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These are notes on the SIR model. I explain the mathematics behind the concepts of social
distancing, flattening the curve, and the easing of load on medical services. I also define the standard
epidemiological and medical terms called case resolution time (T ), case fatality ratio (f) and basic
reproduction rate (R0).
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I. INTRODUCTION
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FIG. 1: Epidemiological models envisage individuals moving from one compartment to another as they catch and recover from
a disease.

The simplest compartmental model [1] of mathematical epidemiology is discussed here. The population is divided
into four compartments— S, which is the susceptible population, I, which is the infected population, R, which is the
recovered population, and D, which is the number of deaths (see Figure 1). I will neglect births, under the common
assumption that the death rate is larger than the birth rate. The simplest models involve a well-mixed population,
i.e., one in which these quantities are dependent only on time and not on the location.
The model is the coupled set of ODEs

Ṡ = −αSI, İ = αSI − (β + γ)I, Ṙ = βI, Ḋ = γI. (1)

Note that the equations imply that the total population P = S + I + R +D is conserved (on adding the equations,

the right hand sides mutually cancel, yielding zero, and the left hand side becomes Ṗ ). This is due to births being
neglected. Another crucial assumption is that the recovered persons have immunity. Note that any solution with
I = 0 leads to R, D, and S constant. More generally R and D are non-decreasing, and S is non-increasing.
Before any further analysis, it is useful to select units appropriate to this problem. This is called dimensional

analysis and is a basic tool of the physicist.
Time is the only dimensional quantity in this problem. Note that β and γ have the same dimensions. The

dimensionless ratio f = γ/β is the case fatality ratio. The time for cases to resolve into either recovery or death is
T = 1/(β + γ). This is called the case resolution time. This is an unit of time natural to the problem. In these time
units the equations become

Ṡ = −

α

β + γ
SI, İ =

α

β + γ
SI − I, Ṙ =

1

1 + f
I, Ḋ =

f

1 + f
I. (2)

The quantities S, I, R, and D are numbers, and hence dimensionless. However, it is interesting to ask what happens
under a scaling P → λP . Multiply all population counts by λ. Clearly, the equations remain unchanged if we also
simultaneously scale α → α/λ. Any choice of λ is allowed; we may choose in particular λ = 1/P . This means that
the coefficient of the growth term in the equation for I is now R0 = αP/(β+ γ). This is called the basic reproduction
rate (see page 7 of [2]). This process of scaling is equivalent to saying that the population is effectively a dimension,
and we can use a choice of units to set P = 1, and measure α in these units. We now remove the redundant equation
and write

Ṡ = −R0 SI, İ = R0 SI − I, R+D = 1− S − I, D/R = f, (3)
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FIG. 2: The solution of the SIR equations in natural units. The curve in blue denotes S(t), that in red I(t), and in green
R(t)+D(t). The panel on the left is for R0 = 3, that on the right for R0 = 1.5. With decreasing R0 the peak in I(t) is lowered
and the duration of the epidemic is extended. This has been called flattening the curve. Note the dramatic effect on the
total cases: for R0 = 3 only 2% of the population remains uninfected, for R0 = 1.5 more than 40% are never infected. Note
that time is measured in units of the case resolution time, which for COVID-19 is estimated to be 3 weeks, about the same as
for chicken pox.
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FIG. 3: S(25) is shown as a function of R0 for different initial conditions I(0), 10−5 in green, 10−4 in blue, 10−3 in gold, 0.01
in red, and 0.1 in brown.

with all quantities S, I, R, and D being less than unity. These are the SIR equations in units natural to the problem.
The solutions of the equations in eq. (3) are now applicable to any situation: different diseases differ only by the
choice of R0 and the unit of time, which is the case resolution time. They are applicable for any country, because the
solutions are expressed as fraction of the population of the country.
The single parameter in the problem, R0, depends on two factors: one is the virulence of the pathogen, and the

other is the frequency with which susceptible and infected people meet. The simplest epidemiological intervention is
to reduce R0 by decreasing the rate at which susceptible and infected people meet each other. When the infection is
apparent, for example, in measles, quarantining infected people is the route taken to do this. For COVID-19, when
the infection takes days to manifest itself, social distancing decreases R0.
The general nature of solutions of eq. (3) is easy to understand. I increases when S > 1/R0, and decreases when

S < 1/R0. If R0 < 1 then the infection cannot spread and S ≃ 1. If R0 > 1, then I increases initially, S decreases,
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and when S < 1/R0, then the number of infections turns over and begins to decrease. In Figure 2 we compare the
solutions for different R0 of the SIR equations in natural units. When R0 is decreased the number of people who
contract the disease (R + D) drops significantly. However, the duration of the epidemic is also longer. This is now
being called flattening the curve.

Another way to look at this flattening of the curve is the plot the number of uninfected people, S, at late times as
a function of R0. This is shown in Figure 3. By controlling R0, the number of healthy people can be incressed. A
smaller number of infected people can give limited medical and industrial infrastructure a better chance to cope with
an ongoing epidemic. We may call this easing the load. Also note that if the load is eased then contact tracing and
isolation can be brought into play so that the effect is to decrease I(0), which in turn leads to further decreased load.

This model has been used a lot recently, because it gives a simple and essentially correct overall picture of the
progress of a contagion. However, there are many details which may require more complex models. For example,
the population may not be homogeneous, and more “compartments” may be needed. Individuals vary a little in how
suceptible they are to an infection and how easily their body is able to fight it off. Incorporating this may require
stochastic differential equations. Some of these extensions will be dealt with elsewhere.
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