Scale for the phase diagram of QCD

Sourendu Gupta, Xiaofeng Luo, Bedanga Mohanty, Hans-Georg Ritter, Nu Xu

TIFR Mumbai, USTC Hefei, VECC Kolkata, LBNL Berkeley, LBNL Berkeley

Lepton Photon 2011 TIFR Mumbai August 25, 2011

Comparing data and lattice

Outline

Pluctuations of conserved quantities

Comparing data and lattice

Heavy-ion physics

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ... Talks by Nayak and Kabana

Heavy-ion physics

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ... Talks by Nayak and Kabana

Systematic understanding

Matter formed: characterized by T and μ . History of fireball described by hydrodynamics and diffusion. Small mean free paths. Talk by Ollitrault

Heavy-ion physics

Experimental observations

Many interesting new phenomena: jet quenching, elliptic flow, strange chemistry, fluctuations of conserved quantities ... Talks by Nayak and Kabana

Systematic understanding

Matter formed: characterized by T and μ . History of fireball described by hydrodynamics and diffusion. Small mean free paths. Talk by Ollitrault

Theoretical underpinning

Does QCD describe this matter? Is there a new nonperturbative test of QCD?

	Introduction	
Predict	ions from QCD	

- Lagrangian has free parameters: cutoff *a*, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \ m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \ \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{E}(a, m_{ud}, m_s, \cdots)$, $\mu_{E}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

	Introduction	
Prediction	s from QCD	

- Lagrangian has free parameters: cutoff *a*, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \ m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \ \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{E}(a, m_{ud}, m_s, \cdots)$, $\mu_{E}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

	Introdu	uction	
Predictions	from Q	CD	

- Lagrangian has free parameters: cutoff *a*, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \ m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \ \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{E}(a, m_{ud}, m_s, \cdots)$, $\mu_{E}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.

		ntroduction	
Predictions	from	QCD	

- Lagrangian has free parameters: cutoff *a*, quark masses $m_u \simeq m_d \ll \Lambda_{\scriptscriptstyle QCD}, \ m_s \simeq \Lambda_{\scriptscriptstyle QCD}, \ \cdots$
- Compute enough quantities from QCD: $m_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{K}(a, m_{ud}, m_s, \cdots)$, $f_{K}(a, m_{ud}, m_s, \cdots)$, $f_{\pi}(a, m_{ud}, m_s, \cdots)$, $m_{p}(a, m_{ud}, m_s, \cdots)$, $m_{\rho}(a, m_{ud}, m_s, \cdots)$, $T_{c}(a, m_{ud}, m_s, \cdots)$, $T_{E}(a, m_{ud}, m_s, \cdots)$, $\mu_{E}(a, m_{ud}, m_s, \cdots)$
- Fix the free parameters using some of the predictions. Then the remaining are scale-free predictions.
- Take the cutoff to infinity. Difficult on the lattice; many technical innovations on how to get stable predictions with small dependence on *a*.

Fluctuations

Comparison

The phase diagram of QCD

μ

Y. Aoki et al., Phys. Lett. B 643 (2006) 46

Y. Aoki et al., Phys. Lett. B 643 (2006) 46

μ

μ

μ

Outline

2 Fluctuations of conserved quantities

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

Thermodynamics

If $\xi^3 \ll V_{obs} \ll V_{fireball}$, then fluctuations can be explained in the grand canonical ensemble: energy and B, Q, S allowed to fluctuate in one part by exchange with rest of fireball (diffusion: transport).

Observations

In a single heavy-ion collision, each conserved quantity (B, Q, S) is exactly constant when the full fireball is observed. In a small part of the fireball they fluctuate: from part to part and event to event.

Thermodynamics

If $\xi^3 \ll V_{obs} \ll V_{fireball}$, then fluctuations can be explained in the grand canonical ensemble: energy and B, Q, S allowed to fluctuate in one part by exchange with rest of fireball (diffusion: transport).

Comparison

Is the observed volume small compared to the volume of the fireball? Are observations in agreement with QCD thermodynamics?

Comparison

Event-to-event fluctuations

Central rapidity slice taken. p_{τ} of 400–800 MeV. Important to check dependence on impact parameter. Protons observed: isospin fluctuations small.

Shape of distribution

Shape of distribution captured in cumulants $[B^n]$. Cumulants change with volume (proxy: N_{part}), and tends to Gaussian.

SG Scale for QCD

QCD predictions at finite μ_B

Make a MacLaurin expansion of the (dimensionless) pressure:

$$\frac{1}{T^4} P(T,\mu) = \sum_{n=0}^{\infty} T^{n-4} \chi_B^{(n)}(T,0) \frac{(\mu/T)^n}{n!},$$

measure each NLS at $\mu = 0$, sum series expansion to find NLS at any μ . Shape variables: $[B^n] = (VT^3)T^{n-4}\chi_B^{(n)}(t,\mu)$. Ratios of cumulants are state variables:

$$m_{1}: \qquad \frac{[B^{3}]}{[B^{4}]} = \frac{T\chi_{B}^{(3)}}{\chi_{B}^{(2)}} = S\sigma$$
$$m_{2}: \qquad \frac{[B^{4}]}{[B^{2}]} = \frac{T\chi_{B}^{(4)}}{\chi_{B}^{(2)}} = \kappa\sigma^{2}$$
$$m_{3}: \qquad \frac{[B^{4}]}{[B^{3}]} = \frac{T\chi_{B}^{(4)}}{\chi_{B}^{(3)}} = \frac{\kappa\sigma}{S}$$

SG, 2009

μ

Hadron gas models: Hagedorn, Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini

The freezeout curve

Hadron gas models: Hagedorn, Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini

Fluctuations

Comparison

The freezeout curve

Hadron gas models: Hagedorn, Braun-Munzinger, Stachel, Cleymans, Redlich, Becattini

Fluctuations

Predictions along the freezeout curve

Lattice predictions along the freezeout curve of HRG models using $T_c = 170$ MeV.

Outline

3 Comparing data and lattice

Checking the match

Tuning lattice scale to match data

Conclusions

Thermalization

1 parameter tuning makes thermodynamic predictions agree with data for 2 ratios at 3 energies. Indicates thermalization of the fireball at freezeout.

T_c

Comparison of lattice and data along the freezeout curve gives

$$T_c = 175^{+1}_{-7} \; {\rm MeV},$$

in agreement with other scale settings on the lattice. Indicates that non-perturbative phenomena in single hadron physics and strong interaction thermodynamics are mutually consistent through QCD.

		Comparison
Systematics		

- How important are isospin fluctuations? STAR 2010, Kitazawa and Asakawa 2011
- Are volume fluctuations important? STAR 2010
- I How accurately is the freezeout curve known?
- Do chemistry fluctuations freeze out at the same time mean chemistry?
- How important are finite lattice spacing artifacts? Gavai and SG 2010
- O How good is the series expansion in μ? York and Moore 2011
- We have a series of the series?
- How sensitive are the results to m_{ud} and m_s? Gavai and SG 2008

Search for the critical point

Near a critical point system departs from equilibrium. If the critical point lies near the freezeout curve, then (1) Gaussian statistics will fail and (2) QCD predictions will not agree with data.