Theory and Experiments for the phase diagram of QCD

Sourendu Gupta

ILGTI: TIFR

International School on High-Energy Nuclear Collisions 2011 CCNU Wuhan, China November 1, 2010

- Thermodynamics and Phase diagram
- 2 Lattice simulations
- 3 Experiments on the phase diagram of QCD
- Summary

- 1 Thermodynamics and Phase diagram
- 2 Lattice simulations
- Separation is a separation of the separation
- 4 Summary

Symmetries of QCD

- If quarks massless then different chiralities do not mix: flavour symmetries act on each chirality independently. Quark mass breaks chiral symmetry explicitly to flavour symmetry. Limit $m_\pi=0$: chiral symmetry.
- If some $m\gg \Lambda_{QCD}$ then that quark is not even approximately chiral. Recall $m_\pi=0.2m_\rho$ but $m_K=0.7m_\rho$. In QCD two flavours are light $(m_{u,d}\ll \Lambda_{QCD})$ and one is medium heavy $(m_s\simeq \Lambda_{QCD})$.
- Flavour symmetries not exact: difference in masses of different flavours breaks symmetry. Since $m_{\pi^0} \simeq m_{\pi^\pm}$, flavour SU(2) is a good approximate symmetry of the hadron world. Flavour SU(3) is not useful without strong symmetry breaking terms (Gell-Mann and Nishijima).
- Phase diagram of QCD close to 2-flavour phase diagram.
 Endrodi etal, 0710.0988 (2007)

Pisarski and Wilczek, PR D 29, 338 (1984)

Pisarski and Wilczek, PR D 29, 338 (1984)

Pisarski and Wilczek, PR D 29, 338 (1984)

Pisarski and Wilczek, PR D 29, 338 (1984)

$$F(T, m) = F_r(T, m) + F_s(T, m)$$

Pisarski and Wilczek, PR D 29, 338 (1984)

$$F(T, m) = F_r(T, m) + F_s(T, m)$$

Pisarski and Wilczek, PR D 29, 338 (1984)

$$F(T, m) = [F_r(T, m) + g(T, m)] + [F_s(T, m) - g(T, m)]$$

Pisarski and Wilczek, PR D 29, 338 (1984)

$$F(T, m) = [F_r(T, m) + g(T, m)] + [F_s(T, m) - g(T, m)]$$

Universality

Susceptibility closely related to a correlation function:

$$\chi = \int d^3x C(x), \quad C(x) \simeq \exp(-x/\xi).$$

When correlation length, ξ , finite then χ , always finite. Screening mass: $\overline{m} = 1/\xi$.

- Critical point: $\xi \to \infty$; so integral diverges, and $\chi \to \infty$.
- Universality: $F_s^{QCD}(T,m)$ related to $F_s^{O(4)}(\overline{T},H)$. Generally $\overline{T}(T,m)$ and H(T,m). But if $F^{QCD}-F^{O(4)}=g$? Since g non-singular, go close enough to critical point and its effects are small.
- Useful definition: if $\chi(T_c + \epsilon, 0) = A\epsilon^{-\gamma}$ then $\gamma_{QCD} = \gamma_{O(4)}$. Also if $\chi(T_c - \epsilon, 0) = B\epsilon^{-\gamma'}$, then $\gamma'_{QCD} = \gamma'_{O(4)}$, and $(A/B)_{QCD} = (A/B)_{O(4)}$. Experimental relevance?

Guidance from large N_c QCD

Guidance from large N_c QCD

Guidance from large N_c QCD

Guidance from large N_c QCD

QCD cross over: chiral or deconfinement?

- **QCD** with realistic quark masses at $\mu=0$ has no finite T phase transition: only a cross over. Large N_c argument indicates that the topology of the QCD phase diagram is controlled by chiral symmetry.
- 2 Lattice shows that cross over temperature defined by peaks of susceptibilities differ:

$$T_c^{
m deconf} \simeq 175 \ {
m MeV}, \qquad {
m and} \qquad T_c^{
m chiral} \simeq 155 \ {
m MeV}.$$

- **3** Which of these influences RHIC/LHC fireball evolution? Whatever controls hydrodynamics, *i.e.*, c_s^2 . Region of rapid crossover in energy density close to $T_c^{\rm deconf}$. Borsanyi *et al.*, 1109.5032
- Both effects important: topology of phase diagram controlled by chiral cross over, evolution of fireball controlled by deconfinment cross over!

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

- Thermodynamics and Phase diagram
- 2 Lattice simulations
- Separation is a separation of the separation
- 4 Summary

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

- Lagrangian has free parameters: cutoff a, quark masses $m_{II} \simeq m_d \ll \Lambda_{OCD}, \ m_s \simeq \Lambda_{OCD}, \ \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_K(a, m_{ud}, m_s, \cdots), f_K(a, m_{ud}, m_s, \cdots), f_{\pi}(a, m_{ud}, m_s, \cdots),$ $m_p(a, m_{ud}, m_s, \cdots), m_o(a, m_{ud}, m_s, \cdots), T_c(a, m_{ud}, m_s, \cdots),$ $T_{E}(a, m_{ud}, m_{s}, \cdots), \mu_{E}(a, m_{ud}, m_{s}, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.
- Take the cutoff to infinity. Difficult on the lattice; technical devlopments on how to get continuum predictions from large a— add RG irrelevant terms to the action, choose scale setting appropriately.

- Lagrangian has free parameters: cutoff a, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \; m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \; \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.
- Take the cutoff to infinity. Difficult on the lattice; technical devlopments on how to get continuum predictions from large a— add RG irrelevant terms to the action, choose scale setting appropriately.
- Most robust part of the solution: use Moore's law

Lattice setup

Lattice simulations impossible at finite baryon density: **sign problem**. Basic algorithmic problem in all Monte Carlo simulations: no solution yet.

Bypass the problem; make a Taylor expansion of the pressure:

$$P(T,\mu) = P(T) + \chi_B^{(2)}(T)\frac{\mu^2}{2!} + \chi_B^{(4)}(T)\frac{\mu^4}{4!} + \cdots$$

Series expansion coefficients evaluated at $\mu = 0$. Implies

$$\chi_B^2(T,\mu) = \chi_B^{(2)}(T) + \chi_B^{(4)}(T)\frac{\mu^2}{2!} + \chi_B^{(6)}(T)\frac{\mu^4}{4!} + \cdots$$

Series fails to converge at the critical point.

Gavai, SG, hep-lat/0303013

Series diverges at critical point

Radius of convergence of the series as a function of order ($a^{-1}=1200~{
m MeV})$

Gavai, SG, 0806.2233 (2008)

Systematic effects

- Series expansion carried out to 8th order. What happens when order is increased? Intimately related to finite volume effects. Finite size scaling tested; works well Gavai, SG 2004, 2008; Moore, York, 1106.2535
- What happens when strange quark is unquenched (keeping the same action)? Numerical effects on ratios of susceptibility marginal when unquenching light quarks Gavai, SG, hep-lat/0510044; see also RBRC 2009; de Forcrand, Philipsen, 2007, 2009
- \odot What happens when m_π is decreased? Estimate of μ_B^E may decrease somewhat: first estimates in Fodor, Katz hep-lat/0106002; Gavai, SG, Ray, nucl-th/0312010
- What happens in the continuum limit? Estimate of μ_B^E may increase somewhat Gavai. SG 2008: SG 2009

The critical point of QCD

$$\frac{\mu^E}{T^E} \simeq \begin{cases} 1.8 \pm 0.1 & \textit{N}_f = 2, \ 1/a = 1200 \ \text{MeV Gavai, SG, 0806.2233 (2008)} \\ 1.5 \pm 0.4 & \textit{N}_f = 2+1, \ 1/a = 800 \ \text{MeV RBRC, unpublished, 2010} \end{cases}$$

comparable m_{π} ; normalized to same estimator.

The critical point of QCD

$$\frac{\mu^E}{T^E} \simeq egin{cases} 1.8 \pm 0.1 & \textit{N}_f = 2, \ 1/a = 1200 \ \text{MeV Gavai, SG, 0806.2233 (2008)} \ 1.5 \pm 0.4 & \textit{N}_f = 2+1, \ 1/a = 800 \ \text{MeV RBRC, unpublished, 2010} \end{cases}$$

comparable m_{π} ; normalized to same estimator.

The critical point of QCD

$$\frac{\mu^{\it E}}{T^{\it E}} \simeq egin{cases} 1.8 \pm 0.1 & \textit{N}_f = 2, \ 1/a = 1200 \ {
m MeV} \ {
m Gavai, SG, 0806.2233} \ {
m (2008)} \ 1.5 \pm 0.4 & \textit{N}_f = 2+1, \ 1/a = 800 \ {
m MeV} \ {
m RBRC, unpublished, 2010} \end{cases}$$

comparable m_{π} ; normalized to same estimator.

Extrapolating physical quantities

$$\Delta p = \chi_B^{(2)} \frac{\mu^2}{2!} + \chi_B^{(4)} \frac{\mu^4}{4!} + \dots - \chi_S^{(2)} \frac{\mu_S^2}{2!} - \dots$$

MILC Collaboration, 1003.5682 (2010)

Critical divergence: summation bad, resummation good

Infinite series diverges, but truncated series finite and smooth: sum is bad. Resummations needed to reproduce critical divergence. Padé resummation useful Gavai, SG, 0806.2233 (2008).

Critical divergence: summation bad, resummation good

Infinite series diverges, but truncated series finite and smooth: sum is bad. Resummations needed to reproduce critical divergence. Padé resummation useful Gavai, SG, 0806.2233 (2008).

Outline

- Thermodynamics and Phase diagram
- 2 Lattice simulations
- 3 Experiments on the phase diagram of QCD
- 4 Summary

Locating the critical end point in experiment

Measure the (divergent) width of momentum distributions Stephanov, Rajagopal, Shuryak, hep-ph/9903292

Better idea, use conserved charges, because at any normal (non-critical) point in the phase diagram:

$$P(\Delta B) = \exp\left(-\frac{(\Delta B)^2}{2VT\chi_B}\right).$$
 $\Delta B = B - \langle B \rangle.$

At any non-critical point the appropriate correlation length (ξ) is finite. If the number of independently fluctuating volumes $(N=V/\xi^3)$ is large enough, then net B has Gaussian distribution: central limit theorem

Landau and Lifschitz

Bias-free measurement possible

Asakawa, Heinz, Muller, hep-ph/0003169 (2000); Jeon, Koch, hep-ph/0003168.

Three length scales

Outline

 $V_{
m obs} \ll V_{
m fireball}$: conserved charges can fluctuate.

- ① The longest correlation length, ξ , controls the scale of microscopic physics. When $\xi \ll \sqrt[3]{V_{\rm obs}}$, CLT works: many independently fluctuating volumes.
- ② The Peclet length scale, $\lambda = \xi/M$, where M is the Mach number in the fireball controls the freezeout of fluctuations. At critical point c_s vanishes, and fluctuations never reach equilibrium. Bhalerao, SG: 2009
- The typical distance between baryons: $\zeta = \sqrt[3]{V_{\rm obs}/B_+}$ where B_+ is the net number of baryons. This controls whether the sample of events is "typical". Very non-typical events may take different times to thermalize or freezeout; very high cumulant orders, $[B^6]$ etc., may not be thermal. May give information on transport.

Is the top RHIC energy non-critical?

Check whether CLT holds. Then $V_{\rm fireball} \gg V_{\rm obs} \gg \xi^3$.

Recall the scalings of extensive quantity such as B and its variance σ^2 , skewness, S, and Kurtosis, K, given by

$$B(V) \propto V, \quad \sigma^2(V) \propto V, \quad \mathcal{S}(V) \propto \frac{1}{\sqrt{V}}, \quad \mathcal{K}(V) \propto \frac{1}{V}.$$

Coefficients depend on T and μ . So make sure that the nature of the physical system does not change while changing the volume.

This is a check that microscopic physics is forgotten (except two particle correlations).

STAR measurements

Perfect CLT scaling: remember only $VT\chi_B$? or some other physics?

Can we recover microscopic physics? Try finite size scaling

Can we test QCD?

STAR Collaboration: QM 2009, Knoxville

What to compare with QCD

The cumulants of the distribution are related to Taylor coefficients—

$$[B^n] = T^3 V\left(\frac{\chi^{(n)}}{T^3}\right).$$

V is hard to measures, so remove it by taking ratios. Define number, n=[B], variance $\sigma^2=[B^2]$, skew $\mathcal{S}=[B^3]/\sigma^3$ and Kurtosis, $\mathcal{K}=[B^4]/\sigma^4$. Construct the ratios

$$m_0 = \frac{\sigma}{n} = \frac{[B^2]}{[B]}, \qquad m_1 = S\sigma = \frac{[B^3]}{[B^2]},$$

$$m_2 = K\sigma^2 = \frac{[B^4]}{[B^2]}, \qquad m_3 = \frac{K\sigma}{S} = \frac{[B^4]}{[B^3]}.$$

These are comparable with QCD provided all other fluctuations removed.

SG, 0909.4630 (2009), (2010)

How to compare with QCD

Strategy 1

Check whether CLT holds. If yes, then input T and $z=\mu/T$ from hadron resonance gas model. Extract T_c by comparing lattice predictions and data. Check whether compatible with other results. Gavai, SG 1001.3796; STAR 1004.4959; GLMRX, Science (2011).

Strategy 2

Check whether CLT holds. If yes, then extract $t = T/T_c$ and $z = \mu/T$ by comparing lattice predictions and data. Check whether t and z compatible with other extractions. Gavai, SG 1001.3796, Karsch unpublished 2011

Near CP system drops out of equilibrium: finite lifetime and finite size. Lack of agreement with CLT and QCD is signal of CP!

Berdnikov, Rajagopal hep-ph/9912274, Stephanov 0809.3450

Strategy 1: Matching data and prediction

Strategy 1: Extracting T_c

Strategy 2: The fluctuation freezeout curve

The Taylor expansion of the pressure can be written as

$$\frac{P(t,z)}{T^4} = \frac{P(t,0)}{T^4} + \frac{\chi^2(t)}{T^2} \frac{z^2}{2!} + \chi^4(t) \frac{z^4}{4!} + T^2 \chi^6(t) \frac{z^6}{6!} + \cdots,$$

where $t = T/T_c$ and $z = \mu/T$. This gives the expressions

$$\frac{1}{m_0(t,z)} = \frac{z}{1+3(z/z^*)^2+\mathcal{O}(z^4)},$$

$$\frac{1}{m_3(t,z)} = \frac{z}{1+10(z/z^*)^2+\mathcal{O}(z^4)},$$

where z^* is the radius of convergence. Using the lattice estimates of z^* one can estimate the freezeout point t and z by comparing the lattice predictions with data either for m_0 or for m_3 .

Strategy 2: The fluctuation freezeout curve

The Taylor expansion of the pressure can be written as

$$\frac{P(t,z)}{T^4} = \frac{P(t,0)}{T^4} + \frac{\chi^2(t)}{T^2} \frac{z^2}{2!} + \chi^4(t) \frac{z^4}{4!} + T^2 \chi^6(t) \frac{z^6}{6!} + \cdots,$$

where $t = T/T_c$ and $z = \mu/T$. This gives the expressions

$$\frac{1}{m_0(t,z)} = \frac{z}{1+3(z/z^*)^2+\mathcal{O}(z^4)},$$

$$\frac{1}{m_3(t,z)} = \frac{z}{1+10(z/z^*)^2+\mathcal{O}(z^4)},$$

where z^* is the radius of convergence. Using the lattice estimates of z^* one can estimate the freezeout point t and z by comparing the lattice predictions with data either for m_0 or for m_3 .

Strategy 2: The freezeout point for fluctuations

Matching lattice predictions and data at top RHIC energy (including statistical and systematic errors) assuming knowledge of the critical point. Beyond LO assumed that t=0.94 (HRG).

Strategy 3: Determining the critical point

Assuming that t=0.94, and using the resummed NLO expressions one can fit m_0 and m_3 simultaneously. Since $t^E=0.94\,T_c$, this can give simultaneous estimates of the critical end point and the freezeout point.

To NLO with current systematic error estimates, one finds only a lower limit for the critical point, because

$$z = \frac{7}{2m_3 + 5m_0}, \qquad z^* = 2z\sqrt{\frac{1}{1 - z/m_0}},$$

and at the limits of the systematic errors the value of z extends past the singular point. So

$$\frac{\mu^E}{T^E} \ge 1.7$$

This is compatible with current lattice estimates.

Three ways to recognize the critical point

At the critical point $\xi \to \infty$.

1: CLT fails

Scaling $[B^n] \simeq V$ fails: fluctuations remains out of thermal equilibrium. Signals of out-of-equilibrium physics in other signals.

2: Non-monotonic variation

At least some of the cumulant ratios m_0 , m_1 , m_2 and m_3 will not vary monotonically with \sqrt{S} . If no critical point then $m_{0,3} \propto 1/z$ and $m_1 \propto z$.

3: Lack of agreement with QCD

Away from the critical point agreement with QCD observed. In the critical region no agreement.

Outline

- 1 Thermodynamics and Phase diagram
- 2 Lattice simulations
- 3 Experiments on the phase diagram of QCD
- 4 Summary

Main results

- Chiral cross over determines the shape of the phase diagram; deconfinement cross over determines the evolution of the fireball.
- Lattice determines series expansion of pressure; indicates a critical point in QCD: $\mu^E/T^E \simeq 1.5$ –2.5. Physical quantities can be found be resumming the series expansion (e.g., Padé approximants).
- Extrapolation of lattice results to the experimentally known freezeout curve possible. First comparison of predictions and data in good agreement. Both can be improved.
- Opens many new exciting paths: direct comparison of finite temperature data with lattice predictions. T_c compatible with other determinations. Freezeout of fluctuations vs of yields? Self consistent determination of critical point from every energy?