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A plasma is any material which is overall charge neutral but contains mobile
charge carriers, and hence conducts current. The simplest plasma that you can
make and study is a solution of a salt in water. This is the reason why an electric
current flows through a salt solution. The electrons inside a piece of metal also
make up a plasma. The material inside a tube light or a compact fluorescent
lamp (CFL) is a plasma. The earth’s atmosphere contains a plasma— the
ionosphere. The hot gases in the sun are a plasma. Much of the tenuous
material in interstellar space exists as a plasma. Most matter in the universe
was a plasma until the sky became transparent.

1 Microscopic variables and collective effects

What are the microscopic parameters which characterize the plasma? The mag-
nitude of the charge of each mobile element, e, and its mass, m, are two such
quantities. The average distance between two charge carriers, A is a third micro-
scopic parameter. The number density of charge carriers is n = 1/A3. Finally,
the average energy of each charge carrier, F, is a microscopic parameter. If
the charge carriers in a plasma are in thermal equilibrium with a temperature
T, then E ~ kT, where kp is the Boltzmann constant. The notation used
here means that F is equal to kT times a numerical constant which is within
an order of magnitude of 1. We can choose to use units in which the Boltz-
man constant, kg = 1, so that T has units of energy'. So one can take as the
microscopic parameters the four quantities, e, m, n and T.

Another choice of units we shall make for convenience is that the the per-
mittivity of free space, 4meg = 1. As a result, Coulomb’s law can be written
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where F is the force between two charges e separated by a distance r and t is
the unit vector pointing from one charge to another. Since an unit vector can
be taken to be dimensionless, the Coulomb’s law gives the dimension of electric
charge,

[e] = [MI2ILP/ 21~ (2)

n these units 1 K is 1.38 x 10723 J, or 8.62 x 107° eV.




The Coulomb can then be defined as the charge which exerts a force of 8.988x10°
N on a like charge placed at a distance of 1 m. The magnitude of an electron’s
charge is 1.602 x 10~'° C, which is 1.600 x 10714 Kg1/2m3/2/s.

Now, given the microscopic parameters, we can build a single dimensionless

quantity out of them—
T
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It is clear from Table 1 that K > 1 for many plasmas.

What does this plasma parameter signify? To understand this, let us exam-
ine the average distance of closest approach of two like charges in the plasma.
The average thermal energy of a particle in the plasma is 7. The distance of
closest approach to another like charge, d, occurs when the Coulomb energy
equals the thermal energy—
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If K is large, then d is small. So, on the average, particles are at separations
where the Coulomb potential energy can be neglected with respect to the ther-
mal kinetic energy. Such a plasma is called a weakly coupled plasma. If K is
of order 1 or smaller, then the Coulomb forces are extremely important. Such
plasmas are called strongly coupled plasmas. In the rest of this article we will
consider weakly coupled plasmas.

We have identified an extremely small length scale in the problem— \/K2.
It turns out that there could be a much larger length scale in the problem created
by the collective effects of many particles acting together. Such a collective scale

could be
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This emergent scale is called the Debye screening length. The number of parti-
cles which lie within a cube of side Ap is K3. This number is called the plasma
parameter, A. This is the number of particles whose collective effects build the
Debye screening length. For weakly coupled plasmas, this is a large number.
That argument sounds a little glib; so we examine it from a slightly different
angle. We discovered a small dimensionless parameter in the problem, 1/K.
Then we argued that if there is a large length scale, Ap, in the system then one
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where f is an unknown function whose form we have to argue about. Such
equations are the content of dimensional analysis.

To proceed further, we make an argument in two parts. The first part is
that f(0) = 0, because the large length scale must emerge out of a full-scale
computation of the physics at the microscopic level. In other words, if f(0) # 0,
then it would mean that the ratio on the left hand side is independent of the



microscopic parameters contained in A— a perfectly unlikely occurrence. The
second part of the argument is that if f(x) is a nice and well behaved function at
x = 0 we should be able to do a Taylor expansion, and by retaining the leading
linear term in 1/A, obtain the expression in eq. (5).

This part of the argument could sound a little suspect, since there is no
dimensional reason why one cannot do a complicated computation and find
f(z) = exp(—1/z). Beyond the argument that f(0) = 0, strictly speaking one
should resort to the analysis of the dynamics. For a classical plasma, a dynamical
analysis involving simple electrostatics gives the result that f(x) o z. Many
computations do give rise to smooth and well behaved functions, so the second
part of the argument often holds. It is usually sensible to make such a simple
assumption to begin with and check it later through a more thorough analysis.
In a complicated problem it is also possible to go the other way— check the
result of a very involved computation to see whether or not such a simple idea
holds. If it doesn’t, then one must trace through the computation and find the
reason why.

System n T K =AY3 AD
(m?) (K) (m)
Interstellar gas 108 10% 2321 2.3x10°7
Gaseous nebulae 108 10* 1077 2.3x10°
Ionosphere | 10'2 103 73 7.3x1073
Solar (corona) | 10%2 10° 2321 2.3x107!
(atmosphere) | 10%° 10* 11 2.3x107¢
(interior) | 103 107 2 2.3x107 1
Lab plasma (tenuous) | 107 10* 34 7.3x107°
(dense) | 10?2 10° 16 7.3x1077
(thermonuclear) | 10?2 108 500 2.3x107°
Metal | 1029 102 0.03 7.3x10712

Table 1: Characterizing some common plasmas. Here n is the number density
of charge carriers, T' the temperature, A the plasma parameter, Ap the Debye
screening length, w,, the plasma frequency and the charge of each mobile element
has been taken to be equal in magnitude to the electron’s charge. Metals and
the solar core are not weakly coupled plasmas.

Uptil now we have shown that dimensional analysis of a plasma reveals the
existence of two length scales apart from the obvious one, the average inter-
particle spacing, A. One of these length scales corresponds to the distance at
which the Coulomb potential between two charges becomes comparable to their
kinetic energy. If this scale is much shorter than A, then the other scale is much
larger, and is a collective scale called the Debye screening length. We examine
the physics of this scale next.



2 The physics of plasmas

We are yet to find an interpretation of the length scale, Ap, in a plasma, so we
look for this now. If the charges in the plasma have set up a potential ®(r) and
are in equilibrium in this, then the particle densities must be

n = exp <—eiTq’> . (7)

® must be roughly constant when averaged over a length scale much larger than
A, because of overall charge neutrality.

Now, if an external test charge density, dpey:, is introduced into the plasma,
then the potential is disturbed, becoming ® + 0®. This induces a change in
the particle densities of dn; = —ne;6®/T. The net effective charge density is
the sum of the external density and that induced by this change in particle
number—
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Thus, the externally introduced charge density polarizes the medium by sepa-
rating out the charges by a small amount.?

If we make a self-consistent determination of the change in the potential
using Laplace’s equation, V26® = §p, then we find

5p = 5pewt -

1
<V2 - )\2> 0P = 6pea;t~ (9)
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Assume that the external test charge was a point charge of magnitude ¢, then
the solution to the Laplace equation can easily be found by standard methods.
This solution is

0b(r) = —=, where q(r) = ge=/ 0, (10)

The charges in the plasma are polarized a little by the external charge so as to
shield it out.

Of course the total charge of a system must still be conserved. If we take
a volume of a plasma in some container and put a test charge inside it, then
oen can do experiments and find the total charge inside the container. By
conservation of charge, this must equal the test charge that one introduced.
Since that charge is screened, by attracting a net positive charge towards it
from the plasma, there must be an induced negative charge on the walls of the
container, which precisely balances it.

The phenomenon of Debye screening can be said to renormalize charge in a
plasma. A charge, ¢, is measured by the Coulomb force, F', it produces on an
unit positive charge placed at some distance r. In a vacuum, this yields a value

2We have absorbed the dimensionless number /2 into the definition of AD, since we are
not forbidden to do so by dimensional analysis.



of the charge that is independent of distance. However, due to the mechanism
of screening in a plasma, such a measurement would yield a charge, ¢(r), which
is distance dependent, and becomes negligibly small when r > Ap.

What about the response of a plasma to time varying fields? There is a
microscopic time scale in the problem. Since, a typical microscopic velocity
is v = y/T/m, the average time taken by a typical charge carrier to meet a
neighbour is

= M\uv=m'2n 13712 (11)
The frequency of close collisions is 1/7. If we consider a light wave travelling
through a plasma, it is clear that the electric and magnetic fields of the wave
will accelerate the charge carriers. If the frequency, w, of light is sufficiently
high (w7 > 1) then the charge carriers will describe a complicated orbit with
amplitude much less than A. As a result, a charge carrier accelerated by the
wave will seldom interact with another, and there are unlikely to be collective
effects. At some threshold, wy, the external field accelerates a charge carrier in
one direction for long enough that it can move by a distance greater than A, and
hence be very likely to collide with other charged particles, thereby losing the
energy it gained from the wave. This would lead to dissipation, and a consequent
attenuation of the wave. One expects this to happen for

K e’n
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Note that w,, is proportional to e.

Now, turning this whole argument backwards, eq. (12) can be written in the

form

K = 1w, = (n\})1/? = AV3. (13)
Hence, a large value of the plasma parameter, A implies that there are many
particles inside one Debye volume in the plasma, or that in time 1/w,, each charge
carrier collides many times with others. Thus, by coarse graining plasmas over
distances larger than A\p one can give an effective description of the plasma
which no longer contains the microscopic physics parameters.

This is really quite remarkable. To appreciate this, recall that we work
with such coarse grained description of matter in many different contexts—
electrodynamics of continuous media, fluid dynamics, elastic theories of solids,
particle physics. In many systems the microscopic physics is not so clearly
amenable to analysis that yields length and time scales for the coarse graining
into continuum description of matter. The simplicity of Coulomb interactions
allows us to perform just such an analysis in the case of a plasma.?

3 Quantum mechanics and relativity

It is interesting to continue this analysis into other regimes, for example into
plasmas where quantum effects may be important, such as the conduction elec-

3A general framework for deriving coarse grained physics is called the renormalization
group.



trons in a metal. Then Planck’s constant introduces another dimensional quan-
tity h into the analysis. In the classical plasma there was only one dimensionless
number A. Now there is another—

ot /A
n= (mT)1/2 - \/ﬁ (14)

The last expression above is in the form of the ratio of two lengths. The mean
thermal momentum of the gas, vmT, defines a “thermal de Broglie wavelength”
Ar = h/v/mT. nis the ratio of Ay to the average interparticle spacing, A\. Thus,

eq. (6) is replaced by
A 1

If T is so large that many such thermal wavelengths fit into A then < 1. This
is equivalent to taking the classical limit, i — 0 (note the simplicity of analysis
that flows from using dimensionless variables). In this limit we recover eq. (6)
through the argument that f,(1/A,0) = f(1/A).

When the temperature is so small that quantum effects are very large, (i.e.,
7> 1) it is more useful to neglect T" and combine the variables together to form

the parameter
= () = () v i

which can be used to write a new scaling function in the small parameters 1/A,
and 1/n. The case when 7 is neither too large nor too small is much more
complicated, and the full dynamical computation must be resorted to.

What about a classical relativistic plasma? Perhaps such materials could
be found in astrophysical objects— inside stars or supernovae? The speed of
light, c, is a new variable in the problem. This allows us to construct a second
dimensionless quantity,

T

’7 - mc2 (17)
which is the usual relativistic factor for time dilation or Lorentz contraction.
This is the ratio of the thermal energy and the rest energy of the charge carrier.
Clearly, this is negligible if the temperature of the plasma is small. Then the
analysis reduces again to the case of the classical plasma. For an electron
mc? ~ 0.5 MeV, so T has to be about 10'° K for relativistic effects to become
important.

Instead of analyzing this situation in classical relativity, it is more useful to
analyze it for a relativistic quantum field theory. The reason is that when the
thermal energies of the charge carriers are much larger than their rest energies,
collisions between two charge carriers can create more of them. To deal with such
particle creation accurately, one must take into account the proper quantum

4Temperatures in a supernova explosion are expected to be in the range of 108 K. Plasmas
in this situation cannot be considered relativistic.



nature of the particles. In this case one has three dimensionless variables. One
can choose these to be A, n and ~ as before.

However, it is better to recognize that the electric charge can be written in
a dimensionless unit called the fine structure constant

e2

T dnhe

(18)

If the charge carriers have charge equal in magnitude to the electron’s, then
a =~ 1/137. Although this is a small number, a cannot be neglected, since then
we would lose the electromagnetic interactions which are the cause of collective
effects. The second dimensionless variable is the analogue of the classical plasma

parameter is
T AT
K=\ Genim =\ e (19)

The scaling law then becomes

A 1
— — 2
h\ fQFT <047 K;’Y) s ( 0)

and we seem to have a rather complicated three variable problem at hand.
However, there is an enormous simplification in the ultra-relativistic limit,
v — oo. In this limit we can neglect the rest energy in comparison to the thermal
energy, and simply set the limit m — 0. But then the number of particles in a
quantum gas need not be fixed. A well-known example is the photon gas which
makes up black-body radiation. In such a gas the number density, n, must
simply be replaced by the entropy density, s. Now for black-body radiation one
knows that the energy density, € oc T%, a fact which goes by the name of the
Stefan-Boltzmann law. The pressure in such a gas is also proportional to T4,
hence, using the thermodynamic identity T's = € + P, one finds that s oc T3.
Since this argument is purely dimensional, it must also hold for any massless
quantum gas. Then, from eq. (19) one finds that A becomes independent of the
microscopic quantities. As a result, the scaling formula in eq. (20) simplifies to

TAp =1/ fqrr(a). (21)

All these results are most easily obtained by using the so-called natural units.
Since c is an universal constant, one recognizes that L and ¢ are not independent
variables. A natural choice of units is ¢ = 1 and hence [L] = [t]. Next, since # is
an universal constant, one recognizes that setting h = 1 creates a simple system
of units where [L] = 1/[M]. In these natural units e = v/47« is dimensionless
and n is clearly proportional to 7°. If m — 0 then the result in eq. (21) follows
quickly. This equation is more often written in the form

mp = fQFT(Oé)T, (22)

where mp = 1/Ap (in natural units) is called the Debye mass.



Although it has nothing to do with plasmas, it is interesting to carry the
construction of natural units further and throw in Newton’s universal constant
of gravity, G. Then setting G to unity gets rid of all dimensional quantities
from physics. One can get the dimensionless values of any physical quantity by
using the two following basic units—

he [hG

Mp in usual units has dimensions of mass and is called the Planck mass. Lp
is called the Planck length and has units of length in the usual units. The
corresponding time unit is Lp/c.

4 Non-Abelian plasmas

Debye screening also occurs in plasmas made of elementary particles which
have interactions other than the electromagnetic. Such ultra-relativistic quan-
tum plasmas are relevant to the study of early universe cosmology. The relevant
forces are the strong interactions of quarks and gluons and the weak interac-
tions of all particles. These resemble the electromagnetic interactions in that
they are all gauge theories and are characterized by a dimensionless coupling
constant analogous to «. The distinction between these forces is that they
have non-Abelian gauge groups, unlike electromagnetism, which has an Abelian
gauge group. The only relevance that this esoteric fact has to the program of
dimensional analysis is that the strong coupling a, can be large. As a result,
the scaling function in eq. (21) cannot be appproximated by its linear term.
The following results therefore go beyong dimensional analysis, and required
detailed techniques of field theory.

The first attempts to study this function beyond the leading term proceeded
by making a Taylor expansion of f(as), known as the perturbative expansion.
It was soon realized that a Taylor expansion of this function cannot be carrried
out beyond the fourth order (this is called the Linde problem). A few years
later it was realized that there is not even any Taylor expansion in g because
after the linear term one comes across a term in ag/ 2 (this is the result of an
analysis called the Braaten-Pisarski resummation). The status of this problem
is that one now knows that

f(as) = aas 4+ ba®? 4+ ca? + dolog o + - -, (24)
where the coefficients a and b can be determined by simply assuming that ay is
small, but the coefficients c and d require a full solution of the problem. This uses
a numerically intensive method called lattice gauge theory, which is nowadays
carried out on supercomputers. These non-Abelian plasmas are probably being
created daily at a laboratory near New York city called the Brookhaven National
Laboratory.



