Quarkonium in cold and hot matter

Sourendu Gupta

TIFR Mumbai

April 29, 2013 HFQCD 2013, IIT Bombay, Mumbai

- Introduction
- Cold matter
- 3 Hot matter
- 4 Summary

- Introduction
- 2 Cold matter
- 3 Hot matter
- 4 Summary

J/ψ and its suppression

- ① Debye screening in a plasma modifies the QCD potential, so that $\bar{c}c$ does not bind into J/ψ (Matsui and Satz, 1986)
- ② Cold nuclear matter also shows J/ψ suppression both from the initial state (Gavai and SG, 1989) and from the final state (Gavin and Gyulassy, 1989)
- Thermal modification of the potential occurs at too high a temperature to be visible below LHC energies (Asakawa ++, 2001; Datta +++, 2004)
- **a** At high energy J/ψ may be relatively enhanced due to independent $\bar{c}c$ recombination (Thews ++, 2001)

J/ψ and its suppression

- ① Debye screening in a plasma modifies the QCD potential, so that $\bar{c}c$ does not bind into J/ψ (Matsui and Satz, 1986)
- ② Cold nuclear matter also shows J/ψ suppression both from the initial state (Gavai and SG, 1989) and from the final state (Gavin and Gyulassy, 1989)
- Thermal modification of the potential occurs at too high a temperature to be visible below LHC energies (Asakawa ++, 2001; Datta +++, 2004)
- **a** At high energy J/ψ may be relatively enhanced due to independent $\bar{c}c$ recombination (Thews ++, 2001)

Lesson learnt in 25 years

Need to understand and remove cold matter effects in order to see signal of hot matter in J/ψ and Υ -family suppression.

Introduction Cold matter Hot matter Summary

A gedanken experiment

Is TeV p on neutron star reaction same as very low energy p-U collision? Is energy is entangled with size?

A real experiment

Size scales simply at fixed energy Gavai and SG, 1997; reanalysis of NA50, 1996

Should energy be fine-tuned?

How does hot matter do this? Das (ALICE), arXiv:1212.2704

- Introduction
- 2 Cold matter
- 3 Hot matter
- 4 Summary

Dimensional analysis

- **①** Total cross section, σ , for inclusive production $p + A \rightarrow h + X$ depends on small number of variables: CM energy \sqrt{S} , M_p , M_A and M_h .
- Nuclear binding effects can be neglected: $M_A = AM_p$, i.e., neglect effects of about 1%. Also neglect order 1% effect of isospin. Fermi motion due to nuclear binding, so can be neglected except within 1% of threshold energy, \sqrt{S}_{th} .
- ① Dimensional argument: $\sigma S_{th} = f(Y, A, H)$ where $2Y = \log(S/S_{th})$ and $H = M_h/M_p$.
- ① Does f depend on Y and A simultaneously, or does the effect on A factorize? For small A, for large A, \cdots

Bhaduri and SG, arXiv:1304.3787

The limit of no matter

$$\sigma \propto Y^{3.2 \pm 0.3}$$
 $(A = 1, Y \ll 1),$

Dimensional arguments at higher energy

When $S\gg S_{th}$, then set the scale by S. If $x=M_h/\sqrt{S}\simeq 1$ and $A\simeq 1$ then single scale problem; $\sigma S=F(x)$ where F(x) should be computable in perturbative QCD. However, exclusive hadronization in the final state: open question. NRQCD?

If $x \simeq 1$ and $A \gg 1$ then two-scale problem. If a tractable problem then one could expect in this limit either $F(x,A) = \widetilde{F}(x)$ or $F(x,A) = A^{\alpha}\widetilde{F}(x)$. Observation: supports the second case. The power α connects to physics at lower energy.

If $x \ll 1$ then back to multi-scale problem; A becomes important again. $\sigma S = F(x,A)$, but F(x,A) may need resummation. Tribedy, talk later today

A power law

For large A and fixed Y one may be able to write $\sigma \propto A^{\alpha}$.

NA50, 2006

A power law

For large A and fixed Y one may be able to write $\sigma \propto A^{\alpha}$. The parametrization not expected to work for all A. NA50, 2006

Multi-fractal scaling: additive renormalization

$$\sigma \propto A^{\alpha}$$
: $\alpha = (0.64 \pm 0.02) + (0.10 \pm 0.01) Y + (0.012 \pm 0.002) H$.

Implies renormalized $A_R = A/(Y_0 + Y)^{\mu}$. Explains J/ψ , Υ , π , K, ρ and ω , but not ψ' or ϕ : more than just Glauber model.

The scaling law and counting rules

$$B\sigma S_{th} = (3.2 \pm 0.5) A^{\alpha(Y)} Y^{\beta}, \qquad \beta = 3.0 \pm 0.3.$$

The scaling law and counting rules

$$\sigma \propto (1 - e^{-Y})^{\gamma}, \qquad \gamma \simeq 11.$$

Cold matter: to-do list for experiments

- Cross over from hadron to quark interactions: at what value of Y does this occur? Does this depend on the final state hadron?
- ② Non-perturbative factorization: what is the effect of changing the incoming hadron from proton to (say) pion at $Y \ll 1$? May have interesting implications for CP violation experiments.
- The Glauber model: used widely, but never subjected to stress tests. Large universality class of multifractal exponents may indicate that the Glauber model is "accidental". More tests?
- ullet Scaling laws imply renormalization group transformations: strongly constrain low-energy effective theories of hadron interactions which can arise from QCD. More detailed measurements of the anomalous dimensions α and β ?
- Extend this RG analysis to less inclusive measurements.

- Introduction
- 2 Cold matter
- 3 Hot matter
- 4 Summary

J/ψ unsuppression

ALICE, arXiv:1202.1383

O meson suppression

ALICE, arXiv:1203.2160

J/ψ flow

ALICE, arXiv:1303.5880

Heavy quark diffusion

Two scales for thermal heavy quarks in medium: M and T. For heavy quark: $E \simeq T$, $P \simeq \sqrt{MT}$. For light partons: $e \simeq p \simeq T$. Change in heavy quark momentum due to single kick from light particles: $\Delta P/P = T/M$. Need order M/T independent kicks to change momentum appreciably. Then

$$\frac{dP}{dt} = -\eta P + \xi(t), \qquad \langle \xi(t)\xi(t')\rangle = \kappa\delta(t-t').$$

In steady state,

$$\eta = \frac{\kappa}{2MT}, \quad \text{and} \quad D = \frac{2T^2}{\kappa}.$$

Moore and Teaney, 2005; Rapp and van Hees, 2005; Mustafa 2005

D: heavy quark diffusion constant determines how quickly it thermalizes. Cross check of the quarkonium estimates need open flavour v_2 and heavy quark diffusion.

Heavy quark spectral functions

Heavy quark spectral functions

Lattice measurement

Banerjee et al, 2012

- Introduction
- Cold matter
- 3 Hot matter
- 4 Summary

Heavy quarks and quarkonia

Cold matter

Data supports a scaling law which mixes energy and size into a single renormalized size variable: $A_R = A/(Y_0 + Y)^{\mu}$ where $Y = \log \sqrt{S/S_{th}}$. As a result, near threshold the total inclusive cross section is

$$\sigma \propto A^{\alpha(Y,H)} Y^{\beta},$$

where the exponents are applicable to a wide variety of final state particles. Experiments for Y < 1 at CBM can give baseline needed for LHC and RHIC.

Hot matter

LHC sees quarkonium suppression, since $R_{AA} < 1$. However, R_{AA} is larger than seen at RHIC, and significant elliptic flow is seen. If this is due to recombination of exogamous $\bar{c}c$ pairs, then the heavy quark diffusion constant, D, gives a cross check. This is measured in lattice computations.