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1. The conjectured phase diagram, the sign problem and recent solutions. Comparing different

methods for doing Gaussian integrals.

2. The QCD Taylor series expansion— semi-automatic methods for large order expansions and

their efficient computation.

3. The series for pressure and its breakdown, radii of convergence and the QCD phase diagram.

4. Summary



A conjectured phase diagram
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Flavour symmetry: one µ for every independent conserved charge.

M. G. Alford, K. Rajagopal, F. Wilczek, Phys. Lett., B 422 (1998) 247,

R. Rapp, T. Schäfer, E. V. Shuryak, M. Velkovsky, Phys. Rev. Lett., 81 (1998) 53.
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The problem?

Z = e−F/T =
∫
DU e−S

∏
f

detM(U,mf , µf) =
∫
DU e−S(T,µ)

where the Dirac operator is the staggered quark discretisation of M = m+ ∂µγµ.

• If there is a Q such that M† = Q†MQ, then clearly detM is real.

• Q = γ5 for µ = 0. Nothing for µ 6= 0.

• Monte Carlo simulations of Z fail.

• Under CP symmetry {U} → {U ′} such that detM(U) = [detM(U ′)]∗.

• Z remains real and non-negative— thermodynamics is safe.

Chemical potential/S. Gupta: INT Seattle, 2004 to plan, Sign problem, Taylor expansion, Phase diagram, end 2



Recent solutions

• Two parameter reweighting: Z. Fodor and S. D. Katz, J. H. E. P., 03 (2002) 014.

Simulate at (T, µ), reweight to (T ′, µ′) by the factor exp[∆S], where
∆S = S(T, µ)− S(T ′, µ′).

• Simulate imaginary µ (positive detM) and do analytic continuation: M. D’Elia

and M.-P. Lombardo, hep-lat/0209146, P. De Forcrand and O. Philipsen, Nucl. Phys., B642

(2002) 290 Special care needed; find Yang-Lee zeroes directly: S, Gupta,

hep-lat/0307007.

• Perform a Taylor series expansion of the free energy: C. R. Allton et al., Phys. Rev.,

D 66 (2002) 074507; R. V. Gavai and S. Gupta, Phys. Rev. D 68 (2003) 034506; C. R. Allton

et al., Phys. Rev., D 68 (2003) 014507
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Why Taylor series expansions?

• Reweighting and Taylor expansion methods have different systematics (example
follows).

• Since the reweighting factor, exp[∆S], is extensive, taking the continuum
and/or thermodynamic limits, while keeping the relative error fixed, is an
exponentially difficult problem.

• The continuum Dirac operator specifies effects of an infinitesimal time
translation. On the lattice we deal with finite translations (by lattice spacing
a). This gives a lattice ambiguity. Reweighting gives no indication of how large
the lattice artifacts are. With explicit Taylor expansion one can take the
continuum limit with relative ease.

• At present no analysis of the systematic errors in the determination of the
critical end-point determined by reweighting are available.

Chemical potential/S. Gupta: INT Seattle, 2004 to plan, Sign problem, Taylor expansion, Phase diagram, end 4



Example: Gaussian integrals

Z(s) ≡ exp[−F (s)] =
∫ ∞

−∞

dx√
2π

e−(x−s)2/2 = 1

x(s) = s, and V (s) = 1,

where V denotes the variance of x. The Taylor coefficients of F (s), x(s) and
V (s), in expansions around s = 0, can be read off from here.

The Monte Carlo procedure for s = 0 is well-known. Draw two random deviates
from an uniform distribution 0 ≤ r1, r2 ≤ 1. These give two Gaussian random
numbers

x1 =
√
−2 ln r1 cos(2πr2) and x2 =

√
−2 ln r1 sin(2πr2).

Perform this Monte Carlo. Values of x in the range X and X + dX are then
obtained with frequency proportional to the unit Gaussian.
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Example: Reweighting and Taylor expansion

In reweighting each point sampled by Monte Carlo is given an extra weight

w(x, s) = e−(s2−2xs)/2

The statistical estimates of any quantity one wishes to evaluate are made using
this weight for each sampled value of x. Taylor expand w and average.
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Example: Why reweighting goes crazy

Simple: finite statistics means tail of the distribution is always badly sampled. On
reweighting, what was once the tail eventually becomes the peak. Reweighting is
exponentially hard.
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Example: Why the Taylor expansion remains sane

The Taylor expansion can be rearranged in terms of cumulants—

1!t1 = 〈x2〉 ≡
[
x2
]
,

2!t2 = 〈x(x2 − 1)〉 ≡ 0,

3!t3 = 〈x2(x2 − 3)〉 ≡
[
x4
]
+ 3

[
x2
] ([

x2
]
− 1
)
,

4!t4 = 〈x(3− 6x2 + x4)〉 ≡ 0,

5!t5 = 〈x2(15− 10x2 + x4)〉 ≡
[
x6
]
+
[
x4
] (

15
[
x2
]
− 10

)
+ 15

[
x2
] ([

x2
]
− 1
)2
.

The symmetries of the Gaussian for s = 0 imply that alternate coefficients vanish.
Only the second cumulant, [x2], is non-vanishing. As a result, for a Gaussian of
unit variance, only the first Taylor coefficient is non-vanishing. A variance
reduction of the Taylor expansion follows from this.
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The Taylor Expansion for QCD

Since PV = −F = T logZ, the Taylor expansion of P is the same as of F !

P (T, µu, µd) = P (T, 0, 0) +
∑

f

nfµf +
1
2!

∑
fg

χfgµfµg + · · ·

where the quark number densities and susceptibilities are—

nf =
T

V

∂ logZ
∂µf

∣∣∣∣
µf=0

χfg =
T

V

∂2 logZ
∂µf∂µg

∣∣∣∣
µf=µg=0

χfgh··· =
T

V

∂n logZ
∂µf∂µg∂µh · · ·

∣∣∣∣
µf=µg=···=0
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Differential calculus by machine: 1

There are mechanical and (almost) fully programmable methods to take the
derivatives involved in a high-order Taylor series expansion of the partition
function with fermions and finding the most efficient way of programming the
Taylor coefficients.

Step 1

Relate the derivatives of logZ to the derivatives of Z. Trivially accomplished by,
e.g., the simple Mathematica program

chi[n , m ] := D[ Log[Z[u, d]], {u, n}, {d, m}],

or its generalization to a larger number of flavours. Notation used is

χnm = χ uu···︸︷︷︸
n times

dd···︸︷︷︸
m times
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Differential calculus by machine: 2

Step 2

Relate the derivatives Z to fermion traces. As long as we work with equal mass
flavours, the fermion traces are flavour independent. Introduce the notation

Z10 = Z〈O1〉, O′
n = On+1.

Use the rule [detM ]′ = [expTr logM ]′ = Tr M ′M−1 detM , to write

Z10 = Z01 =
∂Z

∂µf
=
∫
DUe−S Tr M−1

f M ′
f .

Note: M ′ = γ0 and M−1 = ψψ, so Tr M−1M ′ = ψ†ψ. S. Gottlieb et al., Phys. Rev.

Lett., 59 (1987) 2247
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Differential calculus by machine: 3

Step 3

Use the chain rule to write down higher order derivatives in terms of the On and
their products. A diagrammatic representation of these quantities is possible, and
can be used to check the results.

1 2 11

111 21 3

S. Gupta, Acta Phys. Pol., B 33 (2002) 4259

Example: Z60 contains O1122 with coefficient equal to the number of ways of
partitioning 6 objects into groups of 2 ones and 2 twos, i.e.,{

1
2

(
6
1

)(
5
1

)}
×
{

1
2

(
4
2

)}
= 45.
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Differential calculus by machine: 4

Step 4

The diagrams still have to be related to fermion traces. In the continuum this is
trivial because only M ′ = γ0 6= 0. On the lattice there are several more steps,
since arbitrary derivatives, M (p), exist. Introduce further notation

bn1 · p1 ⊕ n2 · p2 ⊕ · · ·e = Tr
[(
M−1M (p1)

)n1
(
M−1M (p2)

)n2

· · ·
]
.

Then derivatives are given by the rule—

bn · pe′ = −nb1⊕ n · pe+ nb(n− 1) · p⊕ (p+ 1)e.

The chain rule is equivalent to making the derivative linear over ⊕.

Example: b1e = Tr M−1M ′, and b1e′ = −b2 · 1e+ b2e.
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Differential calculus by machine: 5

Step 5

Numerical estimates of traces are made by the usual noisy method, which involves
the identity I = |r〉 〈r|, where r is a vector of complex Gaussian random numbers.
We choose to use 100 vectors in the averaging.
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Differential calculus by machine: 6

Step 6

Optimisation of the computation of multiple traces reduces to a problem called
the Steiner problem. Need 20 matrix inversions to perform a single measurement
of upto 8th order susceptibilities.

M   r
−1

r

M’M   r
−1

M"M   r
−1

M   M’M   r
−1 −1

M   M"M   r
−1 −1

M"M   M’M   rM’M   M’M   r
−1 −1 −1 −1

M’M   M"M   r M"M   M"M   r
−1 −1 −1 −1

(1) (2)

(2.1) (1+2) (2.2)
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The actual evaluation tree
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Convergence of the series for the pressure

∆P (T, µ) ≡ P (T, µ)− P (T, 0) = χ20(T )µ2 +
1
12
χ40(T )µ4 +O

(
µ6
)

= χ20µ
2

1 +

(
µ

µ
(2)
∗

)2
1 +

(
µ

µ
(4)
∗

)2(
1 + · · ·

)
 .

where µ(2)
∗ =

√
12χ20

χ40
µ(4)
∗ =

√
30χ40

χ60
etc.

If µ
(n)
∗ increases without limit then the series is well behaved for all µ. Else, for

µ < µ∗,

∆P (T, µ) = χ20µ
2

∞∑
n=0

(
µ

µ∗

)2n

' χ20µ
2

1− (µ/µ∗)2
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A related expansion is

∆P (T, µ) =
∞∑

n=1

(
µ

µ
(2n)
∗

)2n

where µ(n)
∗ =

(
n!

2χn0

)1/n

.

Again, for µ < µ∗,

∆P (T, µ) ' χ20µ
2

1− (µ/µ∗)2
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Simulations

Simulations at constant m/Tc = 0.1, corresponding to mπ/Tc ≈ 1.6. Lattice
spacing a = 1/4T , i.e., Nt = 4. Care needed to use roughly equal number of
uncorrelated configurations at all T .
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χ11 and χ20
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Radius of convergence

The series expansion breaks down when a phase transition line is encountered. Use

estimates of the radius of convergence, µ
(n)
∗ , to obtain an estimate of the position

of the phase transition line.
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The phase diagram

The same information can be written as a phase diagram. Here is the phase
diagram in a Taylor series at order 2.

0.4

0.45

0.5

0.55

0.6

0.65

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
/m

π

  /m pµ

Chemical potential/S. Gupta: INT Seattle, 2004 to plan, Sign problem, Taylor expansion, Phase diagram, end 37



The phase diagram

The same information can be written as a phase diagram. Here is the phase
diagram in a Taylor series at order 4.
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The phase diagram

The same information can be written as a phase diagram. Here is the phase
diagram in a Taylor series at order 6.
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The phase diagram

The same information can be written as a phase diagram. Here is the phase
diagram in a Taylor series extrapolated to all orders.
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Summary

More than one method for computing physics at finite µ.

• The Taylor expansion is a systematic method which allows us to quantify
uncertainties in the evaluation of the phase boundaries, and systematically
improve them.

• There is a systematic method for generating high order susceptibilities and
computing them efficiently. Algebraic methods are used for automatic
generation of the terms, and combinatorial techniques have been developed to
test their correctness. An algorithm exists for writing down the most efficient
computation upto a given fixed order.

• Computation of several high order susceptibilities allows an estimation of the
critical end point by series extrapolation methods.

• Phenomenological consequences will be discussed by Rajiv Gavai next week.
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