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Introduction

Deconfinement and chiral phase transition

chiral limit quenched limit
O

~10 MeV
Chiral transition

Z(2)

Z(T,m,N¢) = /DU det Me(T, m, Nc)exp[—Sg (T, Nc)].
=] (=)
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The temperature scale

SU(4): crossover to weak coupling
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Strong coupling series fails: weak coupling should be understood in RG.
Coincidence: finite-T transition for N; = 4 interferes with this transition.
(Gocksch Okawa, Batrouni Svetitsky, Wingate Ohta, Gavai, Teper et al)
Our solution: go to larger N;.
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The temperature scale
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Thermal phase transition signalled by (|L|). No associated bulk transition
QMo9

seen in average plaquette. Similar for larger N..
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The temperature scale
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Thermal phase transition signalled by (|L|). No associated bulk transition
seen in average plaquette. Similar for larger N..
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The temperature scale

Determining the temperature scale

© Trade the bare coupling () for the renormalized coupling (as). The
zero-temperature plaquette (P) is used to determine a;s using the
weak coupling expansion of carried out to second order: V-scheme.

© Use the beta-function to find the lattice spacing for a given asg:
al\ys = kR(1/47Bocxs) Rz(x) — exp(_x)xﬁo/ﬁl_

© When [ is tuned so that there is a finite temperature transition on an
N; x N3 lattice (Ns > N;) then a = 1/(N,T.). This allows us to
determine T./Ass. Also, using the RGE, allows us to find T/ T,
corresponding to any other .

© Consistency check on the approach to the continuum limit: the lattice
spacings extracted from the RGE at fixed T with different N; should
be in the ratios of N;.
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The temperature scale

SU(4) scaling with 1-loop RGE

1.8 SuU(4), 1-loop
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The temperature scale

SU(4) scaling with 2-loop RGE

1.8 SuU(4), 2-loop
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The temperature scale

A resonance gas?

PIT

Resonance gas N=5

gluon g
' N&=4

I N&3

i hag

T

A simple possibility at large N.: pressure of a glueball resonance gas
equals the pressure of a gluon gas at a first order deconfining transition.
Correction should be regular in N, and starts at order 1/N2.
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The temperature scale

The Hagedorn temperature?
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N. = 3 from SG 2001. Fit gives the limiting temperature:
Tc/Nyis = 1.87(4). Is this the Hagedorn temperature?
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The temperature scale

Summary (1)

@ Temperature scale determined for N. = 4 and 6 using lattice
simulations at finite cutoff. Extrapolated to continuum limit using
two-loop [-function of QCD. The result is T./Ays for each NL.

@ A model of the first order transitions seen is that on the low
temperature side one has a resonance gas of glueballs, and on the

plasma side one has a gas of gluons. If this picture becomes exact at

N. = oo, then one should be able extrapolate smoothly to the limit.

@ We find
T.

MS

= 1.87 £ 0.04. (stat only).

Systematic errors involved in the choice of RG scheme remain to be
evaluated.
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The equation of state

The conformal anomaly: A = E — 3P
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Peak of A/ T# shifted from T.: evidence of change with N7 Perhaps
peak shifts to Ty as N. — oo? (Pisarski)
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The equation of state

Pressure in SU(4)

SU(4), Nt=6

P/Pgg
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Evaluated using the integral method. Negligible volume dependence when
Ns/Ny > T /T.. Cutoff dependence within control: continuum limit within
reach.
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The equation of state

Pressure in SU(4)
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Evaluated using the integral method. Negligible volume dependence when
Ns/Ny > T /T.. Cutoff dependence within control: continuum limit within
reach.
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The equation of state

Equation of state for SU(4)
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Weak coupling theory treated in DR (Hietanen et al, hep-ph/0603048).
EOS closer to weak-coupling QCD than conformal theory.
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The equation of state

Equation of state for SU(3)
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Weak coupling theory treated in DR (Hietanen et al, hep-ph/0603048).
EOS closer to weak-coupling QCD than conformal theory.
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The equation of state

Summary (2)

@ P/T%*in SU(4) pure gauge theory scales for T > 3T./2 already for
N =6. For T ~ 1.1T. there is scaling violation between N; = 6 and
N; = 8. The EOS curve becomes smoother with increasing ;.
Similar effects were also seen for SU(3).

@ EOS comes close to the conformal symmetric limit only for T > 2T..
Even at high temperature the results are closer to weak-coupling QCD
(evaluated to order g®Ing) than to the conformal symmetric limit.

@ The complete EQCD results in smaller A/T# than the weak-coupling
results: this leaves out terms that could be important for the hard
modes which dominate the EOS. However, the lattice results would
still be closer to such a computation than to a conformal symmetric
model.

o Qualitatively accurate intuition for the plasma may perhaps be
obtained from conformally symmetric models only for temperatures
higher than 2T,.
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Conclusions

Summary

Simple theory at large N,

In the limit N — oo we find that T./Ayz = 1.87(4) Consistent with a
simple model of phase transition: resonance gas on one side, gluon gas on
the other.

Weak-coupling better than conformal field theory for EOS

There seems to be no window for non-trivial (almost) conformal scaling in
the data for the equation of state. The EOS is either strongly
non-conformal or compatible with a weak-coupling expansion.
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An advertisement

TIFR is planning to expand

research directions: one of the new
directions under consideration is
experimental and theoretical

heavy-ion physics and allied topics
in extreme QCD.
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