# The gluo $N_c$ plasma and its 't Hooft limit $(1, 2, 3, \dots \infty)$

#### Saumen Datta and Sourendu Gupta

#### ILGTI: TIFR

#### Extreme QCD 2010 Physikzentrum Bad Honnef, Germany June 21, 2010

#### RG scaling and 't Hooft scaling

Latent heat

Equation of state

#### Summary

## Limiting procedures

▶ 't Hooft scaling limit: take  $N_c \to \infty$  and  $g^2 \to 0$  keeping  $\lambda = g^2 N_c$  fixed. Correlation functions can be computed non-perturbatively but diagrammatically by resumming a well-defined class of diagrams. Simple caricature of hadron physics in this limit.

't Hooft, Coleman; tested by Teper and collaborators

Extended to many other classes of theories. AdS/CFT correspondence works in the 't Hooft limit of  $N_c \rightarrow \infty$ .

▶ Strong scaling limit: work at (fixed) long distance scales and take  $N_c \rightarrow \infty$ . Non-perturbative content of the theory may be explored on the lattice and the limit taken.

Teper, Lucini and collaborators

Corrections organized in power of  $1/N_c$ 









#### Outline

#### RG scaling and 't Hooft scaling

Latent heat

Equation of state

Summary

#### Unphysical strong-weak coupling crossover



Wilson action. Earlier generation of simulations limited by this bulk transition; solution now: move to smaller lattice spacing.

Teper and collaborators, Panero

· · · no longer a problem



Clear 1st order transition signal in L but not in plaquette: therefore thermal transition, not bulk. Similarly for  $N_c = 6$ , 8 and 10. Computations for  $N_t = 6, 8, 10$  and (sometimes) 12.

··· no longer a problem



Clear 1st order transition signal in L but not in plaquette: therefore thermal transition, not bulk. Similarly for  $N_c = 6, 8$  and 10. Computations for  $N_t = 6, 8, 10$  and (sometimes) 12.

· · · no longer a problem



Clear 1st order transition signal in L but not in plaquette: therefore thermal transition, not bulk. Similarly for  $N_c = 6$ , 8 and 10. Computations for  $N_t = 6, 8, 10$  and (sometimes) 12.



## β 10.788 11.078 11.339

 $\beta_c$  determined to one part in 10<sup>4</sup>. Strong coupling determined non-perturbatively. 2-loop RG works with precision of two parts in 10<sup>3</sup> for  $a \leq 1/(8T_c)$ . For larger *a*: non-perturbative RG.



β 10.788 11.078 11.339

 $\beta_c$  determined to one part in 10<sup>4</sup>. Strong coupling determined non-perturbatively. 2-loop RG works with precision of two parts in 10<sup>3</sup> for  $a \leq 1/(8T_c)$ . For larger *a*: non-perturbative RG.



β 10.788 11.078 11.339

 $\beta_c$  determined to one part in 10<sup>4</sup>. Strong coupling determined non-perturbatively. 2-loop RG works with precision of two parts in 10<sup>3</sup> for  $a \leq 1/(8T_c)$ . For larger *a*: non-perturbative RG.



 $\beta_c$  determined to one part in 10<sup>4</sup>. Strong coupling determined non-perturbatively. 2-loop RG works with precision of two parts in 10<sup>3</sup> for  $a \leq 1/(8T_c)$ . For larger *a*: non-perturbative RG.



 $\beta_c$  determined to one part in 10<sup>4</sup>. Strong coupling determined non-perturbatively. 2-loop RG works with precision of two parts in 10<sup>3</sup> for  $a \leq 1/(8T_c)$ . For larger *a*: non-perturbative RG.

# Step-scaling functions



# Step-scaling functions



#### 't Hooft scaling: fixed $\lambda$ , fixed physics



 $\lambda_c = g^2(T_c)N_c$ . Clearly non-linear (even ignoring  $N_t = 8$  and 10).

# Very large corrections

#### Best-fit function:

$$\lambda_{c} = \begin{cases} 9.8771(4) - \frac{14.2562(2)}{N_{c}^{2}} + \frac{54.7830(2)}{N_{c}^{4}} & \text{(non-perturbative),} \\ 9.9904(6) + \frac{1.2081(3)}{N_{c}^{2}} - \frac{23.5709(3)}{N_{c}^{4}} & \text{(2-loop).} \end{cases}$$

## Very large corrections

#### Best-fit function:

$$\lambda_{c} = \begin{cases} 9.8771(4) - \frac{14.2562(2)}{N_{c}^{2}} + \frac{54.7830(2)}{N_{c}^{4}} & \text{(non-perturbative),} \\ 9.9904(6) + \frac{1.2081(3)}{N_{c}^{2}} - \frac{23.5709(3)}{N_{c}^{4}} & \text{(2-loop).} \end{cases}$$

For  $N_c = 3$ 

$$\lambda_c = \begin{cases} 9.8771(4) - 1.584 + 0.676 & (\text{non-perturbative}), \\ 9.9904(6) + 0.134 - 0.291 & (2\text{-loop}). \end{cases}$$

 $1/N_c^2$  and  $1/N_c^4$  corrections nearly equal to each other.

#### Outline

#### RG scaling and 't Hooft scaling

Latent heat

Equation of state

Summary

# Multiple peaks?



Clear multiple peaks for *L* but not for plaquette. Entropy surface not flat? Not a true first order transition?

# Multiple peaks?



Clear multiple peaks for *L* but not for plaquette. Entropy surface not flat? Not a true first order transition?

Isolate phases using order parameter



Is  $N_c = 3$  special?

| Nt | Ns | $\Delta E/T_c^4$ | $\Delta E/\Delta_{ m max}$ |
|----|----|------------------|----------------------------|
| 4  | 16 | 2.06(1)(3)       |                            |
|    | 24 | 1.93(1)(3)       |                            |
|    | 32 | 1.90(2)(2)       |                            |
| 6  | 16 | 1.79(2)(4)       | 0.65(2)                    |
|    | 32 | 1.54(2)(5)       |                            |
|    | 48 | 1.44(4)(3)       |                            |

 $N_c \ge 4$  results stable for  $N_s/N_t \simeq 3$ . But large finite size effect for  $N_c = 3$ .

Scaling with  $N_c$ 

Latent heat depends on  $N_c$  even after scaling by number of gluons:  $T_A = N_c^2 - 1$ . Best fit result—

$$\frac{\Delta\epsilon}{T_A T_c^4} = 0.388(3) - \frac{1.61(4)}{N_c^2}$$

 $N_c = 3$  may have larger finite volume effects than larger  $N_c$ .

For 
$$N_c = 2$$
  
 $\frac{\Delta \epsilon}{T_A T_c^4} = 0.388(3) - 0.40(1) = 0!$ 

Good news? Bad news?

#### Outline

#### RG scaling and 't Hooft scaling

Latent heat

Equation of state

Summary

Conformal symmetry breaking



Good scaling of  $\Delta/T^4 = (E - 3P)/T^4$  with  $N_c$  at fixed  $T/T_c$  (strong  $N_c$  scaling).  $\Delta^{1/4} \simeq T$  even at  $T \simeq 2T_c$  for  $N_c = 3$ : conformal symmetry

## Evidence for mass?



 $\Delta/T^2 \simeq$  constant is generic evidence for mass scales persisting in the high temperature phase.

Meisinger, Miller, Ogilvie, 2002; Pisarski, 2007

## Cutoff dependence of pressure



## Main results



Far from ideal gas. Good scaling of EOS with  $N_c$  at fixed  $T/T_c$  (strong  $N_c$  scaling).

## Main results



Far from ideal gas. Good scaling of EOS with  $N_c$  at fixed  $T/T_c$  (strong  $N_c$  scaling).

# 't Hooft scaling



't Hooft scaling fails for  $T \leq 2T_c$ .  $\mathcal{N} = 4$  SYM does not describe pure gauge theory.

# Conformal theory?



#### Outline

RG scaling and 't Hooft scaling

Latent heat

Equation of state

Summary

#### Main results

- ▶ Location of deconfining first order transition measured with high accuracy. Yields high precision test of RG scaling and 't Hooft scaling. 't Hooft coupling at  $T_c$  has large  $1/N_c$  corrections near  $N_c = 3$ . Signs of breakdown of the 't Hooft procedure.
- New method developed for determination of latent heat in gluoN<sub>c</sub> plasmas. Find

$$\frac{\Delta \epsilon}{T_A T_c^4} = 0.388(3) - \frac{1.61(4)}{N_c^2}.$$

▶ Strong  $N_c$  scaling works very well for EOS. Conformal symmetry strongly broken up to  $T \simeq 3T_c$ . Resummed weak coupling theory works much better in description of lattice data.