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1. Why the electrical conductivity?

2. Extraction of spectral function from lattice data using Bayesian methods.

3. Using lattice data to find the time scale of transport phenomena.



Why electrical conductivity

• Transport coefficients are extracted from correlation functions of conserved
quantities. All transport coefficients give interesting physics. So choose a
correlator which is easy to measure on the lattice.

• We choose the electromagnetic vector correlator. This is known to be one of
the easiest to measure.

• It is related to many pieces of interesting phenomenology such as— skin depth
of soft photons, diffusion coefficients for charge, baryon number and
strangeness.

• With some assumptions, this measurement can be used to estimate the
viscosity.
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Linear Response Theory

The response, A(t), of a system to a force F(t) if non-linear terms are neglected—

A(t) =
∫ ∞

−∞
dt′χ(t− t′)F(t′) hence A(ω) = χ(ω)F(ω).

Causality implies χ(t) = 0 for t < 0. As a result χ(ω) is regular in the upper half
plane and dispersion relations follow. The spectral density is the imaginary part of
χ(ω) as ω approaches the real axis from above. A microscopic computation
explicitly relates χ(ω) to the retarded propagator. From this follow the Kubo
formulæ relating the transport coefficient and the zero energy limit of the spectral
density—

χ ∝ lim
ε→0

∫
d3x′

∫ t

−∞
dt′′eε(t′′−t)

∫ t′′

−∞
dt′〈A(x, t)A(x′, t′)〉.

J. Hilgevoord, Dispersion Relations and Causal Description, North-Holland, 1960
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Temporal correlators:
electrical conductivity and photon emissivity

The differential photon emissivity is given by—

ω
dΩ
d3p

=
CEM

8π3
nB(ω;T )ρµ

µ(ω,p;T ) where CEM = 4πα
∑

f

e2
f ≈

1
21

.

In terms of the DC electrical conductivity (j = σE)

σ(T ) =
CEM

6
∂

∂ω
ρi

i(ω,0;T )
∣∣∣∣
ω=0

,
8π3ω

CEMT 2

dΩ
d3p

= 6
σ

T
.

Since kµρµν = 0, we have ρ00 = 0 along the line p = 0. Formally,

ρ00(ω,0;T ) = 2πχQωδ(ω),

where χQ is the charge susceptibility.
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Lattice Correlators

In the (Euclidean) lattice theory one constructs equilibrium correlation functions
which are related to the spectral function by—

G(τ,p;T ) =
∫ ∞

0

ω

2π
K(ω, τ ;T )ρ(ω,p;T ).

In a lattice theory there are Nt points in the τ direction, but there is a continuous
infinity of ω.

Replace integral by sum, the linear relation above becomes a set of linear
equations: more variables than equations. Inverse of K is ill defined. Convert to a
minimisation/Bayesian problem.

Another case where the inverse matrix is ill-defined is when there are more
equations than unknowns. In this case the usual method of solution is by least
squares.
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Regularisation

When the number of variables is larger than the number of equations, maximize
the Bayesian probability—

P (ρ|G) ∝ P (G|ρ)P (ρ) = exp[−F (ρ)],

F (ρ) = (G−Kρ)TΣ−1(G−Kρ) + βU(ρ)
β is a regularisation parameter, Σ is the covariance matrix of the measured G, and
U(ρ) is a function which we are free to choose. This function encodes our prior
knowledge of the system.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, Wiley, New York (1977)

1. Specifying a regulator function is not, in principle, different from parametrising
ρ(ω). In practise, the results may differ.

2. When the errors are large then Σ−1 is small and the prior assumptions effect
the solution strongly. When the errors are small then Σ−1 is large and improper
assumptions can sometimes be identified and consequently removed.
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Flavours of regularisation

1. Maximum Entropy Method has U =
∑

ρ log(ρ/ρ0)− ρ, where ρ0 is a free
further choice.
Y. Nakahara, M. Asakawa and T. Hatsuda, Phys. Rev., D 60 (1999) 091503,
QCD TARO, Nucl. Phys. B (Proc. Suppl.) 63 (1998) 460

2. A linear regulator is of the form U = ρTLTLρ, where the matrix L = 1, D, D2,
etc..
SG, PL B597 (2004) 57.

3. Include known information into the Bayesian probability.
G. P. Lepage et al., Nucl. Phys., B (Proc. Suppl.) 106 (2002) 12.

4. Fit a form with small parameters to the functional form, and accept or reject
this hypothesis by the usual means.
Pearson?
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An example

Determine the parameters of the line y = a + bx passing through (1,1)

x

y

a

b

Simplified version of the actual problem to be solved: 2× L3 lattice.
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Solution: method 1

Method 1: MEM

F (a, b) = (1−a−b)2+β

(
a log

a

A
+ b log

b

B
− a− b

)
The minimum is at

a

A
=

b

B
= u where 1− Y u =

β

2
log u,

and Y = A + B. Solutions exist only for Y > 0.
If Y < 1 then u > 1 and vice versa.

x

y

−
A

/B

(1,Y)
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The best fit does not pass through the data except when A + B = 1

8



Solution: method 2

Method 2: General linear regulator U = ρTLTLρ

F (a, b) = (1− a− b)2 + β(l11a2 + l22b
2 + 2l12ab)

U is positive definite. The minimum occurs at

M

(
a
b

)
=

(
1
1

)
, where M =

(
1 1
1 1

)
+β

(
l11 l12
l12 l22

)
a

b

For all L the best
fit passes through the
data.

Most probable β = 0 :
(

a
b

)
=

l11 6=0 (x=l22/l11)︷ ︸︸ ︷
1

1 + x

(
x
1

)
or

l22 6=0 (x=l11/l22)︷ ︸︸ ︷
1

1 + x

(
1
x

)
(l12 = 0).
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Large ω using MEM
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F. Karsch et al, Phys.Lett.B530:147,2002— Wilson quarks

Full agreement with Born for ω/T ≥ 4.

Default model: ideal gas behaviour. Output: ρ(ω) grows as ω2 at large ω.
Extracted value vanishes as ω → 0. Need to examine low ω region by another
method in more detail.
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Small ω using linear regulator

Since the problem is linear, work with

∆G(ω,p;T ) = Gfull(ω,p;T )−Gideal(ω,p;T ).

This gets rid of the ω2 divergence at infinity, at the cost of the positivity of ∆ρ.
Use a linear regulator. This shows a bump at small ω. Second and higher bump at
ω/T ≈8–9.
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SG, PL B597 (2004) 57.
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Lattice gauge theory with parametrised Bayesian methods

Use a sequence of parametrisations for the
spectral density

∆ρ

T 2
=

z
∑N

n=0 γnz2n

1 +
∑M

m=1 δmz2m
.

Use with Fourier space correlators—

∆G(ωn,p;T ) =
∮

dω

2iπ

∆ρ(ω,p;T )
ω − ωn

where ωn = 2iπnT .

2π T

2π T N
t
= 2π/a

Two types of poles: S2 is
“relaxation time” and S4

is “transport”. S2 ruled
out.

Use χ2 parameter fitting if N + M + 1 ≤ Nt, Bayesian otherwise.

F. Karsch and H. W. Wyld, Phys. Rev., D 35 (1987) 2518; S. Sakai et al., hep-lat/9810031
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Pinch singularities and transport

There are pinch singularities at small external energy, ω, from ladder diagrams.
These ladder diagrams correspond to multiple scatterings off particles in the
plasma.

����� ����������

k0

2γ
k

kE  + i kγ

ω+ kE  − i kγ

ω

ρ(
ω

)

ω/Τgg  ln(g)2

Transport: Arnold, Moore and Yaffe,

G. Aarts and J.M.M. Resco JHEP 0204:053,2002

19

http://arXiV.org/pdf/hep-lat/hep-ph/0203177


Electrical conductivity: continuum limit

Electrical conductivity depends only on the parameter γ. Obtain this by
marginalising over the remaining parameters. SG, PL B597 (2004) 57.

σ
T ≈ 7CEM for 1.5 ≤ T/Tc ≤ 3
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Summary and phenomenology

1. Typical transport length/time scales in the plasma are σ = CEMnqτq/m. Then
τq ≈ 0.2 fm, hence τg ≈ 0.1 fm. Using similiar transport formula: η/S ≈ 0.2.

2. Hydrodynamic description of the fireball works if its thermalisation time is less
than 0.6 fm. A typical relaxation time in the plasma is τg and hence is short.

3. A soft photon mean free path is ` = τq/CEM ≈ 4 fm. Typical fireball
dimensions at RHIC are 7 fm, so the fireball is marginally transparent to soft
photons (ω ≤ 200MeV ). Small τg implies small `.

4. Spontaneous thermal fluctuations of flavour even out by diffusion:
σ =

∑
f e2

fDfχf , where Df is a diffusion coefficient and χf is the particle
number susceptibility. Therefore chemical signals visible only at freeze out.
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