Finite size scaling on the phase diagram of QCD

Sourendu Gupta

TIFR Mumbai

Fluctuations, Correlations and RHIC Low Energy Runs BNL USA October 4, 2011

- Introduction
- 2 Is thermodynamics applicable?
- 3 Does QCD thermodynamics work?
- 4 Other scales
- Summary

Outline

- Introduction
- 2 Is thermodynamics applicable?
- 3 Does QCD thermodynamics work?
- 4 Other scales
- Summary

The context

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ...

itline **Introduction** Thermodynamics QCD Other scales Summary

The context

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ...

Systematic understanding

Matter formed: characterized by T and μ . History of fireball described by hydrodynamics and diffusion. Small mean free paths.

e **Introduction** Thermodynamics QCD Other scales Summary

The context

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ...

Systematic understanding

Matter formed: characterized by T and μ . History of fireball described by hydrodynamics and diffusion. Small mean free paths.

Theoretical underpinning

Does thermodynamics apply to the fireball? Yes, for chosen observables. Does QCD describe this thermodynamics? Yes. Improvements ongoing for both answers.

tline **Introduction** Thermodynamics QCD Other scales Summary

The context

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ...

Systematic understanding

Matter formed: characterized by T and μ . History of fireball described by hydrodynamics and diffusion. Small mean free paths.

Theoretical underpinning

Does thermodynamics apply to the fireball? Yes, for chosen observables. Does QCD describe this thermodynamics? Yes. Improvements ongoing for both answers.

The phase diagram of QCD

T quark gluon plasma

colour superconducting

hadronic quarkyonic

μ

Introduction Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Introduction Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Introduction Thermodynamics QCD Other scales Summary

The phase diagram of QCD

e **Introduction** Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Y. Aoki et al., Phys. Lett. B 643 (2006) 46

line **Introduction** Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Y. Aoki et al., Phys. Lett. B 643 (2006) 46

line **Introduction** Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Gavai and Gupta, Phys. Rev. D 71 (2005) 110414, D 78 (2008) 114503

ıtline **Introduction** Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Gavai and Gupta, Phys. Rev. D 71 (2005) 110414, D 78 (2008) 114503

tline **Introduction** Thermodynamics QCD Other scales Summary

The phase diagram of QCD

Gavai and Gupta, Phys. Rev. D 71 (2005) 110414, D 78 (2008) 114503

Outline

- 1 Introduction
- 2 Is thermodynamics applicable?
- 3 Does QCD thermodynamics work?
- 4 Other scales
- Summary

Thermodynamics and fluctuations

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

utline Introduction **Thermodynamics** QCD Other scales Summary

Thermodynamics and fluctuations

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

Thermodynamics

If $\xi^3 \ll V_{obs} \ll V_{fireball}$, then fluctuations can be explained in the grand canonical ensemble: energy and B, Q, S allowed to fluctuate in one part by exchange with rest of fireball (diffusion: transport).

utline Introduction **Thermodynamics** QCD Other scales Summary

Thermodynamics and fluctuations

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

Thermodynamics

If $\xi^3 \ll V_{obs} \ll V_{fireball}$, then fluctuations can be explained in the grand canonical ensemble: energy and B, Q, S allowed to fluctuate in one part by exchange with rest of fireball (diffusion: transport).

Comparison

When $V_{obs} \ll V_{fireball}$, Gaussian as $V_{obs}/\xi^3 \to \infty$. Finite size effects are mainly controlled by NLS. Otherwise system is in the critical regime.

Typical sizes

$$\sqrt{S} = 200 \text{ GeV}$$

- Freezeout occurs at $T \simeq 150$ MeV, where $\xi T < 0.5$.
- ② If, R = 10 fm, then $V_{fireball}/\xi^3 = \mathcal{O}(10^3)$.
- ① As a result, $V_{obs}/\xi^3 = \mathcal{O}(10^2)$.

Outline Introduction **Thermodynamics** QCD Other scales Summary

Event-to-event fluctuations

Central rapidity slice taken. p_{τ} of 400–800 MeV. Important to check dependence on impact parameter. Protons observed: okay if isospin fluctuations small.

STAR 2010; Asakawa, Kitazawa: 2011

Grand canonical thermodynamics

When $V_{obs}/\xi^3 \to \infty$ and $V_{fireball}/V_{obs} \to \infty$, then thermodynamics in the grand canonical ensemble works; all distributions of conserved quantities are Gaussian.

For a Gaussian the only non-vanishing cumulants are the mean, [B], and the variance $[B^2]$. Observation of any other non-vanishing cumulant $[B^n]$ is a finite size effect. Since these cumulants are given by the NLS,

$$[B^n] = (VT^3)T^{n-4}\frac{\partial^n P(T,\mu)}{\partial \mu^n},$$

QCD determines finite size effects as well as the thermodynamic limit.

Test of lack of criticality: trivial volume dependence of cumulants, *i.e.*, all cumulants scale as V.

Shape of distribution

Combinations of cumulants: $\sigma^2 = [B^2]$, $S = [B^3]/\sigma^3$, $\kappa = [B^4]/\sigma^4$, change with volume (proxy: N_{part}).

utline Introduction **Thermodynamics** QCD Other scales Summar

Evolution of shape

Central limit theorem follows. Scaling implies $\xi^3 \ll V_{obs}$ at some \sqrt{S} .

utline Introduction **Thermodynamics** QCD Other scales Summary

Evolution of shape

Central limit theorem follows. Scaling implies $\xi^3 \ll V_{obs}$ at some \sqrt{S} .

utline Introduction **Thermodynamics** QCD Other scales Summar

Evolution of shape

Central limit theorem follows. Scaling implies $\xi^3 \ll V_{obs}$ at some \sqrt{S} .

Outline

- 1 Introduction
- 2 Is thermodynamics applicable?
- 3 Does QCD thermodynamics work?
- 4 Other scales
- Summary

ntline Introduction Thermodynamics QCD Other scales Summary

The freezeout curve

Hadron gas models: Becattini, Braun-Munzinger, Stachel, Cleymans, Redlich, ...

utline Introduction Thermodynamics QCD Other scales Summar,

Checking the match

Checking the match

$$T_c = 175^{+1}_{-7} \text{ MeV}$$

Outline

- 1 Introduction
- Is thermodynamics applicable
- 3 Does QCD thermodynamics work?
- 4 Other scales
- Summary

itline Introduction Thermodynamics QCD **Other scales** Summary

Effect of flow

Out of control diffusion

If fireball static, then control of diffusion requires the hierarchy $\xi^3 \ll V_{obs} \ll V_{fireball}$. When $\sqrt[3]{V_{obs}} \simeq \xi$ then microscopic physics of transport controls observed distributions. This happens in the critical regime. Also turbulent?

Other scales

Effect of flow

Out of control diffusion

If fireball static, then control of diffusion requires the hierarchy $\xi^3 \ll V_{obs} \ll V_{fireball}$. When $\sqrt[3]{V_{obs}} \simeq \xi$ then microscopic physics of transport controls observed distributions. This happens in the critical regime. Also turbulent?

Persistence of memory

If $V_{obs} \simeq V_{fireball}$ then conserved baryon number is seen and fluctuations are due to initial state fluctuations. May be important at low \sqrt{S} .

utline Introduction Thermodynamics QCD **Other scales** Summar

Effect of flow

Out of control diffusion

If fireball static, then control of diffusion requires the hierarchy $\xi^3 \ll V_{obs} \ll V_{fireball}$. When $\sqrt[3]{V_{obs}} \simeq \xi$ then microscopic physics of transport controls observed distributions. This happens in the critical regime. Also turbulent?

Persistence of memory

If $V_{obs} \simeq V_{fireball}$ then conserved baryon number is seen and fluctuations are due to initial state fluctuations. May be important at low \sqrt{S} .

Other scales?

But plasma ball is not static, and new length scales become important.

Diffusion-advection phenomena

Entropy content in B or S small compared to entropy content of full fireball. Coupled relativistic hydro and diffusion equations can then be simplified to diffusion-advection equation.

Which is more important— diffusion or advection? Examine Peclet's number

$$Pe = \frac{\lambda v}{D} = \frac{\lambda v}{\xi c_s} = M \frac{\lambda}{\xi}.$$

When ${\rm Pe}\ll 1$ diffusion dominates. When ${\rm Pe}\gg 1$ advection dominates. Crossover between these regimes when ${\rm Pe}\simeq 1.$

utline Introduction Thermodynamics QCD **Other scales** Summary

Diffusion-advection phenomena

Entropy content in B or S small compared to entropy content of full fireball. Coupled relativistic hydro and diffusion equations can then be simplified to diffusion-advection equation.

Which is more important— diffusion or advection? Examine Peclet's number

$$Pe = \frac{\lambda v}{D} = \frac{\lambda v}{\xi c_s} = M \frac{\lambda}{\xi}.$$

When ${\rm Pe}\ll 1$ diffusion dominates. When ${\rm Pe}\gg 1$ advection dominates. Crossover between these regimes when ${\rm Pe}\simeq 1.$

Advective length scale

New length scale: defines when advection becomes comparable to diffusive evolution—

$$\lambda \simeq \frac{\xi}{M}$$
.

Bhalerao and SG, 2009

Other scales

Peclet phenomenology

 λ remains fairly constant until time R_0/c_s then falls rapidly as expansion becomes fully 3d. So freezeout time is not very strongly dependent on rapidity window.

Bhalerao and SG

Finite volumes: density sets a scale

When the total number of baryons (baryons + antibaryons) detected is B_+ , the volume per detected baryon is $\zeta^3 = V_{obs}/B_+$. If $\zeta \simeq \xi$ then system may not be thermodynamic: controlled when $V_{obs}/\xi^3 \to \infty$.

Events which (by chance) have large B_+ may take longer to come to chemical equilibrium. However, this subclass of events involve interesting transport properties. Can one selectively study these rare events?

Finite volumes: density sets a scale

When the total number of baryons (baryons + antibaryons) detected is B_+ , the volume per detected baryon is $\zeta^3 = V_{obs}/B_+$. If $\zeta \simeq \xi$ then system may not be thermodynamic: controlled when $V_{obs}/\xi^3 \to \infty$.

Events which (by chance) have large B_+ may take longer to come to chemical equilibrium. However, this subclass of events involve interesting transport properties. Can one selectively study these rare events?

On cumulant order

In central Au Au collisions, the measurement of $[B^6]$ involves $\zeta/\xi \simeq 2$. Could it be used to study transport? Probe this by separating out samples with large B_+ and studying their statistics.

Outline

- 1 Introduction
- 2 Is thermodynamics applicable?
- 3 Does QCD thermodynamics work?
- 4 Other scales
- Summary

Introduction Thermodynamics QCD Other scales Summary

Length scales in a fireball

- ① Scale of the persistence of memory, $V_{fireball}$. When $V_{fireball}/V_{obs}\gg 1$ then total charge of the system forgotten. May not hold at small \sqrt{S} .
- ② Shortest length scale ξ , defined by transport: the diffusion constant. Scale at which baryon number transport becomes important.
- ② Scale of observation volume, V_{obs} . Set by the detector. Thermodynamics and finite size scaling applicable for $V_{obs}/\xi^3 \gg 1$. Comparison to lattice works when $\xi^3 \ll V_{obs} \ll V_{fireball}$.
- ② Peclet scale, $\lambda = \xi/M$ (where M is the Mach number). Controls freeze out of fluctuations.
- **3** Volume per unit baryon number, $\zeta^3 = V_{obs}/B_+$. Events with $\zeta \simeq \xi$, may not be observed at thermodynamic frequency because of slow diffusion.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.
- Take the cutoff to infinity. Difficult on the lattice; many technical devlopments on how to get continuum predictions from large a— add RG irrelevant terms to the action, choose scale setting appropriately.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{QCD}, \ m_s \simeq \Lambda_{QCD}, \ \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.
- Take the cutoff to infinity. Difficult on the lattice; many technical devlopments on how to get continuum predictions from large a— add RG irrelevant terms to the action, choose scale setting appropriately.
- Most universal part of the solution: Moore's law

tline Introduction Thermodynamics QCD Other scales **Summary**

Backup: Predictions along the freezeout curve

Lattice predictions along the freezeout curve of HRG models using $T_c=170~{\rm MeV}.$