Scanning the phase diagram of QCD

Sourendu Gupta

TIFR Mumbai

WHEPP XII Satellite Program: The Phase Diagram of QCD VECC Kolkata India
January 11, 2012

- ① QCD at $\mu = 0$: setting a scale
- The theory of fluctuations
- Probing thermalization
- The Critical Point
- Summary

Outline

- ① QCD at $\mu = 0$: setting a scale
- 2 The theory of fluctuations
- 3 Probing thermalization
- 4 The Critical Point
- 5 Summary

ıtline **Crossover** Fluctuations Thermalization Critical point Summary

The QCD thermal cross-over

There is no phase transition in QCD at $\mu=0$: gradual change from hadrons to quarks. Physically important: how fast does the fireball cool?

Crucial question: what are the dof from 130 MeV $\leq T \leq$ 200 MeV?

tline **Crossover** Fluctuations Thermalization Critical point Summar

The QCD thermal cross-over

There is no phase transition in QCD at $\mu=0$: gradual change from hadrons to quarks. Physically important: how fast does the fireball cool?

Crucial question: what are the dof from 130 MeV $\leq T \leq$ 200 MeV?

itline **Crossover** Fluctuations Thermalization Critical point Summary

The QCD thermal cross-over

There is no phase transition in QCD at $\mu=0$: gradual change from hadrons to quarks. Physically important: how fast does the fireball cool?

Endrodi et al, arxiv:1007.2580

Crucial question: what are the dof from 130 MeV $\leq T \leq$ 200 MeV?

The nature of a cross over

Phase diagram: map of the singularities of the free energy.

Crossover Fluctuations Thermalization Critical point Summary

The nature of a cross over

First order: latent heat; second order: divergent susceptibilities or specific heat; cross over: neither.

Phase diagram: map of the singularities of the free energy.

Crossover Fluctuations Thermalization Critical point Summary

The nature of a cross over

First order: latent heat; second order: divergent susceptibilities or specific heat; cross over: neither.

Phase diagram: map of the singularities of the free energy.

Crossover Fluctuations Thermalization Critical point Summary

The nature of a cross over

First order: latent heat; second order: divergent susceptibilities or specific heat; cross over: neither. QCD has no phase transition at $\mu=0$. Therefore, there is no privileged mark on the QCD thermometer. Choose the most convenient one.

Phase diagram: map of the singularities of the free energy.

The nature of a cross over

Phase diagram: map of the singularities of the free energy. No singularity: blank.

First order: latent heat; second order: divergent susceptibilities or specific heat; cross over: neither. QCD has no phase transition at $\mu=0$. Therefore, there is no privileged mark on the QCD thermometer. Choose the most convenient one.

For lattice gauge theory this is the Polyakov loop susceptibility. Its peak position is a (non-unique but definite) measure of the cross over

 $T_c \simeq 175 MeV$

Outline

- ① QCD at $\mu = 0$: setting a scale
- 2 The theory of fluctuations
- Probing thermalization
- 4 The Critical Point
- 5 Summary

Thermodynamics and beyond

Thermodynamics

Only extensive quantities treated in classical thermodyanamics. Twentieth century: micro-scale measurements begin, theory of fluctuations began. Only second moments treated in Landau and Lifschitz.

Fluctuations

In heavy-ion collisions the number of particles $\ll N_A$. Theory of fluctuations must be extended: systematic finite size scaling theory. Closely related to nanophysics.

What is gained

Thermodynamics forgets microscopic physics. Fluctuations keep track of macroscopic and microscopic physics simultaneously.

Standardizing notation

Take a random variable B, with a probability distribution P(B). The generating function is

$$Z(z) = \left\langle e^{Bz} \right\rangle = \int dB e^{Bz} P(B).$$

Moments are the Madhava-Maclaurin expansion coefficients of Z(z)—

$$Z(z) = \sum_{n} \langle B^{n} \rangle \frac{z^{n}}{n!}, \qquad \langle B^{n} \rangle = \left. \frac{d^{n} Z}{dz^{n}} \right|_{z=0}.$$

The characteristic function, $F(z) = \log Z(z)$. Cumulants are the expansion coefficients of F(z)—

$$F(z) = \sum_{n} [B^n] \frac{z^n}{n!}, \qquad [B^n] = \frac{d^n F}{dz^n} \bigg|_{z=0}.$$

This is the general connection between moments and cumulants.

Standardizing notation

Take a random variable B, with a probability distribution P(B). The partition function is

$$Z(z) = \left\langle e^{Bz} \right\rangle = \int dB e^{Bz} P(B).$$

Moments are the Madhava-Maclaurin expansion coefficients of Z(z)—

$$Z(z) = \sum_{n} \langle B^{n} \rangle \frac{z^{n}}{n!}, \qquad \langle B^{n} \rangle = \frac{d^{n}Z}{dz^{n}} \Big|_{z=0}.$$

The free energy, $F(z) = \log Z(z)$. Cumulants are the expansion coefficients of F(z)—

$$F(z) = \sum_{n} [B^n] \frac{z^n}{n!}, \qquad [B^n] = \frac{d^n F}{dz^n} \bigg|_{z=0}.$$

This is the general connection between moments and cumulants.

The shape variables

Standard shape variables for P(B) are the cumulants:

$$[B], [B^2], [B^3] [B^4], \cdots$$

Older texts have other shape variables: $\mu = [B]$, $\sigma^2 = [B^2]$, and

$$S = \frac{[B^3]}{[B^2]^{3/2}}, \qquad K = \frac{[B^4]}{[B^2]^2} - 3, \cdots$$

In the heavy-ion context ratios of cumulants are useful:

$$m_0 = \frac{[B^2]}{[B]}, \quad m_1 = \frac{[B^3]}{[B^2]}, \quad m_2 = \frac{[B^4]}{[B^2]}, \quad m_3 = \frac{[B^4]}{[B^3]}, \cdots$$

Series expansion of pressure $(t = T/T_c \text{ and } z = \mu_B/T)$:

$$\frac{1}{T}^{4}P(t,z)=\frac{P(T)}{T^{4}}+\frac{\chi^{(2)}(T)}{T^{2}}\frac{z^{2}}{2!}+\chi^{(4)}(T)\frac{z^{4}}{4!}+T^{2}\chi^{(6)}(T)\frac{z^{6}}{6!}+\cdots,$$

Gavai, SG (2003)

Derivatives give the successive "susceptibilities":

$$\chi^{(1)}(t,z) = \frac{\chi^{(2)}}{T^2}z + \chi^{(4)}\frac{z^3}{3!} + T^2\chi^{(6)}\frac{z^5}{5!} + \cdots,$$

Series expansion of pressure $(t = T/T_c \text{ and } z = \mu_B/T)$:

$$\frac{1}{T}^{4}P(t,z) = \frac{P(T)}{T^{4}} + \frac{\chi^{(2)}(T)}{T^{2}} \frac{z^{2}}{2!} + \chi^{(4)}(T) \frac{z^{4}}{4!} + T^{2} \chi^{(6)}(T) \frac{z^{6}}{6!} + \cdots,$$

Gavai, SG (2003)

Derivatives give the successive "susceptibilities":

$$\chi^{(2)}(t,z) = \frac{\chi^{(2)}}{T^2} + \chi^{(4)} \frac{z^2}{2!} + T^2 \chi^{(6)} \frac{z^4}{4!} + \cdots,$$

Series expansion of pressure $(t = T/T_c \text{ and } z = \mu_B/T)$:

$$\frac{1}{T}^{4}P(t,z) = \frac{P(T)}{T^{4}} + \frac{\chi^{(2)}(T)}{T^{2}} \frac{z^{2}}{2!} + \chi^{(4)}(T) \frac{z^{4}}{4!} + T^{2} \chi^{(6)}(T) \frac{z^{6}}{6!} + \cdots,$$

Gavai, SG (2003)

Derivatives give the successive "susceptibilities":

$$\chi^{(3)}(t,z) = \chi^{(4)}z + T^2\chi^{(6)}\frac{z^3}{3!} + T^4\chi^{(8)}\frac{z^5}{5!} + \cdots,$$

Series expansion of pressure $(t = T/T_c \text{ and } z = \mu_B/T)$:

$$\frac{1}{T}^{4}P(t,z)=\frac{P(T)}{T^{4}}+\frac{\chi^{(2)}(T)}{T^{2}}\frac{z^{2}}{2!}+\chi^{(4)}(T)\frac{z^{4}}{4!}+T^{2}\chi^{(6)}(T)\frac{z^{6}}{6!}+\cdots,$$

Gavai, SG (2003)

Derivatives give the successive "susceptibilities":

$$\chi^{(3)}(t,z) = \chi^{(4)}z + T^2\chi^{(6)}\frac{z^3}{3!} + T^4\chi^{(8)}\frac{z^5}{5!} + \cdots,$$

Series diverge at the critical point: can be used to estimate the position of the critical point:

$$z_* = 1.8 \pm 0.1$$
 lattice cutoff 1.2 GeV

Gavai, SG (2008)

Also tested for 3d Ising Model

Moore, York (2011)

Fluctuations

Lattice predictions along the freezeout curve

Fluctuations

Lattice predictions along the freezeout curve

Lattice predictions along the freezeout curve

Lattice predictions along the freezeout curve

utline Crossover **Fluctuations** Thermalization Critical point Summar

Heavy-ion collisions

Gavai, SG (2010); STAR (2010); GLMRX, Science (2011)

Outline

- ① QCD at $\mu = 0$: setting a scale
- 2 The theory of fluctuations
- 3 Probing thermalization
- 4 The Critical Point
- 5 Summary

If the critical point is far from the freezeout curve over a certain range of energy, then m_1 decreases with increasing $\sqrt{S_{NN}}$ (since z decreases) and m_3 increases. Using these two measurements and comparing with lattice predictions, it is possible to estimate the freezeout conditions: T/T_c and μ_B/T . This method is independent of the usual one in which hadron yields are interpreted through a resonance gas picture $\overline{15}$. Comparison of the two methods then allows us to estimate T_c by inverting the argument of the previous paragraph. Mutual agreement of the values of T_c

so derived at different $\sqrt{S_{NN}}$ would constitute the first firm experimental proof of thermalization. If this proof holds then one also obtains the simplest and most direct measurement of T_c found till now. Since such a thermometric measurement can be made reliably with data at large $\sqrt{S_{NN}}$, where μ_B is small, it would remain a valid measurement whether or not a critical point is found in the low energy scan at RHIC.

Gavai, SG (Jan 2010)

If the critical point is far from the freezeout curve over a certain range of energy, then m_1 decreases with increasing $\sqrt{S_{NN}}$ (since z decreases) and m_3 increases. Using these two measurements and comparing with lattice predictions, it is possible to estimate the freezeout conditions: T/T_c and μ_B/T . This method is independent of the usual one in which hadron yields are interpreted through a resonance gas picture $\overline{15}$. Comparison of the two methods then allows us to estimate T_c by inverting the argument of the previous paragraph. Mutual agreement of the values of T_c

so derived at different $\sqrt{S_{NN}}$ would constitute the first firm experimental proof of thermalization. If this proof holds then one also obtains the simplest and most direct measurement of T_c found till now. Since such a thermometric measurement can be made reliably with data at large $\sqrt{S_{NN}}$, where μ_B is small, it would remain a valid measurement whether or not a critical point is found in the low energy scan at RHIC.

Gavai, SG (Jan 2010)

If the critical point is far from the freezeout curve over a certain range of energy, then m_1 decreases with increasing $\sqrt{S_{NN}}$ (since z decreases) and m_3 increases. Using these two measurements and comparing with lattice predictions, it is possible to estimate the freezeout conditions: T/T_c and μ_B/T . This method is independent of the usual one in which hadron yields are interpreted through a resonance gas picture 15. Comparison of the two methods then allows us to estimate T_c by inverting the argument of the previous paragraph. Mutual agreement of the values of T_c

so derived at different $\sqrt{S_{NN}}$ would constitute the first firm experimental proof of thermalization. If this proof holds then one also obtains the simplest and most direct measurement of T_c found till now. Since such a thermometric measurement can be made reliably with data at large $\sqrt{S_{NN}}$, where μ_B is small, it would remain a valid measurement whether or not a critical point is found in the low energy scan at RHIC.

Gavai, SG (Jan 2010)

The first strategy

Use the chemical freezeout curve and the agreement of data and prediction along it to measure

$$T_c = 175^{+1}_{-7} \text{ MeV}.$$

GLMRX, 2011

If the critical point is far from the freezeout curve over a certain range of energy, then m_1 decreases with increasing $\sqrt{S_{NN}}$ (since z decreases) and m_3 increases. Using these two measurements and comparing with lattice predictions, it is possible to estimate the freezeout conditions: T/T_c and μ_B/T_c . This method is independent of the usual one in which hadron yields are interpreted through a resonance gas picture [15]. Comparison of the two methods then allows us to estimate T_c by inverting the argument of the previous paragraph. Mutual agreement of the values of T_c

so derived at different $\sqrt{S_{NN}}$ would constitute the first firm experimental proof of thermalization. If this proof holds then one also obtains the simplest and most direct measurement of T_c found till now. Since such a thermometric measurement can be made reliably with data at large $\sqrt{S_{NN}}$, where μ_B is small, it would remain a valid measurement whether or not a critical point is found in the low energy scan at RHIC.

Gavai, SG (Jan 2010)

The first strategy

Use the chemical freezeout curve and the agreement of data and prediction along it to measure

$$T_c = 175^{+1}_{-7} \text{ MeV}.$$

GLMRX. 2011

The second strategy

Because of the critical divergence of $\chi^{(2)}(t,z)$, near the critical point the ratios of shape variables have poles as a function of $z = \mu/T$.

$$m_{0} = \frac{[B^{2}]}{[B]} = \frac{\chi^{(2)}(t,z)/T^{2}}{\chi^{(1)}(t,z)/T^{3}} = \frac{1 + \mathcal{O}\left(\frac{z}{z_{*}}\right)^{2}}{z\left[1 - 3\left(\frac{z}{z_{*}}\right)\right]}$$

$$m_{3} = \frac{[B^{4}]}{[B^{3}]} = \frac{\chi^{(4)}(t,z)}{\chi^{(3)}(t,z)/T} = \frac{1 + \mathcal{O}\left(\frac{z}{z_{*}}\right)^{2}}{z\left[1 - 10\left(\frac{z}{z_{*}}\right)\right]}$$

Match lattice predictions and data (including statistical and systematic errors) assuming knowledge of z_* to get estimates of freeze-in conditions.

The second strategy: μ metry

Outline

- ① QCD at $\mu = 0$: setting a scale
- 2 The theory of fluctuations
- Probing thermalization
- The Critical Point
- 5 Summary

Critical point from the top RHIC energy

As before

$$m_{0} = \frac{[B^{2}]}{[B]} = \frac{\chi^{(2)}(t,z)/T^{2}}{\chi^{(1)}(t,z)/T^{3}} = \frac{1 + \mathcal{O}\left(\frac{z}{z_{*}}\right)^{2}}{z\left[1 - 3\left(\frac{z}{z_{*}}\right)\right]}$$

$$m_{3} = \frac{[B^{4}]}{[B^{3}]} = \frac{\chi^{(4)}(t,z)}{\chi^{(3)}(t,z)/T} = \frac{1 + \mathcal{O}\left(\frac{z}{z_{*}}\right)^{2}}{z\left[1 - 10\left(\frac{z}{z_{*}}\right)\right]}$$

Now fit m_0 and m_3 simultaneously to get both z and z_* . Since z_* is the position of the critical point: high energy data already gives information on the critical point!

From the highest RHIC energy using both statistical and systematic errors:

$$\frac{\mu^E}{\tau_E} \ge 1.7$$

Three signs of the critical point

At the critical point $\xi \to \infty$.

1: CLT fails

Scaling $[B^n] \simeq V$ fails: fluctuations remains out of thermal equilibrium. Signals of out-of-equilibrium physics in other signals.

2: Non-monotonic variation

At least some of the cumulant ratios m_0 , m_1 , m_2 and m_3 will not vary monotonically with \sqrt{S} . If no critical point then $m_{0,3} \propto 1/z$ and $m_1 \propto z$.

3: Lack of agreement with QCD

Away from the critical point agreement with QCD observed. In the critical region no agreement.

utline Crossover Fluctuations Thermalization **Critical point** Summar

Evolution of shape

Central limit theorem requires $\xi^3 \ll V_{obs}$.

Critical point

Evolution of shape

Central limit theorem requires $\xi^3 \ll V_{obs}$.

utline Crossover Fluctuations Thermalization **Critical point** Summar

Evolution of shape

Central limit theorem requires $\xi^3 \ll V_{obs}$.

Outline

- ① QCD at $\mu = 0$: setting a scale
- 2 The theory of fluctuations
- Probing thermalization
- 4 The Critical Point
- 5 Summary

Questions for investigation

- Agreement between experiment and lattice allows us to go beyond old paradigms. For example: direct implication of high energy data on the critical point (if it exists).
- ② Examine the BES critically: is thermalization lost in the fireball at some \sqrt{S} ? If so, is this due to a long thermalization time or a short fireball liefetime? Long thermalization time is interesting: failure of CLT and non-Poisson fluctuations.
- Resolve the physics of a cross over. Equation of state shows a gradual change [Schmidt]; QCD cross-over is broad; its physics is not just a single number. Implication for the degrees of freedom?
- Meson-like correlators show little change in the cross-over region [Nikhil, Padmanath]. Baryon-like correlators change even before T_c in quenched QCD [Padmanath]: probably therefore in unquenched QCD.