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Why chemical potential?
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Flavour symmetry: one µ for every independent conserved charge.

M. G. Alford, K. Rajagopal, F. Wilczek, Phys. Lett., B 422 (1998) 247,

R. Rapp, T. Schafer, E. V. Shuryak, M. Velkovsky, Phys. Rev. Lett., 81 (1998) 53.
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What’s the problem?

Z = e−F/T =
∫
DU e−S

∏
f detM(U,mf , µf) =

∫
DU e−S(T,µ)

Dirac operator: M = m+ ∂µγµ

• If there is a Q such that M† = Q†MQ, then clearly detM is real.

• Q = γ5 for µ = 0. Nothing for µ 6= 0.

• Monte Carlo simulations of Z fail.

• Under CP symmetry {U} → {U ′} such that detM(U) = [detM(U ′)]∗.

• Z remains real and non-negative— thermodynamics is safe.
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Recent solutions

• Two parameter reweighting: Z. Fodor and S. D. Katz,

J. H. E. P., 03 (2002) 014.

Express the reweighting in terms of derivatives of
Fermion determinant with respect to µ: C. R. Allton

et al., Phys. Rev., D 66 (2002) 074507

• Simulate imaginary µ (positive detM) and do
analytic continuation: M. D’Elia and M.-P. Lombardo,

hep-lat/0209146, P. De Forcrand and O. Philipsen, Nucl.

Phys., B642 (2002) 290

Special care needed; find Yang-Lee zeroes directly:
S, Gupta, hep-lat/0307007.

• Perform a Taylor series expansion of the free
energy: R. V. Gavai and S. Gupta, Phys. Rev. D 68

(2003) 034506.
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The Taylor Expansion

Since PV = −F = T logZ, the Taylor expansion of P is the same as of F !

1
V
P (T, µu, µd) =

1
V
P (T, 0, 0) +

∑
f

nfµf +
1
2!

∑
fg

χfgµfµg + · · ·

where the quark number densities and susceptibilities are—

nf =
T

V

∂ logZ
∂µf

∣∣∣∣
µf=0

χfg =
T

V

∂2 logZ
∂µf∂µg

∣∣∣∣
µf=µg=0

χfgh··· =
T

V

∂n logZ
∂µf∂µg∂µh · · ·

∣∣∣∣
µf=µg=···=0
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Derivatives

Derivatives of logZ can be expressed in terms of derivatives of Z. The latter can
be constructed by the chain rule.

Zf =
∂Z

∂µf
=
∫
DUe−S Tr M−1

f M ′
f .

Note: M ′ = γ0 and M−1 = ψψ, so Tr M−1M ′ = ψ†ψ. Odd derivatives vanish
for µf = 0 by CP symmetry. S. Gottlieb et al., Phys. Rev. Lett., 59 (1987) 2247

1 2 11

111 21 3

S. Gupta, Acta Phys. Pol., B 33 (2002) 4259
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Why Taylor series expansions?

• Since the reweighting factor, exp[∆S], is extensive, taking the continuum
and/or thermodynamic limits, while keeping the relative error fixed, is an
exponentially difficult problem.

• All reweighting results are potentially full of lattice artifacts. The continuum
Dirac operator specifies effects of an infinitesimal time translation. On the
lattice we deal with finite translations (by lattice spacing a). This gives a lattice
ambiguity. Reweighting gives no indication of how large the lattice artifacts are.

• Taylor series expansion is prescription dependent beyond 2nd order at every
finite lattice spacing a, but prescription independent for a→ 0. With explicit
Taylor expansion one can take the continuum limit.

• With finite statistics, reweighting is dominated by the leading part of the Taylor
series expansion. At present no analysis of the statistical errors in the
determination of the critical end-point determined by reweighting are available.
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The (linear) quark number susceptibilities

For Nf = 2, the linear susceptibilities form the matrix in flavour space which can
be diagonalised by rotating to the space of isoscalar (µ0 = µu + µd) and isovector
(µ3 = µu − µd) chemical potentials—(

χuu χud

χud χuu

)
←→

(
χuu + χud 0

0 χuu − χud

)

No matter what the representation, there are only two independent QNS (for
degenerate masses) which we choose to be

χ3 = χuu − χud =
〈
Tr M−1M ′M−1M ′ − Tr M−1M ′′〉

χud =
〈(

Tr M−1M ′)2〉 and χ0 = χ3 + 2χud
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Finding the continuum limit

Main technical problem is to control the extrapolation to zero lattice spacing. For
this we use two different kinds of Fermions (staggered and Naik) and perform
simultaneous extrapolation with both: in the quenched theory.

R. V. Gavai and S. Gupta, Phys. Rev. D 67 (2003) 034501
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Perturbation theory
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J.P. Blaizot, E. Iancu and A. Rebhan, Phys. Lett., B 523 (2001) 143

A. Vuorinen, Phys. Rev., D 67 (2003) 074032
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χud and χuu
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• Note five orders of magnitude between the two QNS.

• Perturbation theory cannot reach T < 2Tc.

• Perturbative result for χud two orders of magnitude too large.
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Quark number susceptibilities: phenomenology

• Fluctuations of conserved quantities in heavy-ion collisions are related to χuu.
Isospin fluctuations are related to χ3 = χuu−χud. Charge fluctuations can also
be constructed out of these. M. Asakawa et al., Phys. Rev. Lett., 85 (2000) 2072; S.

Jeon and V. Koch, ibid., 85 (2000) 2076

• Under certain conditions strangeness production rates can be related to the
strange susceptibility, χss. R. V. Gavai et al., Phys. Rev., D 65 (2002) 054506

• The pressure at finite chemical potential is essentially determined by the
susceptibility. This is used in hydrodynamic models to obtain single particle
inclusive spectra as well as multi-particle correlations. R. V. Gavai and S. Gupta,

Phys. Rev. D 68 (2003) 034506.

• χ3 is the zero momentum Euclidean finite temperature longitudinal vector
propagator and hence is needed to connect the soft photon production rate to a
transport coefficient— the DC electrical conductivity of quark matter. S. Gupta,

hep-lat/0301006.
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Event to event fluctuations

Each heavy-ion collision event, followed by the hadronisation, is one realisation of
the whole ensemble of possible thermodynamic systems. Within a given rapidity
region, the total amount of any conserved charge fluctuates from one event to
another. The variance is determined by the response function of QCD matter in
equilibrium.

M. Asakawa et al., Phys. Rev. Lett., 85 (2000) 2072

S. Jeon et al., Phys. Rev. Lett., 85 (2000) 2076

D. Bower and S. Gavin, Phys. Rev., C 64 (2001) 051902

From lattice computations it is seen that

χB < χQ < χs (T > Tc)
χB > χQ > χs (T < Tc)

R. V. Gavai, S. Gupta, P. Majumdar, Phys. Rev., D 65 (2002) 054506
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Strangeness production: quenched continuum
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〈nu + nd〉
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J. Cleymans, J. Phys., G 28 (2002) 1575,

R. V. Gavai and S. Gupta, Phys. Rev., D 65 (2002) 094515.
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Strangeness production: dynamical quarks
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Still need to fine tune bare strange quark mass and take the continuum and
thermodynamic limits. R. V. Gavai and S. Gupta, in preparation.

Dependence on bare light quark mass is weak. R. Ray and S. Gupta, in preparation.

Chemical potential/S. Gupta: WHEPP 8, 2004 to plan, Phases, Expansion, QNS, strangeness, EOS, end 15



The pressure

∆P (T, µ) ≡ P (T, µ)− P (T, 0) = χuu(T )µ2 +
1
12
χuuuu(T )µ4 +O

(
µ6
)

= χuuµ
2

1 +

(
µ

µ
(2)
∗

)2
1 +

(
µ

µ
(4)
∗

)2(
1 + · · ·

)
 .

where µ(2)
∗ =

√
12χuu

χuuuu
µ(4)
∗ =

√
30χuuuu

χuuuuuu
etc.

Well-behaved for µ� µ∗. All results can be obtained in the continuum. Term by
term improvement of the series is possible. However, need to compute many terms
if high precision is needed.
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Algorithms

Since I = |r〉 〈r| where |r〉 is a unit Gaussian complex vector, be easily shown that
Tr A = 〈r|A|r〉. Optimisation of the computation of multiple traces reduces to a
problem called the Steiner problem. Need 20 matrix inversions to perform a single
measurement of upto 8th order susceptibilities.

M   r
−1

r

M’M   r
−1

M"M   r
−1

M   M’M   r
−1 −1

M   M"M   r
−1 −1

M"M   M’M   rM’M   M’M   r
−1 −1 −1 −1

M’M   M"M   r M"M   M"M   r
−1 −1 −1 −1

(1) (2)

(2.1) (1+2) (2.2)

M. Charikar et al., STAN-CS-TN-97-56.
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Algorithms

Since I = |r〉 〈r| where |r〉 is a unit Gaussian complex vector, be easily shown that
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The actual evaluation tree
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How many vectors?
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The histogram of O11 where χud = 〈O11〉. In the limit of infinite number of
vectors the histogram should be skew, a tail to the left and vanishing abruptly at
zero. We use 100 vectors to get close to this situation.
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The equation of state
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∆P (T ) = P (T, µ)− P (T, 0)

R. V. Gavai and S. Gupta, Phys. Rev. D 68 (2003) 034506 and hep-lat/0309014.

See also
Z. Fodor, S. D. Katz and K. K. Szabo, hep-lat/0208078,

C. R. Allton et al., Phys. Rev., D 68 (2003) 014507.
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Radius of convergence: distance to phase transitions

The series expansion breaks down when a phase transition line is encountered. Use

estimates of the radius of convergence, µ
(n)
∗ , to obtain an estimate of the position

of the phase transition line.
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Qualitative change in the range 0.8 < T/Tc < 0.9— currently narrowing the range
further.
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More than one method for computing physics at
finite µ. One of these (Taylor series expansion)
is a precision technique, allowing contact with
experiments.

• Computation of several high order
susceptibilities gives estimate of the critical
end point by series extrapolation methods.

• Fluctuations and strangeness production
rate in heavy-ion collisions are related to
susceptibilities. Temperature dependance of
λs is a direct prediction from the lattice.

• Susceptibilities allow extension of the equation
of state to finite chemical potential. This
enters into any hydrodynamical description of
the heavy-ion collision and thus tests particle
spectra, HBT radii, elliptic flow etc.
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