Lattice Gauge Theory: course contents
Section 1
Path integral in quantum mechanics
Non-relativistic path integral problems, discretization, 0+1 dimensional field theory, solving by transfer matrix, doing numerical simulations. (Use Smit and Lepage)
Connection between statistical mechanics and QFT
Example of free field theory mapping into random walk problem. Choice of scaling. Introduce fermions, Grassman variables. (Use Itzykson and Drouffe and my old notes)
Lattice gauge theory basics: Z(2), U(1)
Lattice as a means of regulating infinities, numerical renormalization, introduce U(1) LGT. Introduce Z(2) LGT; gauge invariant variables, gauge fixing. (Use Kogut's review and Wilson)
Section 2
Metropolis Algorithm
Define Metropolis algorithm, necessity of detailed balance, extension to multi hit and heat-bath algorithm. (Use Lepage, Creutz)
Reweighting
Basic reweighting, multi-histogram method. (Use Ferrenberg and Swendson, my notes)
Statistical treatment of data
Statistical treatment of independent data (central limit theorem), breakdown of CLT and analysis of autocorrelations, applications to reweighting. (Use Numerical Recipes and Sokal)
Section 3
Finite temperature field theory
Introduction, dimensional analysis, Fourier transforms, bosons and fermions, pressure.
Scaling and beta function
Renormalization generates scale, numerical renormalization, Tc/ΛMS.
Finite size scaling
Use of finite size scaling to obtain critical indices (Use Engels, old Bielefeld papers)
Section 4
Chemical potential
Global symmetries, conserved quantum numbers, chemical potential, sign problem. (Use Gavai, Karsch and Hasenfratz).
Avoiding the sign problem
Expanding in Taylor series, diagrammatics, stochastic trace evaluation.
Fermi liquids
Changing ensembles, finding quantum numbers.
Sourendu Gupta. Created on Oct 05, 2005.