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Plan

1. Evidence for unbound quarks in the plasma: QNS and (overlap) screening
correlators.

2. The spectrum of Dirac eigenvalues: temperature dependence and effective
theories.

3. Localization of Dirac eigenvectors: measures of localization, and stability of
localized eigenvectors.



Quarks in the plasma

Look for linkage between flavour quantum numbers of excitations in the plasma.
Linkage of two quantum numbers P and () is the thermal expectation value of P
when unit value of () is excited: Cpjg = xPq/X0-
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Cps = —3Cpg|s and Cgs = 3Cg|s. Note very rapid crossover to value expected
of quarks above T.. Weak coupling fails very close to T..

Gavai and SG, Phys. Rev. D
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Screening correlators

1

Ns=4/T; a=1/6T and a = 1/8T'; overlap. Fit to Bose gas good only over

limited range of z, so do not quote screening masses. Vector correlator close to
ideal gas of quarks. Is this a good starting point for weak coupling theory?

Pseudoscalar correlator badly described by ideal quark gas at long distances and by
Bose gas at short distances. Does not seem to be a finite lattice spacing artifact.



Screening correlators in momentum space
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Vector screening masses roughly compatible with ideal quark gas upto overall

normalization. x?/DOF = 4, implying shape change is a small effect but
necessary. Try weak coupling expansion?

Pseudoscalar is definitely different at small momentum, but agrees at large
momentum.



Lattice spacing effects in momentum space correlators
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Some remnant lattice spacing dependence— going in the direction of the pion less
compatible with weak coupling theory!



Lowest Dirac eigenvalues
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The Banks-Casher formula and observations of the variation of (1)) with T imply
that a spectral gap should open up at finite temperature. Data (for staggered
N¢ =2, a =1/4T, varying spatial volumes) shows that this occurs slowly.

As V — 00, the most rapid change seems to occur after T,.. Crossover from chiral
effective theory to dimensional reduced effective theory?



Localization of eigenvectors
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The local moments of normalized Dirac wavefunctions, 1, (r) are defined to be—

Py =V""'Y pi(r), ,ps(r Zw ")Yas¥s(T),

where o« and (3 are Dirac-flavour indices. The case n = 2 is called Inverse
Participation Ratio.



Large fluctuations
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Strong config-to-config fluctuations in localization
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observed, AP, /P> = O(1).



Another notion of localization
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Localization is a matter of how quickly p(r) falls off. Take a function value p and
find the two measures C(p) (fraction of integral) and f(p) (fraction of space
occupied). Eliminating p one finds f(C).

Also important is notion of connectivity of the set on which p(r) > p has support.
Is this simply connected, multiple regular pieces or some fractal geometry?

Horvath
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Four models
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Constant function p(r) = 1/V gives P, = 1 and singular f(C)

Delta function gives P, =V and f(C) =0 (for C < 1).

Standing wave p(r) = cos?(kr) gives P, = 1.5 and f(C) as shown.
Random function p(r) on sites maps to site percolation problem. Gives
Py =1.66 and f(C) as shown.
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Equivalent notions of localization
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The notions of f(C) and P, (IPR) are statistically equivalent. Choose a value of
C = C,. The corresponding f(C) is correlates well with Ps.



Rate of fall
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Exponential fall far from peaks implies C ~ 1 — g(R) exp(—R?) and f ~ R“.
Check whether —log(1 —C) o< /f.

Localized states fall exponentially. Extended states have radically different
behaviour.



Clusters?
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In percolation problems, the number of clusters, V., peaks near the transition.
N¢;/V is an universal function of f. For extended states in QCD, the scaled
cluster distribution follows this curve below the transition, but is more extended
above: implying there are more holes inside the percolating cluster where smaller
clusters can survive.
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Mott’'s argument

Mott's argument about localization and existence of a mobility edge is more
general than specific models like Anderson’s—

1. If there is a localized and an extended state very close in energy, then they mix
under any small perturbation of the Hamiltonian, thus removing localization.

2. Thus localization is robust only when a mobility edge forms, thus separating
localized and extended states.

Mott, 1965
The loophole: if there are localized states with spatial holes (fractal support), then

the argument fails, since the lack of overlap can be arranged in space rather than

In energy.
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Perturbation of Dirac operator

Stability of Dirac eigenvectors under perturbation has to be examined in any case,
whenever some property is not protected by topology. Use leading order
perturbation theory for eigenfunctions—

i) = Z %‘5342? 7), where MU +d6U)=MU)+ oM

J

Examining estimators of the coefficients

_ Zr \/pz‘(T)Pj(T).

Cy;
’ |E; — Ej

Why no phase information? oM contain arbitrary gauge fields, which randomize
phase relations between |i) and |j).
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Stability under perturbation

1. Estimate perturbation required to mix |i) and |j) as 1/C;;.
2. Measure of stability is S; = min,; C;;; more accurately, 6M; = O(1/S;).
3. Estimate 1/S; for each localized eigenvector [i).

4. Stability for a configuration is the minimum value of §,, i.e.,
S = max; minj C’LJ

S is a direct measure of the stability of localized eigenvalues, and easier to
examine on finite lattices (discrete Dirac spectra) than the formation of mobility
edges. Also, since the extended eigenvectors may have fractal support, Mott's

argument may fail, and there could be stable localization without mobility edges.
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Stability and localization
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As one tunes up the magnitude of d M, the hardest eigenvalue to mix always turns
out to be the one with the largest P, (IPR). There is a rough correlation between
P> and S as shown. The small value of 1/S indicates that leading order
perturbation theory is not totally wrong. Localized eigenvalues are stable.
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Summary

. Screening correlators support evidence from QNS that there are quarks in the
plasma. QNS indicates that they are not weakly interacting in the range 1-27T..
What about screening? Small k£ versus large k7 Lots of interesting questions
here for weak-coupling-wallahs.

. The minimum eigenvalue of the massless staggered Dirac operator (partially
quenched) shows a crossover from a “chiral” effective theory to dimensionally
reduced effective theory.

. Localization observed at high temperature. Different measures of localization
correlated. First evidence that extended eigenvectors could be full of holes,
where some localized states could live.

. Localized eigenvectors are stable under perturbation. Stable localized states are
sandwiched (in energy) between other states which are extended. Breakdown of
the Mott argument and support for holey solitude.
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