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Why sweat?

Z = e−F/T =
∫

DUe−S
∏

f detM(U,mf , µf)

• If M† = Q†MQ for some Q, then clearly det M is real.

• For µ = 0 Q = γ5. For µ 6= 0 no Q exists.

• Monte Carlo simulations of Z fail.

• However, Z remains real and non-negative: thermodynamics is safe.

All lattice computations done with mu = md (Nf = 2). Some also with ms/Tc ≈ 1

(Nf = 2 + 1). Many with det M = 1 (Nf = 0).
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Reweighting

Do simulations at µf = 0, re-express expectation values in terms of these—

〈O〉µ =
〈O exp(−∆S)〉
〈exp(−∆S)〉

where S = S −
∑

f

Tr log Mf ,

Glasgow method

Budapest method

µ

β
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Reweighting: results

Reweighting done for coarse lattices (Nt = 4) and Nf = 4, 2 and 2+1.

Z. Fodor and S. D. Katz, J. H. E. P., 03 (2002) 014.
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Reweighting: variants

• Express the reweighting in terms of derivatives of Z with respect to chemical
potential.
C. R. Allton et al., Phys. Rev., D 66 (2002) 074507

• Simulate imaginary chemical potential (positive det M) and do analytic
continuation. This actually the same as above.
M. D’Elia and M.-P. Lombardo, hep-lat/0209146

P. De Forcrand and O. Philipsen, Nucl. Phys., B642 (2002) 290
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Taylor Expansion

1
V

F (T, µu, µd) =
1
V

F (T, 0, 0) +
∑

f

nfµf +
1
2!

∑
fg

χfgµfµg + · · ·

where the quark number densities and susceptibilities are—

nf =
T

V

∂ log Z

∂µf

∣∣∣∣
µf=0

χfg =
T

V

∂2 log Z

∂µf∂µg

∣∣∣∣
µf=µg=0

χfgh··· =
T

V

∂n log Z

∂µf∂µg∂µh · · ·

∣∣∣∣
µf=µg=···=0
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Derivatives

Derivatives of log Z can be expressed in terms of derivatives of Z. The latter can
be constructed by the chain rule.

Zf =
∂Z

∂µf
=

∫
DUe−STr M−1

f M ′
f .

Next,

Zfg =
∂2Z

∂µf∂µg
=

∫
DUe−S

{
Tr M−1

f M ′
fTr M−1

g M ′
g

+δfg

(
Tr M−1

f M ′′
f − Tr M−1

f M ′
fM−1

f M ′
f

)}
.

S. Gottlieb et al., Phys. Rev. Lett., 59 (1987) 2247

Odd derivatives vanish for µf = 0 by CP symmetry.
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Diagrammatic representation

Some definitions:

Zf = Z〈O1〉, On+1 =
∂On

∂µf
, Oij··· = OiOj · · ·

Diagrams:

1 2 11

111 21 3

1111 211 22 31 4

S. Gupta, Acta Phys. Pol., B 33 (2002) 4259
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Quark number susceptibilities

• Fluctuations of conserved quantities in heavy-ion collisions are related to χuu.
Isospin fluctuations are related to χ3 = χuu − χud, charge fluctuations can also
be constructed out of these. M. Asakawa et al., Phys. Rev. Lett., 85 (2000) 2072; S.

Jeon and V. Koch, ibid., 85 (2000) 2076

• Under certain conditions strangeness production rate can be related to the
strange susceptibility, χss. R. V. Gavai et al., Phys. Rev., D 65 (2002) 054506

• The pressure at finite chemical potential is essentially determined by the
susceptibility.

• χ3 is the zero momentum Euclidean finite temperature vector propagator and
hence closely related to a transport coefficient— the DC electrical conductivity
of quark matter.
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Some notation

With two degenerate flavours of quarks, in flavour space the linear susceptibilities
form the matrix (

χu χud

χud χu

)
Redefining µ0 = µu + µd and µ3 = µu − µd, this matrix becomes(

χu + χud 0
0 χu − χud

)

We define

χ3 = χu − χud =
〈
Tr M−1M ′M−1M ′ − Tr M−1M ′′〉

χud =
〈(

Tr M−1M ′)2
〉

and χ0 = χ3 + 2χud
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Finding the continuum limit

Main technical problem is to control the extrapolation to zero lattice spacing. For
this we use two different kinds of Fermions (staggered and Naik) and perform
simultaneous extrapolation with both: in the quenched theory.

R. V. Gavai and S. Gupta, Phys. Rev. D 67 (2003) 034501

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

 /T
2

χ 3

1/N  t
2

QGP properties/S. Gupta: Helsinki, 2003 to plan, Phases, Reweight, Expansion, QNS, NLS, end 〈ESC〉 to quit 11



Other methods
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J.P. Blaizot, E. Iancu and A. Rebhan, Phys. Lett., B 523 (2001) 143

A. Vuorinen, hep-ph/0212283
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χud

Tr A =
1
2
r†Ar ' 1

2Nv

Nv∑
i=1

r†iAri

(Tr A)2 =
1
4
r†Ar s†As

χud = 0 for all T > Tc, but not T < Tc
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Prescription

Chemical potential on the lattice is prescription dependent. Prescription involves a
factor f(µa) for forward propagation of quark by interval a in time, g(µa) for
anti-quark. Conditions—

1. f(0) = g(0) = 1.

2. f(x) = g(−x).

3. f ′(0) = 1.

4. f(x)g(x) = 1. (Hence f ′′(0) = 1)

R. V. Gavai, Phys. Rev., D 32 (1985) 519
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Escape route

O3 = Tr
[
M (3)M−1 + 2(M ′M−1)3 − 3M ′′M−1M ′M−1

]
O4 = Tr

[
M (4)M−1 + · · ·

]
M (n) = f (n)(0)an−2M ′ (for n = 3, 5, · · ·) and M (n) = f (n)(0)an−2M ′′ (for
n = 4, 6, · · ·).

• In HK prescription: f(x) = exp x, and all f (n)(0) = 1.

• In BG prescription: f(x) = (1− x)/
√

1− x2, hence f (3)(0) = 3, f (4)(0) = 9.

Taylor series expansion is prescription dependent beyond 2nd order at every finite
a, but prescription independent for a → 0. R. V. Gavai and S. Gupta, hep-lat/0303013
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Taylor series for pressure

P (T, µ) = F/V = P (T, 0) + χ3(T )µ2 +
1
12

χuuuu(T )µ4 +O
(
µ4

)
= P (T, 0) + χ3µ

2

[
1 +

(
µ

µ∗

)2

+O
(

µ4

µ4
∗

)]
.

where µ∗ =
√

12χ3/χuuuu and other 2nd and 4th order terms have been
neglected. Well-behaved for µ � µ∗ if all the higher order terms are small enough.
All results can be obtained in the continuum. Term by term improvement of the
series is possible. Series should fail to converge near a critical point. Series
extrapolation methods should then be used to locate the critical point nearest to
µ = 0.
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Radius of convergence
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4-th order estimate of µ∗ at T = 1.5Tc. At finite Nt, the series is insensitive to
prescription when µ � µ∗. In the continuum µ∗ is the first estimate of the radius
of convergence of the series.
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The pressure
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Strangeness production
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Summary of Results

• Susceptibilities provide a systematic and easy way of computing quantities
non-perturbatively at finite chemical potential in the continuum.

• Computation of several high order susceptibilities may allow estimation of the
critical end point by series extrapolation methods.

• Fluctuations and strangeness production rate in heavy-ion collisions are related
to susceptibilities.

• Susceptibilities allow extension of the equation of state to finite chemical
potential.
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