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@ The theory of fluctuations
© Probing thermalization

@ The Critical Point
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@ QCD at i = 0: setting a scale
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Crossover

There is no phase transition in QCD at u = 0: gradual change
from hadrons to quarks. Physically important: how fast does the
fireball cool?
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Endrodi et al, arxiv:1007.2580

Crucial question: what are the dof from 130 MeV< T < 200 MeV?
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Crossover

Liquid

o 760 water
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Phase diagram: map of the
singularities of the free energy.
No singularity: blank.
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Crossover

First order: latent heat; second

order: divergent susceptibilities or
specific heat; cross over: neither.
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Crossover

First order: latent heat; second
s order: divergent susceptibilities or
specific heat; cross over: neither.
QCD has no phase transition at

Liquid
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Phase diagram: map of the
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Crossover

First order: latent heat; second

s order: divergent susceptibilities or
specific heat; cross over: neither.
Tiguid QCD has no phase transition at
g 760— wiktEr i = 0. Therefore, there is no
g . ..
Z Solid privileged mark on the QCD
A, water
Waier thermometer. Choose the most
4579~ vapor convenient one.
m [ [ For lattice gauge theory this is the
0.0098°C  © 100°C Polyakov loop susceptibility. Its peak
Triple Boiling L. . .
point point position is a (non-unique but
Temperature definite) measure of the cross over
Phase diagram: map of the T, ~ 175MeV

singularities of the free energy.
No singularity: blank.
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Fluctuations

© The theory of fluctuations
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Fluctuations

Thermodynamics

Only extensive quantities treated in classical thermodyanamics.
Twentieth century: micro-scale measurements begin, theory of
fluctuations began. Only second moments treated in Landau and
Lifschitz.

| A\

Fluctuations

In heavy-ion collisions the number of particles < N4. Theory of
fluctuations must be extended: systematic finite size scaling
theory. Closely related to nanophysics.

| A

What is gained

Thermodynamics forgets microscopic physics. Fluctuations keep
track of macroscopic and microscopic physics simultaneously.
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Fluctuations

Take a random variable B, with a probability distribution P(B).
The generating function is

Z(z) = <eBz> - / dBeBZP(B).

Moments are the Madhava-Maclaurin expansion coefficients of
Z(z2)—

2=y (802, (=92

n

z=0

The characteristic function, F(z) = log Z(z). Cumulants are the
expansion coefficients of F(z)—

d"F
B" B" =
GG R

This is the general connection between moments and cumulants.
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Fluctuations

Take a random variable B, with a probability distribution P(B).
The partition function is

Z(z) = <eBz> - / dBeBZP(B).

Moments are the Madhava-Maclaurin expansion coefficients of
Z(z2)—

2=y (802, (=92

n

z=0

The free energy, F(z) = log Z(z). Cumulants are the expansion
coefficients of F(z)—

d"F
B" B" =
GG R

This is the general connection between moments and cumulants.
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Fluctuations

Standard shape variables for P(B) are the cumulants:
[B]a [82]7 [B3] [B4]a"'
Older texts have other shape variables: y = [B], 0% = [B?], and

[B°] _ (B9

G

3,

In the heavy-ion context ratios of cumulants are useful:

[B7] [B°] [B*] [B*]

T Er M MU e
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Fluctuations

Series expansion of pressure (t = T/T. and z = ug/T):

14 P(T) X)) 2 |
? P(t,Z) - T4 + T2 §+X (T)

4
40

26
+T2X(6)(T)a+‘ e
Gavai, SG (2003)
Derivatives give the successive “susceptibilities”:

Y@

xXW(t,2) = TzZt x@

3 5
z 2,602 ...
TR TR
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Fluctuations

Series expansion of pressure (t = T/T. and z = ug/T):

14 P(T) x@(T)z? (4) z*
? P(t,Z) = T4 + T2 §+X (T)E'i_

6
T2X(6)( T)a_|_. e
Gavai, SG (2003)

Derivatives give the successive “susceptibilities”:

(2) 22 74
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Fluctuations

Series expansion of pressure (t = T/T. and z = ug/T):

14 P(T X(2) T) 22 z* z8
+ P(t.2) = (T4)+ T(2 )E+X(4)(T)H+T2X(6)(T)_
Gavai, SG (2003)

Derivatives give the successive “susceptibilities”:

3
z 4. (8)
3!+TX

Z5

_i_...,
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Fluctuations

Series expansion of pressure (t = T/T. and z = ug/T):

14 P(T) X2 |
Gavai, SG (2003)
Derivatives give the successive “susceptibilities”:

24
41

#0

2. (6)
+Tx (T)6!

_l’_...’

3 4 2 ()% 4 B2

Series diverge at the critical point: can be used to estimate the
position of the critical point:

_i_...,

z,=18+0.1 lattice cutoff 1.2 GeV

Gavai, SG (2008)
Also tested for 3d Ising Model
Moore, York (2011)
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Fluctuations
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Gavai, SG, 1001.3796 (2010)
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Fluctuations
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Gavai, SG, 1001.3796 (2010)
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Fluctuations

10
power law
.| HRG |
@
— | J
£ 01
001! ]
0.001 10 100 1000 16000
VS GeV)

Gavai, SG, 1001.3796 (2010)
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Fluctuations
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Gavai, SG (2010); STAR (2010); GLMRX, Science (2011)
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Thermalization

© Probing thermalization
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Thermalization

1f the critical point is far from the freezeont curve over a certain range of energy, then rny decreases with increasing
Sy (since = decreases) and my increases. Using these two measurements and comparing with lattice predictions,
it is possible to estimate the freezeout conditions: T/T. and pg/T. This method & independent of the usual one
in which hadron yields are mterpreted through a resonance gas picture [ﬁ Comparison of the two methods then
allows us to estimate T} by inverting the argument of the previous paragraph. Mutual agreement of the values of T

so derived at different /5, v would constitute the first firm experimental proof of thermalization. If this proof holds
then one also obtains the simplest and most direct measwrement of 7. found dll now. Since such a thermometric
measurement can be made reliably with data at large /Sy ., where pg is small. it would remain a valid measurement

whether or not a critical point is found in the low energy scan at RHIC.

Gavai, SG (Jan 2010)
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Thermalization

1f the critical point is far from the freezeont curve over a certain range of energy, then rny decreases with increasing
W Swn (since : decreases) and my increases. Using these two measurements and comparing with lattice predictions,
it is possible to estimate the freezeout conditions: T/T. and pgp/T. This method & independent of the usual one
in which hadron yields are interpreted through a resonance gas picture [L_F)i Comparison of the two methods then
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Gavai, SG (Jan 2010)

The first strategy
Use the chemical freezeout curve and the agreement of data and
prediction along it to measure

Tc = 175T1 MeV.

GLMRX, 2011 )
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Thermalization

If the critical point is far from th(- freezeout curve over a certain range of energy, th:u iy decreases with micreasing
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Thermalization

Because of the critical divergence of x(?)(t, z), near the critical
point the ratios of shape variables have poles as a function of

z=ypu/T.
8 _ ey 1+0(2)
= B T XO(t,2)/T3 z [1 -3 (iﬂ
_ B (2 1O <£>
ms3 (B3] — X(3)(t,z)/T [1 —10 (Ziﬂ

Match lattice predictions and data (including statistical and
systematic errors) assuming knowledge of z, to get estimates of
freeze-in conditions.
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Thermalization
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Ciritical point

@ The Critical Point
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Ciritical point

As before
2
B @2 140(F)
YT B )T 1o (2)]
B Oy 1+0(2)

(B3] ~ \O)(t.2)/T 1-10(2)]

Zx

Now fit mg and ms simultaneously to get both z and z.. Since z,
is the position of the critical point: high energy data already gives
information on the critical point!

From the highest RHIC energy using both statistical and

systematic errors:
uE
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Critical point

At the critical point £ — co.

Scaling [B"] ~ V fails: fluctuations remains out of thermal
equilibrium. Signals of out-of-equilibrium physics in other signals.

2: Non-monotonic variation

At least some of the cumulant ratios mg, my, my and ms3 will not
vary monotonically with v/S. If no critical point then mo3 x1/z
and my x z.

3: Lack of agreement with QCD

Away from the critical point agreement with QCD observed. In the
critical region no agreement.
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Ciritical point

12

from STAR data[naive erfror propagation, fo systematic errors]
200 GeV Au Au

Cumulants

Central limit theorem requires &3 < Vps.
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Ciritical point

12

from STAR data[naive erfror propagation, fo systematic errors]
62.4 GeV Au Au

10+ .

Cumulants

Central limit theorem requires &3 < Vps.
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Ciritical point

12 from STAR data[naive error propagation, fo systematic errors]
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Central limit theorem requires &3 < Vps.
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Summary

© Summary
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Summary

© Agreement between experiment and lattice allows us to go
beyond old paradigms. For example: direct implication of high
energy data on the critical point (if it exists).

© Examine the BES critically: is thermalization lost in the
fireball at some v/S? If so, is this due to a long thermalization
time or a short fireball liefetime? Long thermalization time is
interesting: failure of CLT and non-Poisson fluctuations.

© Resolve the physics of a cross over. Equation of state shows a
gradual change [Schmidt]; QCD cross-over is broad; its
physics is not just a single number. Implication for the
degrees of freedom?

© Meson-like correlators show little change in the cross-over
region [Nikhil, Padmanath]. Baryon-like correlators change
even before T, in quenched QCD [Padmanath]: probably
therefore in unquenched QCD.
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