Searching for a QCD critical point

Sourendu Gupta (TIFR) in collaborations with R. Gavai and R. Bhalerao

STAR Collaboration Meeting BNL March 26, 2009 1 What we want: primordial fluctuations

Primordial fluctuations from QCD

Secondary Street Street
Evolution of fluctuations

4 Summary

Outline

- 1 What we want: primordial fluctuations
- 2 Primordial fluctuations from QCD
- 3 Evolution of fluctuations
- 4 Summary

Ensembles

- Event ensembles at colliders: created from the full recorded data set through various selection criteria. Values of conserved quantities can fluctuate from one event to another
- Thermodynamic ensembles: defined by letting certain conserved quantities fluctuate (grand canonical) while keeping others fixed (canonical).
- Relation between the two: the system is a small part of a big (ion-ion) collider event, the heat-bath is the remainder. Is the event a thermostat? Maybe, but need experimental check.
- This is the most important new thing that STAR can do with the existing data set.

Thermodynamic fluctuations at a normal point

• For any system in thermodynamic equilibrium, the fluctuations of a conserved quantity (Q, B or S) are Gaussian:

$$P(Q) \propto \exp\left(-rac{Q^2}{2VT\chi_Q}
ight), \quad {
m so} \quad \langle \Delta Q^2
angle = VT\chi_Q$$

Bias free experimental measurement of χ_Q etc possible: connection to QCD possible. Asakawa, Heinz and Muller, Phys.Rev.Lett. 85, 2072, 2000; Jeon and Koch, Phys.Rev.Lett. 85, 2076, 2000.

- What V? Which T? Parameters have to be specified at the time that the fluctuations were set up. Need hydro and diffusion to evolve to final state: later.
- Is the experimental distribution Gaussian? Is there skew or Kurtosis in the present data? If so then there are non-thermal effects.
 Understand the origin of this non-thermal behaviour: jets, flow, etc.

Thermodynamic fluctuations at a critical point

- At a normal point the baryon-baryon correlation length (ξ) is small (about 0.2 fm). Therefore $V \gg \xi^3$: many "independently fluctuating volumes" hence distributions are Gaussian: central limit theorem.
- Near a critical point ξ diverges (leading to divergence of $\chi^{(2)}$). When $V \simeq \xi^3$, there is single "critically correlated volume" undergoing fluctuations. This destroys Gaussian behaviour.
- At the critical \sqrt{S} , different collider events are different samplings of this critical system. The event-to-event distribution is far from Gaussian and the Kurtosis is large.
- The shape of the distribution (mean, variance, skew, kurtosis, etc.)
 can all be predicted from QCD (non-linear susceptibilities). Once
 non-thermal effects are removed, all measurements of these quantities
 can make contact with basic theory.

Which distribution should one measure?

- The distribution of B is the most direct measurement. Since neutrons are not visible to the detector, it has been suggested that net proton number be used as a proxy. Hatta and Stephanov
- Fluctuations of Q are correlated with B. The linkage of B and Q is given by the two numbers—

$$C_{BQ|B} = \frac{1}{2}$$
 and $C_{BQ|Q} \simeq \frac{1}{5}$.

Therefore, critical behaviour in fluctuations of B also show up in the fluctuations of Q. Gavai, SG

- Q is much easier to measure than B. Systematic errors (eg, is N_p always proportional to B?) much easier to control in Q.
- Strangeness is dominated by *K*. Do uncharged strange particles give significant bias in the measurements?

Outline

- 1 What we want: primordial fluctuations
- Primordial fluctuations from QCD
- 3 Evolution of fluctuations
- 4 Summary

What is a quark number susceptibility?

The derivatives of the pressure with respect to a chemical potential are quark number susceptibilities:

$$\chi^{(n)}(\mu,T) = \frac{d^n P(\mu,T)}{d\mu^n}.$$

The first derivative is called the quark number density. All higher derivatives are called quark number susceptiblities. Note that these quantities are dimensional.

The Taylor series expansion is useful:

$$P(\mu, T) = P(0, T) + \frac{1}{2!} \chi^{(2)}(0, T) \mu^2 + \frac{1}{4!} \chi^{(4)}(0, T) \mu^4 + \cdots$$

Odd terms are zero. The series coefficients need to be evaluated at $\mu=0$: can be determined on the lattice. Second derivative of the series gives a series expansion for $\chi^{(2)}(\mu,\mathcal{T})$.

The critical end point

At the critical end point $\chi^{(2)}(\mu^E, T^E)$ diverges. Series no longer summable. Use standard tests for divergence of series: successive terms become comparable:

$$\frac{1}{(n-2)!}\chi^{(n)}(0,T^E)(\mu^E)^{n-2}=\frac{1}{n!}\chi^{(n+2)}(0,T^E)(\mu^E)^n.$$

Therefore the estimate of the critical end point is

$$\mu^{E} = \sqrt{n(n-1)\frac{\chi^{(n)}(0, T^{E})}{\chi^{(n+2)}(0, T^{E})}},$$

at T^E should be independent of n. Term n=2 closely related to Kurtosis; not exactly the same.

$N_t = 6$: Radius of convergence

Filled symbols: $(n!\chi^{(2)}/\chi^{(n+2)})^{1/n}$. Open symbols: $\sqrt{n(n+1)\chi^{(n+1)}/\chi^{(n+3)}}$.

$N_t = 6$: Radius of convergence

Filled symbols: $(n!\chi^{(2)}/\chi^{(n+2)})^{1/n}$. Open symbols: $\sqrt{n(n+1)\chi^{(n+1)}/\chi^{(n+3)}}$.

$N_t = 6$: Radius of convergence

Filled symbols: $(n!\chi^{(2)}/\chi^{(n+2)})^{1/n}$. Open symbols: $\sqrt{n(n+1)\chi^{(n+1)}/\chi^{(n+3)}}$.

What are "systematic errors" for lattice

- **Q** Quark masses have to be realistic: the T=0 value of $m_\pi=140$ MeV. We use a quark mass that gives $m_\pi=235$ MeV.
- ② The volume has to be large in terms of the pion's Compton wavelength: $Lm_{\pi}\gg 1$. The volume must also be large in units of the thermal wavelength: $LT\gg 1$.
- The lattice spacing a should be taken to zero. We have used a = 1/4T and a = 1/6T.
- For $a=1/6T^E$, LT=4 and $m_\pi=235$ MeV we have $\mu^E/T^E=1.8\pm0.1$. For $a=1/4T^E$, LT=4 and $m_\pi=235$ MeV we found $\mu^E/T^E=1.3\pm0.3$. In the limit $L\to\infty$ we had $\mu^E/T^E=1.1\pm0.1$, i.e., roughly 17% decrease. Changing to $m_\pi=140$ MeV will also decrease μ^E/T^E .
- Solution
 Race between beam and CPU to find the position of the QCD critical end point?

Close to Kurtosis: the radius of convergence

The ratio $\mu^*(T)/T = \sqrt{2\chi^{(2)}(0,T^E)/T^2\chi^{(4)}(0,T^E)}$. Lattice spacing dependence quantifies possible systematic errors: LT=4 and $m_\pi=235$ MeV is kept fixed.

Outline

- What we want: primordial fluctuations
- 2 Primordial fluctuations from QCD
- 3 Evolution of fluctuations
- 4 Summary

Diffusion

- Number density fluctuations must begin to diffuse as time passes. For current RHIC dataset μ/T is small, hence number densities can be considered a small perturbation over energy density. Therefore: diffusion in the background of an expanding fluid flow.
- The diffusion equation:

$$\frac{\partial n}{\partial t} = \mathcal{D}\nabla^2 n.$$

This is a non-causal equation. Kelly, 1965

The causal "second order" diffusion equation is Kelly's equation:

$$\tau_R \frac{\partial^2 n}{\partial t^2} + \frac{\partial n}{\partial t} = \mathcal{D} \nabla^2 n.$$

- We convert them to relativistic equations, and investigate solutions in the background of a longitudinal flow. Bhalerao and SG, 2009.
- Extension to fully coupled diffusion + hydro is possible. Extension to three-dimensional flow straightforward.

Ideal fluid

No dissipation: evolution equation for conserved charge densities is the continuity equation. For longitudinal background flow this gives:

$$\frac{dn(\tau,\eta)}{d\tau} = -\frac{n(\tau,\eta)}{\tau} \quad \text{with solution} \quad \tau n(\tau,\eta) = \tau_0 n(\tau,\eta).$$

This is just the conservation law for the conserved charge. The volume element expands linearly with τ in longitudianl flow, so the integral over space-time rapdity, η , of τn is conserved. We call this Bjorken attenuation.

Note for experiments

The charge in a bin, $Q(\tau_f, \eta)$, is to be identified with $\tau_f \Delta \eta n(\tau_f, \eta)$. Q is conserved.

First order diffusion

In a longitudinally expanding background, the diffusion equation becomes

$$\frac{dn(\tau,\eta)}{d\tau} = -\frac{n(\tau,\eta)}{\tau} + \frac{\mathcal{D}}{\tau^2} \frac{\partial^2 n}{\partial \eta^2}.$$

Linear equations, solve by Fourier transforming in η :

$$au n(au, k) = au_0 n(au, k) \exp \left[-rac{\mathcal{D}k^2}{ au_0} \left(1 - rac{ au_0}{ au}
ight) \right].$$

Note for experiments

The corresponding experimental observable is

$$\overline{P}(au_f, k) = \left| \sum_{j=1}^{N_t} q_j \mathrm{e}^{-ik\eta_j} \right|^2,$$

where the sum is over tracks. This is to be compared to the power spectrum: $|\tau_f n(\tau_f, k)|^2$.

First order diffusion

Usual intuition: diffusion destroys structure, the sharpest structures are destroyed fastest.

Second order diffusion

Equations are similar to a damped oscillator. In a longitudinal flow background one can write this as

$$\partial_{\vartheta} \begin{pmatrix} n \\ \nu \end{pmatrix} = -M \begin{pmatrix} n \\ \nu \end{pmatrix}, \qquad M = \begin{pmatrix} 1 & ik \\ ic_s^2 k & e^{\vartheta} \end{pmatrix},$$

where $\vartheta = \log(\tau/\tau_R)$. Matrix M is not normal. The equations are not autonomous.

Construct a power spectrum $P = |n|^2 = x^{\dagger}Ax$. Then

$$\frac{\partial P}{\partial \vartheta} = -x^{\dagger} \mathcal{M} x, \qquad \mathcal{M} = \begin{pmatrix} 2 & ik \\ -ik & 0 \end{pmatrix},$$

Numerical range of \mathcal{M} has indefinite sign: hence transient amplification possible and generic.

Transient amplification of the power spectrum

One draw from Gaussian random ensemble of initial conditions. $\vartheta=2$ corresponds to $\tau=7.4\tau_R$. Spectral sum rule: $\tau_R=\mathcal{D}/c_s^2$. Freezeout likely for $2<\vartheta<3$.

Transient amplification of the profile

One draw from Gaussian random ensemble of initial conditions. Profile of initial n same as for the first order example before.

Experimental signature

Initial conditions: drawn from unit Gaussian. Final distribution for k = 1/2.

Experimental signature

Initial conditions: drawn from unit Gaussian.

Final distribution for k = 1.

Experimental signature

Initial conditions: drawn from unit Gaussian.

Final distribution for k = 2.

Some interesting points

- For k = 0 the influence of hydrodynamics goes away: conserved quantity.
- Net charge within a fixed window is not conserved.
- \odot If there is power at large k then Fick diffusion has not set in.
- **②** Conversely, if Fick diffusion has set in, then the transport coefficient \mathcal{D} can be bounded provided τ_f can be determined independently:

$$\mathcal{D} \leq \tau_f \sinh^2 \Delta \eta$$
.

Outline

- 1 What we want: primordial fluctuations
- 2 Primordial fluctuations from QCD
- 3 Evolution of fluctuations
- 4 Summary

Summary

- The critical point of QCD is likely within reach of collider energy scans. Its precise location is a race between beam and CPU: experiment and lattice computation.
- Experimental signatures involve event-to-event distributions of conserved charges, for example, B, Q and S. Since uncharged particles are not observed, B and S have to be replaced by proxies. However, all distributions see the critical behaviour.
- Kurtosis of the net charge within an acceptance window may be an important observable.
- Power spectrum of the experimental event-to-event distributions of B,
 Q, and S are important for understanding the process of diffusion,
 and the extraction of initial distributions from the final distributions.

An advertisement

TIFR is planning to expand research directions: one of the new directions under consideration is experimental and theoretical heavy-ion physics and allied topics in extreme QCD.