Chemical potential without sweat

Sourendu Gupta, TIFR, Mumbai

March 20, 2003

- 1. Why chemical potential? Why sweat?
- 2. Two possibilities: reweighting and Taylor series expansion.
- 3. Quark number susceptibilities
- 4. Non-linear number susceptibilities
- 5. Main results

Why chemical potential?

Why sweat?

 $Z = e^{-F/T} = \int DU e^{-S} \prod_f \det M(U, m_f, \mu_f)$

- If $M^{\dagger} = Q^{\dagger}MQ$ for some Q, then clearly det M is real.
- For $\mu = 0$ $Q = \gamma_5$. For $\mu \neq 0$ no Q exists.
- Monte Carlo simulations of Z fail.
- However, Z remains real and non-negative: thermodynamics is safe.

All lattice computations done with $m_u = m_d$ ($N_f = 2$). Some also with $m_s/T_c \approx 1$ ($N_f = 2 + 1$). Many with det M = 1 ($N_f = 0$).

Reweighting

Do simulations at $\mu_f = 0$, re-express expectation values in terms of these—

Reweighting: results

Reweighting done for coarse lattices $(N_t = 4)$ and $N_f = 4$, 2 and 2+1.

Z. Fodor and S. D. Katz, J. H. E. P., 03 (2002) 014.

Reweighting: variants

 Express the reweighting in terms of derivatives of Z with respect to chemical potential.

C. R. Allton et al., Phys. Rev., D 66 (2002) 074507

Simulate imaginary chemical potential (positive det M) and do analytic continuation. This actually the same as above.
 M. D'Elia and M.-P. Lombardo, hep-lat/0209146
 P. De Forcrand and O. Philipsen, *Nucl. Phys.*, B642 (2002) 290

Taylor Expansion

$$\frac{1}{V}F(T,\mu_u,\mu_d) = \frac{1}{V}F(T,0,0) + \sum_f \frac{n_f \mu_f}{2!} \sum_{fg} \frac{\chi_{fg} \mu_f \mu_g}{\chi_{fg} \mu_f \mu_g} + \cdots$$

where the quark number densities and susceptibilities are—

$$n_{f} = \frac{T}{V} \frac{\partial \log Z}{\partial \mu_{f}} \Big|_{\mu_{f}=0}$$

$$\chi_{fg} = \frac{T}{V} \frac{\partial^{2} \log Z}{\partial \mu_{f} \partial \mu_{g}} \Big|_{\mu_{f}=\mu_{g}=0}$$

$$\chi_{fgh\cdots} = \frac{T}{V} \frac{\partial^{n} \log Z}{\partial \mu_{f} \partial \mu_{g} \partial \mu_{h} \cdots} \Big|_{\mu_{f}=\mu_{g}=\cdots=0}$$

Derivatives

Derivatives of $\log Z$ can be expressed in terms of derivatives of Z. The latter can be constructed by the chain rule.

$$Z_f = \frac{\partial Z}{\partial \mu_f} = \int DU e^{-\mathcal{S}} \operatorname{Tr} M_f^{-1} M_f'.$$

Next,

$$Z_{fg} = \frac{\partial^2 Z}{\partial \mu_f \partial \mu_g} = \int DU e^{-\mathcal{S}} \left\{ \operatorname{Tr} M_f^{-1} M_f' \operatorname{Tr} M_g^{-1} M_g' + \delta_{fg} \left(\operatorname{Tr} M_f^{-1} M_f'' - \operatorname{Tr} M_f^{-1} M_f' M_f^{-1} M_f' \right) \right\}$$

S. Gottlieb et al., Phys. Rev. Lett., 59 (1987) 2247

Odd derivatives vanish for $\mu_f = 0$ by CP symmetry.

Diagrammatic representation

Some definitions:

$$Z_f = Z \langle \mathcal{O}_1 \rangle, \quad \mathcal{O}_{n+1} = \frac{\partial \mathcal{O}_n}{\partial \mu_f}, \quad \mathcal{O}_{ij\dots} = \mathcal{O}_i \mathcal{O}_j \cdots$$

Diagrams:

S. Gupta, Acta Phys. Pol., B 33 (2002) 4259

Quark number susceptibilities

- Fluctuations of conserved quantities in heavy-ion collisions are related to χ_{uu}. Isospin fluctuations are related to χ₃ = χ_{uu} - χ_{ud}, charge fluctuations can also be constructed out of these. M. Asakawa *et al.*, *Phys. Rev. Lett.*, 85 (2000) 2072; S. Jeon and V. Koch, *ibid.*, 85 (2000) 2076
- Under certain conditions strangeness production rate can be related to the strange susceptibility, χ_{ss} . R. V. Gavai *et al.*, *Phys. Rev.*, D 65 (2002) 054506
- The pressure at finite chemical potential is essentially determined by the susceptibility.
- χ_3 is the zero momentum Euclidean finite temperature vector propagator and hence closely related to a transport coefficient— the DC electrical conductivity of quark matter.

Some notation

With two degenerate flavours of quarks, in flavour space the linear susceptibilities form the matrix

$$egin{pmatrix} \chi u & \chi u \ \chi u d & \chi u \end{pmatrix}$$

Redefining $\mu_0 = \mu_u + \mu_d$ and $\mu_3 = \mu_u - \mu_d$, this matrix becomes

$$\begin{pmatrix} \chi_u + \chi_{ud} & 0 \\ 0 & \chi_u - \chi_{ud} \end{pmatrix}$$

We define

$$\chi_3 = \chi_u - \chi_{ud} = \left\langle \operatorname{Tr} M^{-1} M' M^{-1} M' - \operatorname{Tr} M^{-1} M'' \right\rangle$$
$$\chi_{ud} = \left\langle \left(\operatorname{Tr} M^{-1} M' \right)^2 \right\rangle \quad \text{and} \quad \chi_0 = \chi_3 + 2\chi_{ud}$$

Finding the continuum limit

Main technical problem is to control the extrapolation to zero lattice spacing. For this we use two different kinds of Fermions (staggered and Naik) and perform simultaneous extrapolation with both: in the quenched theory.

R. V. Gavai and S. Gupta, Phys. Rev. D 67 (2003) 034501

Other methods

J.P. Blaizot, E. lancu and A. Rebhan, *Phys. Lett.*, B 523 (2001) 143 A. Vuorinen, hep-ph/0212283

$$\operatorname{Tr} A = \frac{1}{2} \overline{r^{\dagger} A r} \simeq \frac{1}{2N_{v}} \sum_{i=1}^{N_{v}} r_{i}^{\dagger} A r_{i}$$
$$(\operatorname{Tr} A)^{2} = \frac{1}{4} \overline{r^{\dagger} A r} s^{\dagger} A s$$

 $\chi_{ud} = 0$ for all $T > T_c$, but not $T < T_c$

Prescription

Chemical potential on the lattice is prescription dependent. Prescription involves a factor $f(\mu a)$ for forward propagation of quark by interval a in time, $g(\mu a)$ for anti-quark. Conditions—

- 1. f(0) = g(0) = 1.
- 2. f(x) = g(-x).
- 3. f'(0) = 1.
- 4. f(x)g(x) = 1. (Hence f''(0) = 1)
- R. V. Gavai, Phys. Rev., D 32 (1985) 519

Escape route

$$\mathcal{O}_3 = \text{Tr} \left[M^{(3)} M^{-1} + 2(M' M^{-1})^3 - 3M'' M^{-1} M' M^{-1} \right]$$

$$\mathcal{O}_4 = \text{Tr} \left[M^{(4)} M^{-1} + \cdots \right]$$

 $M^{(n)} = f^{(n)}(0)a^{n-2}M'$ (for $n = 3, 5, \cdots$) and $M^{(n)} = f^{(n)}(0)a^{n-2}M''$ (for $n = 4, 6, \cdots$).

- In HK prescription: $f(x) = \exp x$, and all $f^{(n)}(0) = 1$.
- In BG prescription: $f(x) = (1 x)/\sqrt{1 x^2}$, hence $f^{(3)}(0) = 3$, $f^{(4)}(0) = 9$.

Taylor series expansion is prescription dependent beyond 2nd order at every finite a, but prescription independent for $a \rightarrow 0$. R. V. Gavai and S. Gupta, hep-lat/0303013

Taylor series for pressure

$$P(T,\mu) = F/V = P(T,0) + \chi_3(T)\mu^2 + \frac{1}{12}\chi_{uuuu}(T)\mu^4 + \mathcal{O}(\mu^4)$$
$$= P(T,0) + \chi_3\mu^2 \left[1 + \left(\frac{\mu}{\mu_*}\right)^2 + \mathcal{O}\left(\frac{\mu^4}{\mu_*^4}\right)\right].$$

where $\mu_* = \sqrt{12\chi_3/\chi_{uuuu}}$ and other 2nd and 4th order terms have been neglected. Well-behaved for $\mu \ll \mu_*$ if all the higher order terms are small enough. All results can be obtained in the continuum. Term by term improvement of the series is possible. Series should fail to converge near a critical point. Series extrapolation methods should then be used to locate the critical point nearest to $\mu = 0$.

Radius of convergence

4-th order estimate of μ_* at $T = 1.5T_c$. At finite N_t , the series is insensitive to prescription when $\mu \ll \mu_*$. In the continuum μ_* is the first estimate of the radius of convergence of the series.

The pressure

 $\Delta P(T) = P(T,\mu) - P(T,0)$

Strangeness production

$$\lambda_s = \frac{\langle n_s \rangle}{\langle n_u + n_d \rangle}$$

Summary of Results

- Susceptibilities provide a systematic and easy way of computing quantities non-perturbatively at finite chemical potential in the continuum.
- Computation of several high order susceptibilities may allow estimation of the critical end point by series extrapolation methods.
- Fluctuations and strangeness production rate in heavy-ion collisions are related to susceptibilities.
- Susceptibilities allow extension of the equation of state to finite chemical potential.