, peculiar is that it relates the left-hand side, 
which is an element of the electromagnetic U(1) group, to an element of the colour 
group K on the right-hand side. If H were precisely U(  1) x K,  the direct product of 
the electromagnetic and colour groups, equation (5.71) could only be satisfied by 
both sides equalling the identity. However, all that we have assumed is that Q is a 
colour singlet which implies that H is locally a direct product, that L ( H ) = u ( l )  0 
L(K).  In  general, this need not integrate to a global property, as we shall now see. 

Since Q is a colour singlet, k ,  as defined by equation (5.71), must commute with 
the whole of the colour group, K,  i.e. it lies in the centre, Z(K) ,  of K. Now if K is 
semi-simple, as we shall now assume, its centre is finite. For definiteness let us 
specialise to the case of K =  SU(N). Any element of the centre of SU(N) must be a 
multiple of the identity matrix, 1 ~ :  

k=hlN.  

The restriction that k have unit determinant yields the possibilities : 

2nin h=exp (-N) n = l , 2 ,  . . . ,  N 

Thus Z(SU(N)) is isomorphic to H N ,  the group consisting of the complex Nth 
roots of unity. If K =  SU(N), it is possible to arrange that: 

U ( l )  n K=ZN 
or any subgroup of HN. Thus there may be a finite number of different ways of 
satisfying equation (5.71) apart from the trivial one of having both sides unity. 

The  non-trivial ways of satisfying equation (5 .71) are physically interesting 
because they relate the electric charges of particles to their colour transformation 
properties. For example, if Is) denotes a colour singlet state: 

AIS)= Is> 

exp (igqslh) = 1 
and so, by equation (5.71): 

(5.71') 

where ps is the electric charge of any colour singlet state and g is the U(1) magnetic 
charge of any monopole. Equation (5.71') is just the usual Dirac quantisation 
condition, but in this context it is only for colour singlet particles. Let qo be the unit 
of electric charge for colour singlet states, so that the possible values of q are: 

q s  = nqo n E H. (5.72) 

Then the possible values of g are: 

where qogo = 2nh. 
Let us suppose that there is a monopole with charge go that does not satisfy 

equation (5 .71) in the trivial way of having k = 1. Then the monopole must emanate 
a 'colour magnetic' flux. The  question of confinement does not arise since we are 
treating the monopoles classically; they are extended solutions and such solutions 
with k #  1 are know to exist, at least if K = SU(2) (Corrigan et a1 1976). I t  is the electri- 

g = mgo m E H  (5 .73)  
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cally charged particle states that are being treated quantum mechanically, moving in 
the given classical field of the monopole. 

The particle states form representations (c) of the colour group, K= SU(N), and 
to these representations may be attached an integer t(c),  defined modulo N :  

k I c) = exp (igoQ/h) 1 c) = exp (2x i t ( c ) /N)  1 c) (5.74) 

(using Schur's lemma and kS= 1). t(c) is an additive quantum number in the sense 
that: 

t ( C 3 )  = t(c1) + t(c2) mod ( N )  if I C 3 )  = 1 Ci> C3 I C2). 

For N =  3, t ( c )  is familiar as the triality of the representation (c). Now it follows from 
equation (5 .74) that: 

4c = 40(m + t ( c ) / N )  for some m E Z (5.75) 

where qc is the electric charge of any coloured state with the given value of t(c),  the 
generalised colour triality. So within this framework fractional charge arises quite 
naturally, with the fractional part related to the generalised colour triality. This is 
indeed what is observed in nature with K=SU(3). Note in particular that what is 
involved in equation (5 -75) has to be the colour triality, not the flavour triality, as 
only the colour group is an exact gauge symmetry group. This is in agreement with 
the fractionally charged charmed quark being an SU(3) colour triplet but an SU(3) 
flavour singlet. 

Of course, the situation just described is crucially dependent on having H =  U(3) 
rather than U(1) x SU(3), and the former structure would be implied by the existence 
of a coloured monopole with magnetic charge go. Once again we see that the global 
topological properties of the gauge group relate to the existence and properties of 
monopoles. Similar comments could be made for any simple colour group K. 

The possibility of a connection between magnetic monopoles and the fractional 
charges and confinement of the quarks has been raised a number of times, though 
there have been differences, some subtle, between the proposals. An early version 
of the ideas, outside the context of gauge theories, was given by Schiff (1966, 1967). 
For more recent discussions see 't Hooft (1976) and Corrigan and Olive (1976). 

Finally let us mention that there is a finer structure for g analogous to that in 
equation (5.75) for 4. If g is an integral multiple of Ngo the monopole is colourless 
by equation (5.71). This illustrates what may be a very fundamental feature of 
monopole theory, a symmetry between electric and magnetic properties. We shall 
discuss this further in the next section. 

5.8. Non-Abelian magnetic charge and its quantisation 

Most of the detailed results we have obtained so far refer specifically to Abelian 
and, in particular, U( l), magnetic charge, but in particle physics non-Abelian gauge 
groups H,  such as the SU(3) of colour, play an important role. We have seen that 
when the exact symmetry group, H,  is embedded in a larger spontaneously broken 
gauge group, G, the possible magnetic monopoles possess topological quantum 
numbers with the structure of n l ( H ) .  If this were the whole story, it would mean 
that for H =  SU(3), which is simply connected, there would be no topological quantum 
numbers. However, there are hints that there may be a finer structure to monopole 
solutions which will only be revealed when the theory is properly quantised. At the 
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present this has the status of a tentative conjecture which we shall attempt to explain 
in this subsection after deriving quantisation conditions on non-Abelian magnetic 
charge using the generalised Stokes' theorem of $5.6. 

Consider a static monopole solution in the gauge in which: 

Y. W,=O. (5.76) 

(For an argument that it is legitimate to impose this gauge condition see Coleman 
(1975b).) Then it follows from the fact that asymptotically its covariant derivative 
vanishes, equation ( 5 . 5 2 ) ,  that 4 is a function of direction, P, only, asymptotically and 
that, thus : 

1 vr#l I = O(y-1). 

I t  then seems reasonable to suppose that the gauge potential has the form: 

1 

Y 
Wi(Y) = - V(?)  + O(y-1-8) for some 6 > 0. (5 I77) 

Since, in the chosen gauge: 

(YW3) 
a rZG,pj= ~ 

aY 

it follows that, to leading order in the radius, the magnetic field is radial and propor- 
tional to the inverse square of the radius: 

(5.78) 

All known monopole solutions, including dyon solutions, enjoy the property 
(5 .78) with, in addition G(Y) being covariantly constant: 

2iG = 0. (5.79) 

The radial component of equation (5.79) is an immediate consequence of equations 
(5.76) and (5.78). On the other hand, the transverse component of equation (5.79) 
is a new statement which would follow from the spatial components of the equations 
of motion (5 .24) if, for example, Gio were known to be radial and the terms involving 
the Higgs field vanished (as seems to happen in practice in the known solutions). 

Taken together equations (5 .78) and (5.79) constitute a generalised inverse square 
law, for the (generalised) magnetic field, which enables us to evaluate the path- 
dependent phase factor of equation (5.59) exactly for large closed loops (Goddard 
et a1 1977). 

It follows from equation (5.57) and (5.79) that: 

G(?(s, t>) =gb, t )  Gco,g(s, 4-1 with G(0, = G(P0) 

and so using the non-Abelian Stokes' theorem of equation (5.65): 

ie d o  
4n ds 

= - G(o) -- (5.80) 

where Q(s) is the solid angle subtended by the loop FS (defined by s constant) at the 
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origin. Equation (5. SO) can be integrated immediately to give : 

(5.81) 

Hence, using h( 1) = 1 and Q( 1) = 45~ we derive the quantisation condition : 

exp (ieG(0)) = 1 (5.82) 

(Goddard et a1 (1977). Earlier derivations in rather different formalisms are given 
by Klimo and Dowker (1973) and Englert and Windey (1976).) The path of equation 
(5.81) is clearly homotopic to: 

h(s) = exp (ieG(0)s) (5.83) 

and this shows that all the information about the topological quantum number is 
contained in ‘generalised magnetic charge’, G(o), defined by the asymptotic (general- 
ised) magnetic field. 

Given the assumed form for the field of equation (5.78) and equation (5.79) these 
results are manifestly independent of the parametrisation, (s, t), and the choice of 
surface, C, and it is not difficult to see that they vary only by conjugation on changing 
to or the gauge. So far what we have said is valid for any compact group, including 
the familiar case of H = U ( l ) .  We will now investigate the particular features of the 
non-Abelian case. 

In  the non-Abelian case G(0) will transform under a gauge transformation y(v) : 

G(0) + yoG(0)yo-l where yo = Y(U0). 

We should like to extract from G(0) a gauge-invariant structure subject to the condition 
of equation (5.82). Consider H=SU(2) or SO(3) for definiteness. Then G(o) is a 
linear combination of the three generators TI, T2, T3 and we can remove most of 
the arbitrariness by using the gauge freedom to rotate G(o) till it is parallel to T3: 

G(0) --+ PT3. 

Clearly the magnitude of ,!3 is determined by the length of G(o), but there is a sign 
ambiguity (corresponding to the possibility of rotating through rr about the second 
axis, say). Otherwise P contains precisely the gauge-invariant information available 
in G(o). The  quantisation condition of equation (5.82) becomes: 

exp (iePT3>= 1. (5.84) 

If H = S 0 ( 3 )  and T3 is chosen as in 54.1, it has integral eigenvalues (called in this 
context the weights of SO(3)). Equation (5.84) then yields: 

for some n E Z. 477 n p= -.. ~ 

e 2  
(5 * 85) 

If H -  SU(2) and T3= 4-03, it has half-integral eigenvalues (the weights of SU(2)). 
Equation (5 .84) then yields : 

n for some n E Z. p=-- .  477 (5.86) 
e 

‘rhus we note that if H =  SU(2), /3 is 4rr/e times a weight of SO(3) and, conversely, if 
H=S0(3) ,  ,B is 4nle times a weight of SU(2): the two groups SO(3) and SU(2) 
appear in a dual relationship. 
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The  quantised structure of the ‘magnetic weights’ e/3/4.rr provides a finer gauge- 
invariant classification of the monopoles than that given by the topological quantum 
numbers (provided we regard ,8 and - ,B as equivalent). For H =  S0(3), the topo- 
logical quantum numbers have the structure of nl(So(3)) = ZZ. We see from equation 
(5.83) that the integral values of e,8/4.rr are all equivalent topologically to the trivial 
path, whilst the non-integral values are all equivalent to the only homotopically 
distinct non-trivial path, a rotation through 27. Thus the topological quantum 
number is the integer n in equation (5.85) taken modulo 2. For H= SU(2) all of the 
values of eB/4.rr correspond to topologically trivial paths since II1(SU(2>) = 0. 

The  first example of a non-Abelian monopole presented in the literature was for 
an SO(3) gauge theory (Wu and Yang 1969). I t  corresponds to the topologically 
trivial case n = 2 in equation (5  .85). Indeed the fact that it was written down without 
the aid of Higgs fields or Dirac strings makes the absence of a topological quantum 
number obvious. 

Although it is topologically trivial it is not clear that such monopoles are trivial 
from a physical point of view. I t  has been conjectured (Goddard et a1 1977) that in 
a complete quantum field theory the monopoles would behave as multiplets of the 
dual group (that is, SU(2) if H =  SO(3) and vice versa). Then the combination law 
for monopoles would be given by the Clebsch-Gordan series for combining representa- 
tions for the dual group. Thus the total generalised magnetic charge would not be 
determined uniquely by the charges of its constituents since the Clebsch-Gordan 
series for the product of two irreducible representations contains a number of different 
irreducible representations. The sign ambiguity in mentioned above provides a 
mechanism for introducing ambiguities in combining monopoles, even classically. 

The concept of the dual group, Hv, of a given group H extends to an arbitrary 
compact connected gauge group (Englert and Windey 1976, Goddard et a1 1977). 
(The global structure of H v  is determined by H ,  and the Lie algebras differ in the 
general case,) An important distinction between non-Abelian and Abelian monopoles 
is the discrete ambiguity in defining the magnetic weights /3, suitably generalised. 
(This discrete ambiguity generalises to the magnetic weights being defined modulo 
the Weyl group.) It is clear that the appropriate group for classifying states is H x Hv 
rather than just H if H =  U( l), for which Hv= U( l), since the states must be classified 
by both the electric and magnetic charge. 

Much more could be said about these conjectures (Goddard et a1 1977, NIontonen 
and Olive 1977) but proofs would require a much deeper understanding of the 
quantum field theory of monopoles than is available at present. We will make some 
further comments in 57.2. 

5.9. The relationship to the Wu-Yang formulation 
In  this section, in which we have tried to classify monopoles by their long-range, 

or macroscopic, structure, the significance of the Higgs field has progressively declined 
in favour of the exact symmetry group, H, and its gauge fields until, in the last sub- 
section, it has completely disappeared from consideration. On the other hand, let us 
emphasise that the Higgs field appears to be an essential ingredient in the microscopic 
structure of the monopole if it is to have finite energy. There is an alternative formula- 
tion of generalised monopoles due to Wu and Yang making no reference to Higgs 
fields at all, which we shall now discuss and relate to the analysis of the earlier sub- 
sections. 
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Wu and Yang (1975, 1976) formulated their approach for a Dirac monopole and 
then generalised it to the case of a non-Abelian group H,  discussing SU(2) and 
SO(3) in particular. In  this formulation the group H,  assumed compact and con- 
nected, is the only gauge symmetry; in our previous language G = H  since there is 
no Higgs field. In  consequence there must, in general, be strings if we try to describe 
the whole solution in a single gauge. 

Let us describe the region around a monopole by spherical polar coordinates 
(Y, 8, x). In  the Wu-Yang formulation the monopole has no internal structure and 
may be considered to be located at the origin. In  the Higgs field formulation we 
may consider the monopole to be located effectively inside some finite radius, ao, say, 
as an abbreviation for the fact that its internal structure decays exponentially at large 
distance. We divide the region outside the monopole, i.e. Y > a0 (with ao=O in the 
Wu-Yang case), into two overlapping regions: an upper region R+, for which 
O <  O < J n + E ,  and a lower region R-, for which & n - - ~ <  8<n, where E is a fixed 
positive constant. 

The  Wu-Yang formulation involves only non-singular I1 gauge fields written in 
two different gauges in the two overlapping regions R+ and R-. Although there may 
not be any gauge in which the H gauge fields would be non-singular everywhere, the 
fundamental requirement of Wu and Yang is that there exists a non-singular gauge 
transformation 7, defined through the overlap region R, n R-, which takes us from 
the R- gauge to the R+ gauge. In  particular, it is crucial that T ( Y ,  4 7 ,  x) be single- 
valued as a function of the azimuthal angle, x. Then, for any fixed value of Y :  

~ = T ( Y ,  $7, 2ns) EH O < s < l  (5.87) 

defines a closed path in H and, hence, an element of IIl(h1). Clearly this homotopy 
class is independent of Y and, further, would be the same if we replaced ( Y ,  in-,  27s), 
O < s <  1, by any homotopic path in R+nlZ-. It is also clear that the class will be 
gauge-invariant, assuming H to be connected, and so characterises some intrinsic 
property of the monopole. 

For H =  U( l), the electromagnetic gauge group, Wu and Yang (1975) showed that 
the single valuedness of 7 leads to the Dirac quantisation condition and that the 
homotopy class of 7 is labelled by the magnetic charge. The relationship between the 
work of Wu and Yang and Dirac has been discussed by Brandt and Primack (1977a). 

Returning to the Higgs field formulation, in a region, like I' > a, in which the field 
configuration is in the Higgs vacuum, we may pass to the Wu-Yang formulation as 
follows. (Of course, it is essential that all the degrees of freedom are contained in the 
H gauge fields for us to be able to do this.) We find gauge transformations gL(r) and 
g-(r) defined for Y ER, and Y E R- respectively such that: 

d(4 =g+(4 4 0  for r ER+ 
We apply g*(r)-l to obtain H=H4,  gauge fields in the two regions I?+ Then 7 is 
defined by: 

(5.88) 
for r E R+nR-. 

In  $5.5, we saw how to associate another path h(s) in H or, more properly, an 
element of I I l (H) ,  with a monopole in the I-Iiggs field formulation. What we wish to 
show now is that: 

(a) The construction of h can be extended to the Wu-Yang formulation, given 
their single-valuedness condition. 

V(Y) =g+(r)-l g-(r) E H 
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(b) In  either formulation, h and 7 define the same element of l l ~ ( H ) ,  i.e. are 
homotopic. 

It will then follow that 7 provides an alternative and more direct formulation of 
the topological quantum number, which we have discussed in 555.4 and 5.8, which 
generalises to situations in which the Higgs field is absent. 

T o  demonstrate the validity of proposition (a) we need to use again the path- 
dependent phase factors introduced in equation ( 5 .  SS), defining: 

(5.89) 

the path-dependent phase factor associated with the path, V :  r ( t ) ,  0 6 t Q 1. We shall 
consider paths on a given sphere, S, r = a > ao. Let <+(e, 4) denote the path-dependent 
phase factor associated with the path r(a, Os, +), 0 Q s Q 1, which proceeds from the 
‘North pole’, yo( 0 = 0), a distance a0 down a meridian and let C-( 6, 4) denote the phase 
factor associated with the path r(a, T - Os, I$), 0 < s 6 1, which proceeds from the 
‘South pole’, r,(0 = T ) ,  a distance a0 up a meridian. In  each case it is assumed that 
O < ~ < + T .  These paths stay conveniently within one of the regions, Ri, and the 
gauge fields Wg in equation (5,  89), are taken in the corresponding gauges to define 
<*(e, 4). Now consider a path, A,, proceeding from ro, down the $ 3 0  (Greenwich) 
meridian to r, and then back up the 4 meridian to roo In  the R +  gauge we would 
associate with A$ the path-dependent phase factor : 

h(s) = C + ( ~ T ,  +)-I ~ ( s )  <-(&T, 4) C-($T, 0)-1~(0)-1 <+(+T, 0)  where s = 4 / 2 ~ .  

(5.90) 

We have had to split up Ad into segments in the northern and southern hemispheres 
and use the transition function, 7, to relate them where A, crosses the ‘equator’. The 
element h(s) is perfectly well-defined and gauge-covariant in the sense that : 

h(s) --$ ,$yo) h(s) @o)-l 

under a gauge transformation ( ( r ) .  Further h(s), O < S Q  1, defines a closed loop in H 
provided the single-valuedness assumption of Wu and Yang holds. 

It is not difficult to see that the path h of equation (5.90) agrees, at least up to 
homotopy, with that introduced in equation (5.59) if we are working in the framework 
of a Higgs field formulation. This demonstrates the truth of proposition (a),  as it 
generalises h to the Wu-Yang formulation. To see that Jz, so defined, is homotopic 
to 7, consider: 

h&) = <+( 0, +)-I q(s)  <-(e, 4) <-(4 T ,  0)-17(0)-1 P (BT, 0 )  where s = $1271.. 

Using the Wu-Yang assumption again, h describes a closed path in H for each value 
of 6, 0 < 6 < J T .  Further: 

where 
hnp = h whereas JZO = Tk 

k=<-(&rr, 0)-1 r(O)-l <’(+T, 0 )  

and can be continuously changed to 1 since H is connected. So we conclude that 
77 and h are homotopic as claimed. 

The  formulation of Wu and Yang (1975) is closely related to the mathematical 
language of fibre bundles. Gauge theories have been discussed in this language by 
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a number of authors including Lubkin (1963), Trautman (1970), Ezawa and Tze 
(1976a,b, 1977) and Maison and Orfanidis (1977). In  the Wu-Yang formulation the 
monopole is described by a non-trivial fibre bundle with structural group H whilst in 
the Higgs field formulation it is described by a trivial fibre bundle with structural 
group G. It is this triviality which enables one to avoid a singularity inside the 
monopole. What we have described in this section is how the Higgs field enables 
one to reduce the structural group of the bundle from G to H. 

6. Microscopic properties of generalised monopoles 

6.1. Elementary monopoles 

This section will necessarily be much shorter than the preceding one. It deals 
with a subject on which there is a much smaller, though growing, body of informa- 
tion. In  the analysis of the macroscopic structure of monopoles we showed that the 
Higgs field could be dispensed with, but when the microscopic structure is examined, 
it seems to be essential for singularity-free, finite-energy monopole solutions. (Some 
authors, e.g. Troost and Vinciarelli (1976), would disagree with this statement.) 

First we would like to formulate criteria which will ensure that we are considering 
a single elementayy monopole rather than a bound state (or scattering state) of mono- 
poles. Reasonable sufficient conditions appear to be (Corrigan et al 1976): 

(i) There exists a Lorentz frame (the centre-of-mass frame) and a gauge in which 
all fields are time-independent. 

(ii) Further, the origin of this frame may be so chosen that the solution is spheri- 
cally symmetric with respect to the rotations generated by : 

Jo/h= -irA V + t  (6.1) 
where t l ,  t 2 ,  t 3  are (constant) generators of the gauge group G, satisfying the angular 
momentum algebra: 

Explicitly this means that the Higgs field 4 and the gauge fields WP satisfy: 

[t i , t j ]  = iqjktk. (6.2) 

q J 0 )  4 = 0  (6.3) 

[Jo, WO]=O (6.4) 

[Jd ,  Wj] = ihqjkWk. (6.5) 

wo=o (6.6) 

These conditions are all satisfied by the 't Hooft-Polyakov monopole discussed 
in $4, which also satisfies: 

and this together with condition (i) above implies that, in the centre-of-mass frame 
of the monopole : 

The conditions (i) and (ii) are also satisfied by the dyon solutions of $4.8 which do not 
satisfy the further restrictions of equations (6.6) and (6.7). 

Condition (ii) may ensure that the corresponding quantum-mechanical monopole 
has a definite spin angular momentum (Montonen apd Olive 1977). On the classical 
level it will certainly enable the field equations to be reduced to purely radial ones. 

(6.7) GiO = 0. 
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In  the next subsection we shall illustrate the procedure by considering monopoles 
in an SU(3) gauge theory. Then, in $6.3 we shall present some general deductions 
from the conditions introduced in this subsection, illustrating them from specific 
examples. Section 6.4 reviews some other work on spherical symmetry. 

6.2. Monopoles in SU( 3) gauge theories 

After SU(2), it is natural to consider SU(3) as the next most tractable gauge group. 
The  simplest possibility for the Higgs field is to have it in the adjoint representation, 
and we shall consider this first. Then there are several possibilities for the exact 
symmetry group H ,  depending on the orbit of the Higgs field which constitutes 
A o ,  the set of minima of the self-interaction. The orbit of a given value C$ of the Higgs 
field is determined by the eigenvalues of the corresponding matrix a$ = &&ha in the 
Lie algebra of SU(3). (We use ha, a= 1, . . . , 8, to denote the conventional basis for 
traceless Hermitian 3 x 3 matrices; see, for example, Gell-Mann and Ne’eman 1964.) 
The matrix may have either one, two or three distinct eigenvalues and then 
H=SU(3) ,  U(2 )  or U(1)  x U(l), respectively. In  the first case, $ = O ,  since it is 
traceless, and so d o  is topologically trivial; this case is uninteresting. The second 
case is the generic one for the general renormalisable self-interaction and is particu- 
larly interesting in view of the SU(2) subgroup. In this we can apply an SU(3) 
transformation to + to take it parallel to A8 whilst for a general -_ Q, we can say that it is 
possible to take itynto some linear combination of h3 and ha. 

We shall discuss the case of H = U ( 2 )  in some detail. Here we have the situation 
described in $5.7 and we can identify Q=eti+/u as the electric charge operator in the 
Higgs vacuum as in equation (5.69). Here-; is the value of the length of $ in MO. 
The  generators of H orthogonal to + as in equation (5.67) generate a colour group 
K2: SU(2). The quantisation conclicon of equation (5.71) takes the form: 

exp (igQ/A) = exp (2riK3) or 1 (6 * 8) 

where K 3  is a generator of the colour group, K, normalised to have half-integral 
eigenvalues. Thus if 40 is the smallest eigenvalue of Q, namely eh/21/3: 

where M is an even or odd integer, respectively. 
There are two gauge inequivalent choices for t in equation (6.1): 
(a )  t =  (&AI, 3h2, 4x3)  = +A. The t a  have eigenvalues - 4, 0, 4, and generate an 

SU(2) subgroup of SU(3). The general solution to equation (6 .3)  takes the form: 

g p )  = +a.$+) + gh*p(r). (6.10) 

Demanding that $ lie asymptotically in MO yields - + ( v ) + + ~ ( $ )  - as Y +  CO with: 

&($) = $a( d3A.P - P) 

= ah8 
for M =  k 1 or: 

for M = O .  
- 

(b)  t =  (AT, - X 5 ,  X2). The t a  have eigenvalues - 1, 0, 1 and generate an SO(3) 
95 
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subgroup of SU(3). Then the most general solution to equation (6.3) takes the form: 

(6.11) 
+(v)ap = ( $ 2 ~  - @ap) A(r) + iea/y+yB(r) 

= - 9 aP (l)(v^) A(r) + &aa(2)(P) B(r),  say. 

Demanding that - + lie asymptotically in .dl0 yields: 

for which M =  5 2, or 
+..(e) = - -- d3 a9(2) 

2 -  
for which M =  0. 

Notice that for case (b) ,  M is even in equation (6.9) so that the original and stricter 
Dirac quantisation condition is satisfied, whereas in case (a) it is not. Similar de- 
compositions can be made for the gauge potentials satisfying the condition of equation 
(6.5) and further simplified using spherically symmetric gauge transformations as in 
$4.2. For further discussion and fuller details we refer the reader to the work of 
Corrigan et aZ(1976). Other work on this topic is contained in Wu and Wu (1974), 
Marciano and Pagels (1975)) Chakrabarti (1975), Tyupkin et aZ (1975), Gursey 
(1976)) Horvath and Palla (1976a), Sinha (1976) and Madore (1977). Analogous 
treatments of SU(4) monopoles have been given by Brihaye and Nuyts (1977)) 
Kaku (1976) and Wilkinson (1977). There is related work on SU(N) by Goldhaber 
and Wilkinson (1976) and Horvath and Palla (1976b, 1977). 

If we relax the constraint that + transform under the adjoint representation of 
SU(3) another interesting possibility is available to us, namely to arrange for H =  SO(3). 
SO(3) is the smallest non-Abelian group which admits the possibility of a topo- 
logically stable monopole (since it has a non-trivial closed path, a rotation through 
2 ~ )  and SU(3) is the smallest simply connected group with an SO(3) subgroup. This, 
we argued in $5,  is the criterion for a non-singular ‘soliton-like’ or monopole solution. 

M Sat0 (private communication) has pointed out that we may arrange for H =  SQ(3) 
by taking $75 to be in one of the two conjugate six-dimensional representations of 
SU(3). We may conveniently realise this representation by representing $75 by a 
symmetiic 3 x 3 matrix which transforms according to: 

$75 ---f U+UT for U E SU(3). 

To obtain H=S0(3 )  one takes JZo to be the orbit of (some multiple of) the unit 
matrix, 13.  The little group of $75o=al3 then consists of 3 x 3 matrices satisfying: 

uuT=uZlT=l, 

which imply U E S0(3), the subgroup generated by AV, - As and X p .  One may proceed 
to discuss this example in the way we have just discussed the case where $75 is in the 
adjoint representation and, since the 6 representation is described by symmetric 
3 x 3 matrices whilst the 8 representation is described by traceless 3 x 3 matrices, the 
formalism is rather similar. Again there are two cases to consider, depending on 
whether t defines an embedding of SU(2) or SO(3) in SU(3), corresponding to (a) 
and (b)  above. We shall see in the next subsection that the solution corresponding to 
(a) t = + A  is topologically stable whilst the other is not. As yet there is no complete 
discussion of this model in the literature. 
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6.3. General properties of spherically symmetric monopoles 

In  this subsection we shall present some results which correlate and generalise 
features of the specific cases we have discussed. In  considering spherically symmetric 
monopole solutions for a general gauge group, G, it is not difficult to catalogue the 
gauge-inequivalent ways of embedding the rotation group generators t in the Lie 
algebra of G using the theory of Dynkin. (For a recent application of this theory in 
the context of instantons see Bitar and Sorba (1977).) But this is not the whole story 
since H4cr) and, in particular, its orientation with respect to subgroup R generated by 
tl ,  t 2  and t 3  also plays a role. Specifically, Hmcl, must have at least one generator in 
common with R, namely the radial component of t ,  i o  t = i: . Jo/h, using equation (6.1) 
since : 

D(i:. t )  +(v) = 0. (6.12) 

This is important because i. t completely determines the topological quantum number 
as an element of IT 1(H)  through the map (Olive 1976) : 

h(s) = exp (ii. t4ns) 0 6 S 6 l  (6.13) 

which is a closed path because t a  has half-integral eigenvalues. 
T o  prove that the path of equation (6.13) determines the topological quantum 

number note that we can always choose a gauge in which equation (5 -76) holds 
without disturbing the spherical symmetry conditions, equations (6.3)-(6.5). Then 
equation (5 .30) implies : 

Taking the vector product of equation (6.3) with r thus yields: 

v.V#=O. 

Y ~ V +  - iD(r A t )  # = 0 

from which we deduce that a possible solution to equation (5.30) for W is, given 6: 
(6.14) 

The corresponding field strengths which would be calculated from W(o)g are: 

(6.15) er2 

Although the potentials and field strengths are not necessarily of the form of equations 
(6.14) and (6.15) the analysis of $$5.6 and 5.8 shows that we may use W(O)~ and 
G(o)6j to calculate the topological quantum numbers as indicated in equations (5.78) 
and (5.83); this does indeed yield equation (6.13). 

We may deduce a number of corollaries to the result contained in equation 
(6.13). Firstly, if the generators t have integral eigenvalues (so that they provide an 
embedding of SO(3) rather than SU(2) in G):  

1 G (0)'J = - r" m tE(jk?k. 

exp (i3. t4ns) O < S < i  

defines a closed path in H and we have the more stringent quantisation condition 
that only those elements of IT1(H) which are squares of other elements can be realised 
as topological quantum numbers by this sort of monopole solution. 

Secondly, consider the case studied in $5.7 in which H locally has the structure 
of U( 1) x K. The topological quantum numbers are uniquely labelled by multiples, 



1424 P Goddad and D I Olive 

gQ/tz, of the generator of the electromagnetic U(  1) together with (the homotopy 
classes of) paths in K from 1 to K ,  E Z ( K ) ,  such that equation (5.71) is satisfied. 
Thus : 

(6.16) 

where KO is a generator of the colour group, K. This can be checked directly (Olive 
1976). I t  can be regarded as a generalisation of equation (2.18). Note that equation 
(6.16) immediately implies the quantisation condition of equation (5.71) since 
exp (4vii.t)=1. Further, if we are dealing with SO(3) embedding, i.e. i . t  has 
integral eigenvalues, we have the stronger condition : 

exp (igQl2A) E K (6.17) 

which is sufficient to explain why, when in $6.2 we considered SU(3) gauge theories, 
the monopoles in case (b)  satisfied a stricter quantisation condition than those in 
case (U ) .  

Now, consider the special case in which H = U ( l )  and there is no colour group. 
Equation (6.16) reduces to: 

i . t  =gQ/4&. (6.18) 

Let 40 denote the smallest non-zero eigenvalue of Q. The smallest non-zero eigen- 
value of i . t  is either 8 or 1 depending on whether t provides in embedding of SU(2) 
or SO(3). Equating the smallest eigenvalues on the two sides of equation (6.18) we 
see that the magnetic charge of a spherically symmetric U(1) monopole must satisfy: 

(6.19) 

respectively. Thus it has at most two Dirac units of magnetic charge whatever the 
nature of G (Olive 1976). If G =  SU(2), 40 is one-half the gauge particle charge and g 
can only be one Dirac unit. This result has been obtained in a number of other ways 
in the literature (Cremmer et al 1976, Weinberg and Guth 1976). 

In  the Salam-Weinberg model (Salam 1948, Weinberg 1967), where G =  SU(2) x 
U(1) with H=U(1) generated by Q not lying within either factor of G, spherically 
symmetric monopoles are impossible since the t must generate the SU(2) factor of G 
and equation (6.18) then implies that Q is an SU(2) generator, contrary to hypothesis. 

In  the model of the previous subsection, in which G =  SU(3), H =  SO(3), we see 
that equation (6.13) defines the trivial element of T[l (H)  in case ( b )  but a non-trivial 
one in case (a) supporting the statements made about topological stability there. 

Recently Wilkinson and Goldhaber (1977) have made progress towards finding 
all spherically symmetric monopoles for an arbitrary compact semi-simple gauge 
group. They follow the policy of first seeking ‘point solutions’ which are spherically 
symmetric and satisfy: 

@#I = 0 (6.20) 

everywhere but at the origin. These hopefully approximate exact finite-energy solu- 
tions asymptotically. (Earlier related work is contained in Goldhaber and Wilkinson 
(1976) and Bais and Primack (1977).) Alternatively we may present some of their 
conclusions within the framework of the sort of asymptotic assumptions made in 
$5.8, together with the assumptions of spherical symmetry set out in $6.1. In  
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particular, if we make the assumptions contained in equations (5.77) and (6.6) 
then, in the radial gauge of equation (5.76), equations (5.78) and (5.79) follow so 
that asymptotically Gfj has the inverse square law form: 

(6.21) 

where G(P) is covariantly constant. (Wilkinson and Goldhaber remark that this 
holds for a point solution everywhere but the origin under suitable assumptions.) I t  
is then straightforward to demonstrate that the generalised angular momentum : 

(6.22) 

satisfies the algebra: 
[ J B ,  Jj]=ih.qjkJk (6.23) 

and the spherical symmetry assumption of equation (6.5) further implies : 

[Jot, J j ]  = ihqjkJk. (6.24) 

From equations (6.23) and (6.24) and the fact that JO satisfies an angular momentum 
algebra it follows that: 

It  = (Joi - J")ih (6.25) 

satisfies an SU(2) algebra. If we assume equation (6.20) holds in an appropriate 
approximation : 

and so 
D ( J )  l$=O 

(6.26) 

generates an SU(2) (or SO(3)) subgroup of H p .  Thus we find that (Wilkinson and 
Goldhaber 1977) for a spherically symmetric monopole the generalised magnetic 
charge satisfies : 

(6.27) 

e 
4rr 

Z ( P ) = t + v  A W - -  Gf 

e 
- G(3) = i. ( t -  I ( : ) )  
4.n 

where t and I both satisfy SU(2) algebras, t being the internal generators of the 
spherical symmetry and Z being generators of the little groiip El6. This yields a 
necessary and sufficient condition for the existence of spherically symmetric point 
solutions. From equation (6.27) it is easy to verify the homotopic equivalence of 
the paths (5.83) and (6.13) specifying the topological quantum number of the 
solution, since the path: 

is trivial in the SU(2) or SO(3) group generated by I, which is a subgroup of H. 
Wilkinson and Goldhaber use their result to give a diagrammatic technique for 
finding point solutions to SU(N) gauge theories. 

exp ( - iP. 1477s) O < S < l  

6.4. Other solutions 

The spherical symmetry assumptions of equations (6. I)-(6.5) are unsatisfactory 
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as they stand since they lack a rigorous derivation from a reasonably general set of 
basic assumptions. It seems that so far alternative strategies have, in practice, led 
back to these assumptions. Weinberg and Guth (1976) formulated a more general, 
gauge-covariant expression of spherical symmetry which, they showed, retrieved only 
the known solutions in the 't Hooft-Polyakov case (see also O'Raifeaitaigh 1979). 

Michel et aZ(1977a, b) sought solutions which, like equation (4.17), were separable 
into products of radial and angular functions, but showed that there existed a gauge 
in which such solutions satisfied the spherical symmetry assumptions given here, 
equations (6.1)-(6.5). Indeed their assumptions are, in effect, more restrictive than 
the ones we have made since the solution of equation (6.10) does not satisfy the 
separability condition. 

Another approach is to attempt to generalise the Bogomolny-Prasad-Sommerfield 
monopole of 54.7. The argument for the Bogomolny bound given in $4.6 generalises 
to any gauge group provided that the Higgs field lies in the adjoint representation. 
Then H is necessarily locally of the form U( 1) x K as described in 95.7 and the argu- 
ment shows that the mass of any monopole with U( 1) magnetic charge g satisfies : 

One may seek to generalise the BPS monopole by attempting to saturate this bound 
when V(+)-O. It is natural to expect saturation to happen for some spherically 
symmetric solution, if at all. Czechowski (1977) has discussed this possibility for 
G=SU(3). An important open question is whether an analogous bound can be 
obtained if the Higgs field is not in the adjoint representation. 

Another major task remaining at the level of classical solutions is that of con- 
structing solutions describing two or more monopoles. Then their interactions can 
be studied. Some progress in this direction at the macroscopic level, made by Manton 
(1977), was briefly described in 54.7. 

7. Epilogue 

7. I .  Solitons and scale tvansfovmations 

An interesting aspect of the preceding sections is the dependence of the discussion 
upon the dimensionality of space-time, which we alluded to in $3.4. Consider a field 
theory in D space and one time dimensions of the sort discussed in 55 ; the topological 
quantum number associated with the boundary condition on the Higgs field corre- 
sponds to an element of IID-I(G/H). The fact that we are dealing with D = 3 enabled 
us to exploit the isomorphism of (5 .47) which reflects the fundamental result of 
Cartan that IIz(G)=O. On the other hand, we have not verified that there exist 
stable finite-energy classical solutions for values of D other than 3. T o  attack this 
question we follow a line of argument originated by Derrick (1964) and elaborated by 
Coleman (1975b) and Faddeev (1976a) based on the exploitation of simple scale 
transformations. This enables one to dismiss many possible theories as being in- 
capable of supporting stable finite-energy time-independent solutions. 

Suppose that the energy can be written as the sum of three positive terms: 
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where 
T&+, W] = J” d%F(+)(@+)t @+ ( 7 . 2 )  

Tw[ W] = J” dDxGaiJ’Gaaj ( 7 . 3 )  

vi41 = s @XU(+). (7.4) 

I t  is assumed that F and U are positive functions of + involving no derivatives. Note 
that the terms involving derivatives have the conventional quadratic form. 

Since the integrands are non-negative, each of these terms must converge separa- 
tely for a finite-energy solution. Under the scale transformation: 

+(x> + + h W  = +(Ax) 
W(x)  --+ W*(x) = hW(hx) 

(7 .5(4)  

(7 * 5(b)) 

q$[+h, W,l= h 2 - q d + ,  WI (7 .6(a))  

(7 ‘ 6(b)) 

(7 a 6(c)) 

we find that Bp+(x) --+ h BP+(Ax), GPU(x)+ A2GPu(XX). Consequently: 

T ~ [ W , I  = A ~ - D T ~ ~ [ W I  

v [+AI = A-D v MI * 
For a static solution H must be stationary with respect to arbitrary field variations 

and therefore, in particular, the scale transformation of equations (7 .5) .  This will 
be impossible if all the terms in equation (7 .1)  increase or, equally, if they all decrease. 
The few possibilities remaining to us are illustrated graphically by the table where t 
indicates that the term increases as h increases, j, that it decreases and 0 that it is 
independent of A. 

D T6 Tw v 
1 f f 4 
2 0 1. .1 
3 .1 1’ .1 
4 4 0 .1 

0 2 5  .1 .1 .1 
Thus for D =  1, V must be present; the Sine-Gordon theory illustrates the sufi- 

ciency of this. For D = 2  either all terms must be present or T+ alone; the first of 
these possibilities is a Higgs model leading to vortex lines (Nielsen and Olesen 1973) 
and the second we shall discuss below. For D = 3  all three terms must be present, 
yielding a Higgs model containing the monopole solutions discussed in $54-6. For 
D = 4  the only possibility is a pure gauge theory leading to the so-called instanton 
solutions. For D 2 5 there are no possibilities within this class of theories. 

The second possibility for D = 2  is for the scalar field to realise the symmetry 
group G in a non-linear way, its values lying on a manifold 4 which may be viewed 
as a coset space G/H (under suitable assumptions) where H is the subgroup of G 
realised linearly (Coleman et al 1969, Callan et al 1969, Isham 1969). 

What are the possible loopholes in this analysis? First one can seek time-dependent 
solutions. These are excluded for scalar fields when D = 3  by the argument of $3.4 
if we insist on non-trivial boundary conditions, But it is possible to accept trivial 
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boundary conditions using conventional Noether conservation laws to ensure stability 
(Lee 1976). 

Secondly we could add positive terms with higher powers of derivatives (Skyrme 
1961a, Faddeev 1976b), for example a term T+(4) containing fourth powers of 
derivatives of 4. Then: 

T$(4)[4J = X4-DT4(4)[4] 

so that it behaves like TIY in the table and can counterbalance T$ or V for D= 3. 
We shall now discuss briefly the structure of the topological quantum numbers 

associated with these possibilities. The Higgs model possibilities in D=2, 3 are 
classified by ITD-~(G/H). For the non-linear scalar field theory it follows from the 
finiteness of T+ by the argument of 93.4 that: 

I VI$ I = O(r-D/2). 

So for D 3 2, 4 tends to a constant at spatial infinity which is independent of direction. 
So we may add one point to D-dimensional space, RD, namely the point at infinity, 
to compactify it, obtaining S D .  The scalar field then provides a map SD-+&’, the 
manifold in which it takes values, and the topological quantum numbers are classified 
by KID(&). Since: 

rI,(Sn) = zs,, m<n 

the simplest possibilities are to take & = S 2 = S 0 ( 3 ) / 0 ( 2 ) ,  for D = 2  and &=S3= 
SU(2) = S0(4)/S0(3) for D = 3, which is indeed the non-linear model 0 considered by 
Skyrme (1961a). 

For the pure gauge theories in 0 - 4  the finiteness of Tw requires rZG{j--tO as 
Y+ 00. This implies that we may use the tangential component of: 

1. wi = - e ( aig) &r-l 

for large T to define g(P) E G depending on the direction P E S3. This provides a 
continuous map S3-G and so a topological quantum number in n3(G). (Strictly 
speaking, this argument must be supplemented by an assumption of angular uni- 
formity.) 

Notice that this analysis has revealed two distinct types of topological conservation 
law (Faddeev 1976a). In  the cases where gauge fields play a role the topological 
structure depends on non-trivial asymptotic behaviour leading to an element of a 
group IID-l(X) defined by a map from the sphere at infinity, S D - 1 .  In  the scalar field 
cases the topological structure depends on trivial asymptotic behaviour, enabling the 
space to be compactified from RD to S D  and an element of a group I ID(X)  be defined 
by the values of the field throughout space. It should be remembered that even 
where a topological quantum number exists, the quantum-mechanical stability of the 
objects bearing it has not yet been established. 

7.2. The quantum theory of monopoles 

Quantum field theories of Dirac monopoles were discussed some years ago 
(Schwinger 1966a, b, c, 1975, Zwanziger 1965) but the new developments reviewed 
in this article add extra ingredients io the discussion. We now have a classical picture 
of a monopole as having an internal structure and a finite mass (see $4). Could it be 
that renormalisation is finite or even unnecessary in such theories? This would 
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resolve the dilemma as to whether the Dirac condition should apply to the bare or the 
renormalised charge. 

At piesent there is no answer to such questions. The work done so far is of a 
rather preliminary nature and we shall not try to review it in detail. The  main tech- 
niques applied have been to consider quantum fluctuations about the 't Hooft- 
Polyakov classical solution (Christ et al 1976, Hasenfratz and Ross 1976) or have been 
semiclassical (Tomboulis and Woo 1976). These methods have been applied to the 
Sine-Gordon soliton (see Neveu (1977) for a review) but deny us the most important 
quantum-mechanical insight : the equivalence to the Thirring model, with the Thirring 
field creating the solitons (see $3). 

This provokes the question as to whether there is an analogous result for mono- 
poles. By this we mean an alternative but equivalent version of the field theory 
involving fields which create magnetic monopoles, with the electrically charged 
particles occurring as solitons. I t  seems likely that the local fields describing the 
magnetic monopoles would be non-local with respcct to the local fields describing the 
electrically charged particles (that is, the two sorts of field would not commute at 
space-like separation) just as the Sine-Gordon and Thirring field operators are. The 
expectation of an analogy between the Sine-Gordon theory in two-dimensional 
space-time and the 't Hooft-Polyakov theory in four-dimensional space-time is 
enhanced by various points of similarity : the structure of topological quantum numbers 
in the two theories; the topological current associated with them as given by equations 
(3 .8) and (4.58); the mass formulae of equations (3.4) and (4.42). 

Montonen and Olive (1977) have speculated that in the Bogomolny-Prasad- 
Sommerfield case, discussed in $4.7, the dual field theory describing the monopoles 
is formally the same as the original one but with the roles of electricity and magnetism 
reversed. The Lagrangian would be a Georgi and Glashow (1972) one but with 
coupling constant being g/A. The magnetic monopoles would be created by the 
charged gauge fields. The topological and Noether quantum numbers would have 
exchanged roles. These statements are as yet conjectural but there is some circum- 
stantial evidence in favour. The symmetric mass formulae: 

M4= 141 a M,= lgl a 
support the idea that the charged gauge particles may be solitons in a dual version of 
the theory. Further evidence is supplied by the forces between monopoles calculated 
by Manton (1977) which [asymptotically) cancel for like monopoles and behave like 
g2/4m2 for unlike monopoles. This is precisely analogous to the forces between the 
charged particles because they can exchange both photons and massless Higgs 
particles to interact at large distance. The latter contribution is always attractive 
and either cancels or doubles the photon contribution. 

For a more general exact symmetry group H there may also be two dual formula- 
tions of the same quantum field theory but they will not in general be formally 
identical as in the H=U(I )  case just described. Goddard ef al (1976) have con- 
jectured that the dual group H v  (see $5.8) plays a role in classifying monopole solutions 
when H is the gauge group. The dual field theory would presumably have H v  as an 
exact gauge symmetry. Proof of such statements again involves deep questions in 
quantum field theory but there is some evidence in favour based on the generalised 
quantisation condition for magnetic charge. 

These ideas have physical interest because the non-Abelian gauge theories play 
a role in both strong and weak interactions. A dual relationship between these respec- 
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tive theories would provide a newer and deeper concept of unification which would 
automatically explain the disparate strengths and the relative parity violation. I t  
would put on a modern footing the old idea that nuclear matter is composed of 
monopoles (Schwinger 1968, 1969, Faddeev 1975). 

T o  conclude, if these speculations are anywhere near correct we are only on the 
threshold of a development of a new and exciting theory. 
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Appendix 1. Aspects of homotopy theory 

In  this appendix we try to summarise some relevant results from homotopy theory 
(see, for example, Hilton 1953, Steenrod 1951). At various points of the discussion 
from 94.4 onwards we have seen the importance of the homotopy classes of maps, 
from the n-dimensional sphere S n  to some topological space Y,  which we have 
denoted by f i n (  U ) .  As we remarked in 95.4 it is more convenient mathematically to 
restrict attention to maps, Sn+ Y ,  and homotopies, which leave fixed some particular 
point of Sn .  For this purpose it is helpful (and permissible since we are concerned 
with equivalence under continuous deformation) to represent Sn  as the unit cube in 
[Wn : 

In={x=(x1,  . . . , xn):O<xr< 1 for 1 <r<n)  (-41 . l )  

with its boundary 
aIn={x E I n :  x,=O or 1 for some it) (Al .2)  

identified as a single point. We consider maps +:In+ Y satisfying: 

+(x) =Yo for all x E ai.. (Al .  3) 

Two such maps 41,+~ are said to be homotopic, for a given fixed point yo, if there 
exists a continuous map CD : I n  x [0, 11 + Y such that CD(x, t )  =yo for all x E aIn and 
O(x, O)=+l(x), @(x, 1)=(52(x). This defines an equivalence relation on the set of 
maps I n - +  Y satisfying (A1 -3) and the equivalence classes so defined are denoted by 
Un( Y ,  yo). IT,( Y ,  yo) can be given a natural group structure as follows: given two 
maps +1,+2: In-+ Y satisfying (Al .  3) we may define a third $12, by: 

412(x1, x 2 ,  * , X n )  = +1(2%1, x2, * * 9 , Xn) O<x1<Q 

=(52(2x1- 1, x2, * * , X n )  &<x1<1. 

I t  is straightforward to show that the homotopy class [412] of $12 depends only on the 
homotopy classes [41] and [ 4 2 ]  of $1 and $2 respectively. Thus we may define a 
binary operation on IIn( Y,  yo) which we shall denote by 

[+121= [+I1 + [+J21. 
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Again it is straightforward to verify that this operation satisfies the group axioms. 
Further if n 2 2 we may demonstrate that this group is Abelian: 

[ h I +  [+21= [+21+ [+11* 

T o  do this use the fact that I n  is topologically equivalent (homomorphic) to the 
unit ball Bn=(x: 1x1 < 1). We may define a homotopy of $12 by continuously 
rotating Bn through T about the second axis 1% 2 2. After noting that we may similarly 
deform $1 and $ 2  this is sufficient to show [+12] = [+23], I n  general IIl( Y,  yo) is not 
Abelian, though it necessarily is if Y is a group. 

The  dependence of IIn( Y ,  yo) on the fixed point 3'0, is superficial if Y is connected. 
Let p:[O, 1]+ Y be a continuous path joining yo to y l :  p(O)=yo, p(l)=y1. Given 
$0: I n - +  Y satisfying (A1.3) we define 41: In+ Y by exploiting the equivalence of 
In and Bn. If &:Bn-+ Y is the map corresponding to +o:I"-+ Y (under some 
particular homeomorphism of In onto Bn) define $1: Bn-i Y by: 

81(x> = $ 0 ( 2 4  if 1x1 < $  

=p(2Ixl-1) if 12 1x1 24. 

The corresponding map $1: In-+ Y satisfies (61(x)=yl for all x E 8In and so defines 
an element [+I] E IT,( Y ,  yl). One can show that [+I] depends only on [+o]. In  this 
way we obtain a map p" :IIn( Y ,  yo) - i l l % (  Y ,  yl) and it is straightforward to demon- 
strate that this is a group isomorphism. The structure of I'In(Y,yo) is thus inde- 
pendent of yo if Y is connected (i.e. when such a path p joining two points always 
exists). In  general, we shall assume this henceforth and write IIn( Y ,  yo) IIn( Y )  
when the base point, yo, plays no role. A corollary of this result is that a closed path, 
U, beginning and ending at yo defines an automorphism of IIn( Y ,  yo). Since the map 
p" depends only on the homotopy class of p (with fixed end points) for a closed path 
U, the automorphism U* depends only on [U] E II1( Y ,  yo). Thus JJl( Y ,  yo) acts as 
a group of automorphisms of IT,( Y ,  yo). 

Another situation in which KIP&( Y,  yo) is independent of yo is when Y is a group, 
not necessarily connected. Given a map +o satisfying (A1 .3), #q(x) =yl-lyo+(x) 
satisfies +1(x) =y1 for all x E a r m .  This procedure provides us with an isomorphism 
of IIN( Y ,  yo) onto IIn( Y ,  yl) since it may also be used to shift the fixed point of an 
homotopy fromyo to yl. In  all our applications Y will be either connected or a group. 

As we have mentioned, a priori physically it is a,( Y )  that is of interest. Given any 
map Sn+ Y we may regard it as a map In-+ Y satisfying: 

+(XI =Y for all x E aIn 

for some fixed y E Y .  Thus we may associate with (6 an element of IIn( Y ,  y). By 
choosing arbitrarily a path, p, from y to yo we may use p" to obtain an element of 
rIn( Y ,  yo) for a definite yo fixed independently of (6. This procedure depends only 
on the homotopy class of p. Thus the end result is ambiguous up to the action of 
Ill( Y ,  yo) on IIn( Y ,  yo). That is, if we divide IIn( Y )  into equivalence classes (orbits) 
under the action of IIl( Y )  we may unambiguously associate one of these classes with 
+. This argument may be developed to show that the classes so obtained are in one- 
one correspondence with the homotopy classes of + without fixed points. The con- 
clusion is that Rn( Y )  can be identified with the collection of orbits of I In(  Y) under 
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H I (  Y ) .  In  particular, if II1( Y )  is trivial, i.e. Y is simply connected, the distinction 
between II,( Y )  and nn( Y )  disappears: 

R,( Y )  = ri n( Y )  if H1(Y)=0. (Al.4) 

It is clear that when (Al.4) holds the combination law on fi,( Y )  induced by the 
group operation on ITn( Y )  is the appropriate one for combining monopole topological 
quantum numbers in the sort of situation indicated in figure 4. In this case we are 
interested in the group structure of ri,( Y )  as well as the nature of its elements. The 
cases in which (Al.4) fails are rather more obscure and are discussed in appendix 2. 

Our analysis from $5.5 forward depends on the isomorphism theorems which 
exist for Hn( Y )  when Y is a coset space, G/H, and we shall now summarise these. 
In  this situation G acts transitively on Y and H is the little group of some (arbitrary) 
fixed yo E Y. Denoting the action of g E G on Y by y h g y ,  g+n(g) -gyo defines a 
projection r :  G+ Y.  The theorems are based on an attempt to Zqt a map 4 : Sn--+ Y 
to a map y : Sn-t  G such that 4 = n-y. The usefulness of such an attempt is illustrated 
by considering 4: S2-+ Y. If this can be lifted to y :  S2+G such that += n-y, 4 must 
be homotopically trivial because, by a theorem of Cartan, y is homotopically trivial, 
so that there exists a homotopy I?: S2x  [O,  l]+G, of y onto a constant map S2-tG. 
@=TI' then provides a similar honiotopy for 4, Thus if we could always lift any 
4: S2+ Y we would deduce biz( Y )  = 0 as well as llz(G) = 0. On the other hand, if we 
replace Sn  by I n  we can find such a lift y : I n +  G provided that we relax the equivalent 
of (Al .  3 )  for y .  This statement is given in the following result which we merely 
quote. 

Lemma: If H is a closed subgroup of a Lie group G and 4 a continuous map 
In-+ Y = G/H satisfying (A1 . 3 )  then there exists a continuous map y : I n  -+ G satisfy- 
ing n y = 4  and 

Y(4 = 1 if x E arn  and xn# 1. (A1.5) 

(If the restriction xn# 1 were omitted from (Al .  5) we could have obtained the lift 
from + :Sn+G/H to y:Sn+G which does not exist in general.) This lemma is a 
special case of a more general result reflecting the fact that G/H is a 'fibre space' 
(Hilton 1953, p47). The restriction of y to x,= 1 measures the extent to which we are 
unable to lift + : S 2 +  Y to a map S 2 4 G .  We will denote this restriction by 9 :  

+(a, x2, * * . , xlz-l)= y(x1, x2, . . . , Xn-1, 1). 
Since p(f)yo=yo it defines a map In-1- H satisfying 9( i )  = 1 for 2 E aIn-1, where 
i = (XI, 32 ,  . . . , xn-l), the homotopy class of which depends only on 4. For if y l  
and yz satisfy (A1 . 5 )  and xy1= r y e  = $I : 

defines a homotopy between 91 and 9 2 .  So we map from functions 4: In-+ Y satisfying 
(Al.  3) to the element [+I of IIlb-l(G). Further [p] depends only on the homotopy 
class [4] of 4. For given two homotopic functions In-,  Y ,  41 and 4 2  and satisfying 
(Al.  3) with homotopy a: In x [0, 11 + Y ,  by a result similar to the lemma we may 
lift C) to a map I? : I n  x [0, 11 + G satisfying r(x, t )  = 1 if x E a l .  and xn # 1. In this 
way we obtain maps y l ( x )  = r(x, 0) and yz(x) = r(x, 1) satisfying (A1 . 5 )  and n-yl =41, 
n-y2=42, and a homotopy I?(R, 1, t )  E H between 9 1  and 92. Thus the elements of 
IIn-l(H) defined by 41 and 4 2  are equal. 

So we see that the lemma enables us to define a map from II,(G/H) to IIn-l(H) 
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for n 2 2. It is straightforward to show that this map is a homomorphism, f say. The 
image of IIn(G/H) under this homomorphism is not necessarily the whole of rIn-I(H), 
For any [9] E nn-l(H) we obtain in this way corresponds to a map j3:In-1+H 
which is homotopic to a constant map in G using the homotopy y(4,  1 - t) ,  noting 
that y(f, 0) = 1. Conversely, given a 6:1"-1-+H satisfying 6 ( i )  = 1 for 4 E aIn-1 
and homotopic to a constant in G, there exists a map A:Ifi-1 x [0, l]+G such that 
A ( f ,  t )  = 1 for f E aIn-1 and A ( f ,  0) = 1. Then if +(x) = A(2, Xn) yo, [+] is mapped 
onto [a] under the homomorphism f :  IIn(G/H)+ IIn-l(H). We conclude that the 
image of IIn(G/H) under this homomorphism is precisely the subgroup of IIn-l(H) 
which corresponds to maps Sn-1-+FI which are trivial in G. Indeed we may define 
a homomorphism i": IIn-l(H)--+ lln-I(G) by associating with each map +: Sn-1--+H, 
or rather its homotopy class in ll,-l(H), its homotopy class as a map S"-l--+G. 
Then we have established that the image off is the kernel of ix. 

Further, f is not necessarily one to one. For example, if [4] E IIn(G/H) is mapped 
to zero in rIn-l(H), we have that ?:Ifi--1--+H, which satisfies ?(a)= 1 i f f  E aln-1, is 
homotopic in M to a constant map. So there exists a map v : In-1 x [O, 11 -+ H satisfying 
~(f, t )  = 1 if f E 81%-1, ~(f, 0) = p(2) and q(R, 1) = 1. Then: 

defines a map y l :  In-+ G satisfying yl(x)  = 1 if x E aIn and ~ y 1  = +. Thus the kernel 
off consists of precisely those maps which can be lifted to maps Sn-, G'. Put another 
way the projection n-:G+G/H associates with each map Sn+G a map Sn-+G/H 
and this association induces a map TP : rIn(G) -+ rI,(G/H) whose image is the kernel 
off. 

We have obtained a sequence of maps: 

I ln(H)  IIn(G) 2 II,(G/H) II,-l(H) 5 rIn-l(G) 2 . . . 
. . . IIz(G) < IIz(G'/H) A I I l (H)  rI1(G) i"-*, ITl(G/H) 

where each map in the sequence has as its kernel the image of the previous map. 
Such a sequence of homomorphisms is called an exact sequence. Since llz(G)-O 
we obtain equation (5.47) if II1(G) = 0 and equation (5.48) otherwise. 

\Ye may extend the sequence one stage further, if (Al.4) fails, by using the lemma 
to associate y(1) or rather its path component in H ,  with +:Il+G/H. This path 
component only depends on [+] E IIl(G/H). In  this way we obtain a homomorphism 
lll(G/H>+IIo(H) the group of path components of H ,  leading to equation (5.46) 
if equations (5.45) hold. 

Appendix 2. Disconnected exact symmetry groups 

In  55.4 and appendix 1 we mentioned that the physically relevant nz(d40)  coincides 
with the second homotopy group II,(&'o) if is simply connected but not, in general, 
otherwise. If I T l ( A 0 )  #O,  it is necessary to consider the action of I I l ( A 0 )  on I I z ( A 0 )  
and divide the latter into equivalent classes under this action, two elements of I I z ( A 0 )  
being in the same equivalence class if they are related by an element of I I l ( A 0 ) .  

Taking Ao=G/H as usual, with G connected and simply connected we have the 
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isomorphisms (5 -46) and (5.47), given by the exact sequence of appendix 1 : 

fl2(&0)1: rIl(H) H1( A O )  RO(H). 
The action of r I l ( A 0 )  on rIz(dZ0) can be translated into an action of rIo(H) on I I l (H).  
Given a closed path h(s), 0 < s < 1, in H (with h(0) =h( l )  = 1) and any ho E H we may 
construct a new closed path hoh(s) ho-1. This path will be homotopic to hlh(s) h1-1 
if ho is connected to hl by a continuous path. Further the homotopy class of hoh(s) ho-1 
depends only on that of h(s). Indeed, ho defines an automorphism of II1(H) which 
depends only on the path component of ho in H.  It is not difficult to show that this 
is the automorphism corresponding to the action on rI2(&0)  of the element of r I l ( A 0 )  

corresponding to ho. 
We will illustrate this with an example (Goldstone 1976). Consider a theory in 

which the Higgs field is a three-dimensional complex vector $ = ($1, $2, $3) and the 
potential function, V ,  has the symmetry group Go = SO(3) x U(1) whose action is: 

$ -+ exp (ia) R$ (R, exp (ia)) E SO(3) x U(1). (A2.1) 

In  order to come within the framework of the above analysis we replace Go by its 
universal covering group G =  GO? SU(2) x R. The action of (U, a )  E G is given by 
(A2.1) with z~-tR=R(u) being the usual homomorphism of SU(2) onto SO(3). 
A possible form for V is 

V($)  = A{($T$)($'$") - Za'$t$ + a". 

The set of minima, A o ,  of V consist of those $ for which $t$ = a2 and 4% = exp ($3) $ 
for some /3 E R. I t  is easy to see that G acts transitively on A 0  and, consequently, 
AZO = G/H where H is the little group of $0 = a(1, 0, 0). The condition for (U, E )  E H 
is : 

R(u) $0 J exp ( - ia) $0 

which means that 

H={(exp (io&'}, Znn), (exp (i030) exp {ioarr/2}, 2 m + n ) :  0 E R, n E Z}. 

So we see that the connected part of H is isomorphic to U(1), implying rI l (H)= Z 
and also rIo(H)- Z. T o  calculate the action of rIo(H) on rI1(H) take representative 
points h,=(l, m), n even, and (exp {iu2n/Z}, nn), n odd, from the components of H 
and representative paths p m :  exp (Zniussm), 0 < s,< 1, m E Z, from the classes of 
rI1(H). Since: 

exp (ino2/2) exp (Znimo3s) exp ( - inu2/2) = exp ( - 2.rrimass) 

the action of h, on pm is to take it to p-nl if n is odd but leave it unchanged if n is 
even. This shows that whilst we can identify r I , ( A o )  with II1(H)={([pm]:m E Z} to 
obtain l72(  &lo) we must also regard [pm] as equivalent to [P-),~]. Only the magnitude 
of m is physically significant. (A somewhat similar example is given by Coleman 
(1975b).) 

When rI1( Alo) = 0, the group operation on TI4  "0) = l 72 (  &o) corresponds to the 
physical operation of combining the quantum numbers of distant monopoles. When 
this condition fails we no longer have a natural binary operation on fi2(&0) but we 
can regard its elements as subsets of l I p ( A 0 )  N ITl(H), which are disjoint and ex- 
haustive, the orbits of II1(H) under rIo(H). Given two such orbits, C1 and CZ:  

c 1 + c 2 = { c ~ + c z : c l  E c1, c2 E C2) 
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is a union of orbits. The topological quantum number of a monopole obtained by 
combining C1 and CZ will be that corresponding to one of the orbits C c C1+ Cz. 
There is an ambiguity: C1 and C2 alone are insufficient to determine C, although 
they limit the possibilities. Specifically, in Goldstone’s example discussed above, the 
elements of n~g(Ao) may be labelled C,={[p,], [p-m]), m20, and 

Cm+Cn=Cm+n U CIm-ni. 
Either C,+% or Clm-nl could result from combining C, and C,. 

The physical interpretation that Coleman (1975a, b) gives to this sort of ambiguity 
is that whilst the monopoles are in the same homotopy class as the antimonopoles 
(and indeed are gauge-equivalent to them) in isolation, they reveal their distinct 
identities in combination. Another interpretation (Goldstone 1976), which seems 
more appropriate to us, is that the topological characteristics of the individual con- 
stituents are not sufficient to determine the topological characteristics of the combined 
system; one needs to know how they have been put together. 

The question of combining or ‘patching’ solutions in a three-dimensional space- 
time has been discussed by Schonfield (1977). 
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