The phase diagram of QCD

Sourendu Gupta

TIFR Mumbai

20th CBM Collaboration Meeting VECC Kolkata September 26, 2012

Outline			

2 The nature of hot QCD

Improved and new lattice results

The energy scan and the search for the critical point

5 Summary

	Introduction		
Outline			

- 2 The nature of hot QCD
- Improved and new lattice results
- In the energy scan and the search for the critical point

5 Summary

chiral limit: m=0

Pisarski, Wilczek, 10.1103/PhysRevD.29.338; Stephanov, Rajagopal, Shuryak,

	Introduction			
A phase d	iagram of Q	CD		

Outline Introduction Hot matter Lattice BES Summary What is special about chiral symmetry

Hadron and nuclear properties at T = 0 imply PCAC and approximate chiral symmetry: $m_{\pi} \ll m_{\rho}$. As a result, sum over intermediate hadron states in VEVs well approximated by sum over pion states.

Chiral symmetry ($m_u = m_d = 0$) implies $m_{\pi} = 0$. Then 20 pion states could be more important in sum over states in VEVs than a single pair ρ^{\pm} .

Corollary: sufficiently close to the chiral limit HRG can be replaced by a much simpler system: a pion gas.

	Hot matter		
Outline			

2 The nature of hot QCD

Improved and new lattice results

4 The energy scan and the search for the critical point

 Outline
 Introduction
 Hot matter
 Lattice
 BES
 Summary

 The QCD thermal cross-over

There is no phase transition in QCD at $\mu = 0$: gradual change from hadrons to quarks. Physically important: how fast does the fireball cool?

Endrodi et al, arxiv:1007.2580

Crucial question: what are the dof from 130 MeV \leq T \leq 200 MeV?

 Outline
 Introduction
 Hot matter
 Lattice
 BES
 Summary

 The QCD thermal cross-over

There is no phase transition in QCD at $\mu = 0$: gradual change from hadrons to quarks. Physically important: how fast does the fireball cool?

Endrodi et al, arxiv:1007.2580

Crucial question: what are the dof from 130 MeV \leq T \leq 200 MeV?

 Outline
 Introduction
 Hot matter
 Lattice
 BES
 Summary

 The QCD thermal cross-over

There is no phase transition in QCD at $\mu = 0$: gradual change from hadrons to quarks. Physically important: how fast does the fireball cool?

Endrodi et al, arxiv:1007.2580

Crucial question: what are the dof from 130 MeV \leq T \leq 200 MeV?

		Hot matter		
Quarks at	high temper	rature: decor	nfinement	

No linkage between S and B at T = 0; but perfect linkage for $T > T_c(P)$. Linkage between S and Q due to kaon at T = 0 but quarks at high T. Koch, Majumder, Randrup, 10.1103/PhysRevLett.95.182301; Gavai, SG, 10.1103/PhysRevD.73.014004

		Hot matter		
What abo	out chiral sy	mmetry?		

Chiral symmetric critical line near $\mu = 0$ gives universal "magnetic equation of state". Free parameter is $T_c(\chi)$. Lattice predicts $T_c(\chi) \simeq 155$ MeV. Then chiral symmetry predicts negative $[B^6]/[B^2]$ at $\mu = 0$.

Friman, Karsch, Redlich, Skokov arxiv:1103.3511

		Hot matter		
What	about chiral	symmetry?		

Chiral symmetric critical line near $\mu = 0$ gives universal "magnetic equation of state". Free parameter is $T_c(\chi)$. Lattice predicts $T_c(\chi) \simeq 155$ MeV. Then chiral symmetry predicts negative $[B^6]/[B^2]$ at $\mu = 0$.

Friman, Karsch, Redlich, Skokov arxiv:1103.3511

Lizhu Chen for STAR Collaboration, QM 2012

		Hot matter		
What	about chiral	symmetry?		

Chiral symmetric critical line near $\mu = 0$ gives universal "magnetic equation of state". Free parameter is $T_c(\chi)$. Lattice predicts $T_c(\chi) \simeq 155$ MeV. Then chiral symmetry predicts negative $[B^6]/[B^2]$ at $\mu = 0$.

Friman, Karsch, Redlich, Skokov

arxiv:1103.3511

Opposite limit is HRG, where all hadrons important. In HRG $[B^6]/[B^2]$ is the positive Poisson value +1. Why does the observation lie between these two limits?

Lizhu Chen for STAR Collaboration, QM 2012

PS V AV N

Padmanath, Datta, SG, Mathur, 2012: quenched QCD

Improved Wilson quarks with heavy pion $(m_{\pi} \simeq 2T_c)$.

PS V AV N AV-V

Padmanath, Datta, SG, Mathur, 2012: quenched QCD

Improved Wilson quarks with heavy pion $(m_{\pi} \simeq 2T_c)$.

Padmanath, Datta, SG, Mathur, 2012: quenched QCD

Improved Wilson quarks with heavy pion $(m_{\pi} \simeq 2T_c)$. Shift in nucleon sector mass splitting persists when pion mass is changed

		Lattice	
Outline			

2 The nature of hot QCD

Improved and new lattice results

4 The energy scan and the search for the critical point

		Lattice	
New la	attice results		

Lattice cutoff has now gone from 700 MeV (Nt = 4) to 990 MeV (Nt = 6) to 1300 MeV (Nt = 8). Datta, Gavai, SG, 2012

		Lattice	
New la	ttice results		

Lattice cutoff has now gone from 700 MeV (Nt = 4) to 990 MeV (Nt = 6) to 1300 MeV (Nt = 8).

Datta, Gavai, SG, 2012

			Lattice	
Summary	of all lattice	predictions		

			Lattice	
Summary	of all lattice	predictions		

		BES	
Outline			

Improved and new lattice results

In the energy scan and the search for the critical point

			BES	
The cri	tical region			

Using STAR Collaboration, 2012

			BES	
The cri	tical region			

Using STAR Collaboration, 2012

			BES	
The cri	itical region			

Using STAR Collaboration, 2012

			BES	
The cri	itical region			

Not using STAR Collaboration, 2012

Lattice predictions along the freezeout curve of HRG models using $T_c = 170$ MeV.

			BES	
Smaller	lattice spacin	g		

Lattice predictions along the freezeout curve of HRG models using $T_c=170~{\rm MeV}.$

			Summary
Outline			

- 2 The nature of hot QCD
- Improved and new lattice results
- The energy scan and the search for the critical point

			Summary
A short s	summary		

- The definition of a cross over temperature is a matter of convention. Choose one and stick to it. For deconfinement properties $T_c \simeq 175$ MeV, for chiral properties $T_c \simeq 155$ MeV.
- Interesting demonstration from STAR that the "magnetic equation of state" based on chiral symmetry does not describe the fluctuation data. Await confirmation from the LHC.
- Lattice results beginning to stabilize to the continuum: preliminary results from Mumbai.
- Beam energy scan on track for QCD critical point search. Await first results. Look forward to CBM study of hadron states in dense and warm matter, and possible new physics.