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� Lifetime determined by the Fermi constant, CKM mixing matrix element and
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� Mass comes from binding, but quark masses are much smaller

B. Ananthanarayan Strings to LHC IV



Feynman paper

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

� G a
µν = ∂µG a

ν − ∂νG a
µ − gs fabcG

b
µG c

ν

λa, fabc : SU(3) generators and structure constants

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

� G a
µν = ∂µG a

ν − ∂νG a
µ − gs fabcG

b
µG c

ν

λa, fabc : SU(3) generators and structure constants

� The strong coupling: αs(µ
2) =

g2
s

4π µ2: renormalization scale

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

� G a
µν = ∂µG a

ν − ∂νG a
µ − gs fabcG

b
µG c

ν

λa, fabc : SU(3) generators and structure constants

� The strong coupling: αs(µ
2) =

g2
s

4π µ2: renormalization scale

� Renormalization Group Equation (RGE):

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

� G a
µν = ∂µG a

ν − ∂νG a
µ − gs fabcG

b
µG c

ν

λa, fabc : SU(3) generators and structure constants

� The strong coupling: αs(µ
2) =

g2
s

4π µ2: renormalization scale

� Renormalization Group Equation (RGE):

µ
2 das(µ

2)

dµ2
= β(as) = −

X

j≥0

βj (as(µ
2
))

j+2
, as(µ

2
) =

αs (µ
2)

π

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

� G a
µν = ∂µG a

ν − ∂νG a
µ − gs fabcG

b
µG c

ν

λa, fabc : SU(3) generators and structure constants

� The strong coupling: αs(µ
2) =

g2
s

4π µ2: renormalization scale

� Renormalization Group Equation (RGE):

µ
2 das(µ

2)

dµ2
= β(as) = −

X

j≥0

βj (as(µ
2
))

j+2
, as(µ

2
) =

αs (µ
2)

π

• β calculated to four loops in MS scheme: Larin et al (1997), Czakon (2005)

β0 = 9/4, β1 = 4, β2 = 10.0599, β3 = 47.228 (Nf = 3)

B. Ananthanarayan Strings to LHC IV



αS

� LQCD =
Nf
P

n=1
ψ̄n[iγ

µ(∂µ − igs
λa

2 G a
µ) − mn]ψn − 1

4

8
P

a=1
G a

µνGµν,a

� Fields: ψj
n, j = 1, 2, 3, n = 1, ...Nf (quarks), G a

µ, a=1,.. 8 (gluons)

� G a
µν = ∂µG a

ν − ∂νG a
µ − gs fabcG

b
µG c

ν

λa, fabc : SU(3) generators and structure constants

� The strong coupling: αs(µ
2) =

g2
s

4π µ2: renormalization scale

� Renormalization Group Equation (RGE):

µ
2 das(µ

2)

dµ2
= β(as) = −

X

j≥0

βj (as(µ
2
))

j+2
, as(µ

2
) =

αs (µ
2)

π
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� Contrast with status of αQED known to 7 part in 1010 (see R. Bouchendira et al.,
Phys. Rev. Lett. 106 (2011) 080801) from recoil of rubidium atom when it
absorbs a photon

� Other sources AC Josephson effect and quantum Hall effect
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� Measurements from different energies spectacularly confirm RG running of
coupling constant as predicted by QCD

� Jet production and DIS NLO only

� Lattice computations

� HPQCD collaboration: long distance quantities with Wilson loops and then
connects to αS via Υ′ − Υ mass difference

� JLQCD collaboration: Adler function

� DIS: HERA data using PDFs

� Heavy quarkonia decays

� Hadronic final states of e+e− annihilations

� Hadron collider jets

� Electroweak precision fits

� For a comprehensive look, see S. Bethke: arXiv:1210.0325; also see EPJ Web
Conf. 120 (2016) 07005
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� Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

Rτ =
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Γ[τ → µ + ν̄µ + ντ ]
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»
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X
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= 3.4771 ± 0.0084

� Theoretical expression:

Rτ,V/A =
Nc

2
SEW |Vud |2

»

1 + δ(0) + δEW +
X

D≥2

δ
(D)
ud

–

� δ(0) which is the dominant perturbative QCD correction admits an expansion in powers of αs
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W

� Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

Rτ =
Γ[τ → hadrons + ντ ]

Γ[τ → µ + ν̄µ + ντ ]
= 3.4771 ± 0.0084

� Theoretical expression:

Rτ,V/A =
Nc

2
SEW |Vud |2

»

1 + δ(0) + δEW +
X

D≥2

δ
(D)
ud

–

� δ(0) which is the dominant perturbative QCD correction admits an expansion in powers of αs

⇒ determination of αs at a low scale (Mτ = 1.78 GeV )
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αS from τ -decays

� The inclusive hadronic decay width of the τ lepton provides one of the most
precise measurements of the strong coupling.

� The perturbative corrections are large enough to give a good experimental
sensitivity.

� The perturbative corrections have been calculated to fourth order in αs .

� The nonperturbative corrections are predicted to be small and can be verified by
experiments.

� The dominant theoretical uncertainty resides in the higher-order perturbative
corrections and improvement of the perturbative series through renormalisation
group method.

� Here we provide a third scheme and study its implications

� Accelerate the convergence of the Borel series using conformal mapping
techniques

� Stable predictions with reduced errors
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� A new scheme that captures the renormalization group effects in a novel manner (improved
fixed-order perturbation theory)
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Borel and Renormalization Group Summed Perturbation Theory

� Choice of the renormalization scale

� The Adler function should not depend on µ2, but the dependence is still present for a
truncated series

� A new scheme that captures the renormalization group effects in a novel manner (improved
fixed-order perturbation theory)

� With this input we obtained from the above phenomenological value of δ(0) the prediction

αs (M
2
τ ) = 0.3378 ± 0.0046exp ± 0.0042PC

+0.0062
−0.0072(c5,1)

+0.0005
−0.0004(scale)

+0.000085
−0.000082(β4).
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Borel and Renormalization Group Summed Perturbation Theory

� Choice of the renormalization scale

� The Adler function should not depend on µ2, but the dependence is still present for a
truncated series

� A new scheme that captures the renormalization group effects in a novel manner (improved
fixed-order perturbation theory)

� With this input we obtained from the above phenomenological value of δ(0) the prediction

αs (M
2
τ ) = 0.3378 ± 0.0046exp ± 0.0042PC

+0.0062
−0.0072(c5,1)

+0.0005
−0.0004(scale)

+0.000085
−0.000082(β4).

� Combining in quadrature the errors we write our prediction as

αs(M
2
τ ) = 0.338 ± 0.010.

Gauhar Abbas, BA and Irinel Caprini, Phys. Rev. D 85 (2012) 094018
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� The Adler function should not depend on µ2, but the dependence is still present for a
truncated series

� A new scheme that captures the renormalization group effects in a novel manner (improved
fixed-order perturbation theory)

� With this input we obtained from the above phenomenological value of δ(0) the prediction

αs (M
2
τ ) = 0.3378 ± 0.0046exp ± 0.0042PC

+0.0062
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Borel and Renormalization Group Summed Perturbation Theory

� Choice of the renormalization scale

� The Adler function should not depend on µ2, but the dependence is still present for a
truncated series

� A new scheme that captures the renormalization group effects in a novel manner (improved
fixed-order perturbation theory)

� With this input we obtained from the above phenomenological value of δ(0) the prediction

αs (M
2
τ ) = 0.3378 ± 0.0046exp ± 0.0042PC

+0.0062
−0.0072(c5,1)

+0.0005
−0.0004(scale)

+0.000085
−0.000082(β4).

� Combining in quadrature the errors we write our prediction as

αs(M
2
τ ) = 0.338 ± 0.010.

Gauhar Abbas, BA and Irinel Caprini, Phys. Rev. D 85 (2012) 094018

� Improvement using conformal maps in the Borel plane

� Average of these values: αs(M
2
τ ) = 0.319+0.015

−0.012 BRGS

� With conservative power-corrections, this is modified to

αs (M
2
τ ) = 0.319+0.017

−0.015 BRGS
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Light quark masses

� The µ dependence of the MS “running mass” m(µ) is given by the renormalization group
equation

µ
2 dm(µ)

dµ2
= −γ(α(µ))m(µ),

where γ is the anomalous dimension now known to 4-loop order
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� γ1 = 4, γ2 = 202/3 − 20NL/9, ... NL=number of active quark flavors
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Light quark masses

� The µ dependence of the MS “running mass” m(µ) is given by the renormalization group
equation

µ
2 dm(µ)

dµ2
= −γ(α(µ))m(µ),

where γ is the anomalous dimension now known to 4-loop order

� γ1 = 4, γ2 = 202/3 − 20NL/9, ... NL=number of active quark flavors

� Lattice gauge theory gives ab initio determination of quark masses

� Light quark masses obtained from sum rules and Rτ

� H. Leutwyler, arXiv:0911.1416; 0808.2825

� Customary to report the light quark masses as µ = 2 GeV

� mu/md is of crucial importance, since mu = 0 would imply absence of strong CP problem

� Sum rules for quark masses: comes from hadronic τ decays and hadronic spectral functions

� See PDG review by A. V. Manohar and C. T. Sachrajda

� Famous Physics Reports of Gasser and Leutwyler, Phys. Rep. 87 (1982) 77
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Light quark masses for chiral perturbation theory

� If mu,d,s → 0, then the QCD Lagrangian has an SU(3)L × SU(3)R symmetry

� Spontaneously broken by condensates 〈q̄q〉 6= 0

� Spectrum has 8 (approximate) Goldstone bosons

� Explicit breaking of symmetry mq q̄q, q = u, d, s

� Expansion in powers of mq and p2 (chiral perturbation theory)

�

M
2
π = (mu + md ) × |〈0|ūu|0〉| × 1

F 2
π

� where
〈0|d̄γµγ5u|π+〉 = ip

µ
Fπ

and Fπ is known from the πµ2
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Light quark masses for chiral perturbation theory

� If mu,d,s → 0, then the QCD Lagrangian has an SU(3)L × SU(3)R symmetry

� Spontaneously broken by condensates 〈q̄q〉 6= 0

� Spectrum has 8 (approximate) Goldstone bosons

� Explicit breaking of symmetry mq q̄q, q = u, d, s

� Expansion in powers of mq and p2 (chiral perturbation theory)

�

M
2
π = (mu + md ) × |〈0|ūu|0〉| × 1

F 2
π

� where
〈0|d̄γµγ5u|π+〉 = ip

µ
Fπ

and Fπ is known from the πµ2

� To first order we have the mass relations (for pion mass this has been confirmed spectacularly
on the lattice)

m
2
π0 = B(mu + md )

m
2
π+ = B(mu + md ) + ∆EM

m
2
K0 = B(ms + md )

m
2
K+ = B(ms + mu) + ∆EM

m
2
η =

1

3
B(4ms + mu + md )
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Quark mass ratios

�

mu
md

=
2m2

π0 −m2
π+ +m2

K+−m2
K0

m2
K0

−m2
K+ +m2

π+
= 0.56

ms
md

=
m2

K0 +m2
K+ +m2

π+

m2
K0

−m2
K+ +m2

π+
= 20.1
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m2
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−m2
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= 0.56

ms
md

=
m2

K0 +m2
K+ +m2

π+

m2
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K+ +m2

π+
= 20.1

� This is to lowest order in chiral perturbation theory.

B. Ananthanarayan Strings to LHC IV



Quark mass ratios

�

mu
md

=
2m2

π0 −m2
π+ +m2

K+−m2
K0

m2
K0

−m2
K+ +m2

π+
= 0.56

ms
md

=
m2

K0 +m2
K+ +m2

π+

m2
K0

−m2
K+ +m2

π+
= 20.1

� This is to lowest order in chiral perturbation theory.

� The combination
„

mu

md

«2

+
1

Q2

„

ms

md

«2

= 1,

where

Q
2 =

m2
s − m̂2

m2
d
− m2

u

, m̂ =
1

2
(mu + md ) .

is left invariant by certain chiral transformations.
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= 20.1

� This is to lowest order in chiral perturbation theory.

� The combination
„

mu

md

«2

+
1

Q2

„

ms

md

«2

= 1,

where

Q
2 =

m2
s − m̂2

m2
d
− m2

u

, m̂ =
1

2
(mu + md ) .

is left invariant by certain chiral transformations.

� Yields an ellipse in the quark mass ratio plane
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1
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is left invariant by certain chiral transformations.

� Yields an ellipse in the quark mass ratio plane

� Ellipse is well determined by chiral perturbation theory, but no individual quark mass ratios
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= 1,

where
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� Ellipse is well determined by chiral perturbation theory, but no individual quark mass ratios

� Sources of information are η → 3π ratio and K+ − K 0 mass difference
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= 20.1

� This is to lowest order in chiral perturbation theory.

� The combination
„
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md
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+
1
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„

ms

md

«2

= 1,

where

Q
2 =

m2
s − m̂2

m2
d
− m2

u

, m̂ =
1

2
(mu + md ) .

is left invariant by certain chiral transformations.

� Yields an ellipse in the quark mass ratio plane

� Ellipse is well determined by chiral perturbation theory, but no individual quark mass ratios

� Sources of information are η → 3π ratio and K+ − K 0 mass difference

� Absolute normalization of the quark masses comes from use of sum rules and τ -decay
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η → 3π

� η → 3π is forbidden in the limit of iso-spin conservation
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η → 3π

� η → 3π is forbidden in the limit of iso-spin conservation

� Extraction of the double ratio

Q
2 =

m2
s − m̂2

m2
d
− m2

u

, m̂ =
mu + md

2

gives an ellipse in the mu/md vs. ms/md plane
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η → 3π

� η → 3π is forbidden in the limit of iso-spin conservation

� Extraction of the double ratio

Q
2 =

m2
s − m̂2

m2
d
− m2

u

, m̂ =
mu + md

2

gives an ellipse in the mu/md vs. ms/md plane

�

mu

md

=
4Q2 − S2 + 1

4Q2 + S2 − 1
, S =

ms

m̂
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η → 3π

� η → 3π is forbidden in the limit of iso-spin conservation

� Extraction of the double ratio

Q
2 =

m2
s − m̂2

m2
d
− m2

u

, m̂ =
mu + md

2

gives an ellipse in the mu/md vs. ms/md plane

�

mu

md

=
4Q2 − S2 + 1

4Q2 + S2 − 1
, S =

ms

m̂

� Amplitude for the decay

A(s, t, u) = − 1

Q2

M2
K (M2

K − M2
π)

e
√

3M2
πF 2

π

M(s, t, u)
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� Width for η → π+π−π0 today is 295 ± 20 eV revised from 197 ± 29 eV in 1982. Increase
due to increase in total decay width relative to η → 2γ
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� Solution of the strong interactions on the computer (Kenneth Wilson)

� Solution of the Euclidean action using computer simulations and Monte-Carlo
algorithms

� Fermions on the lattice and chiral symmetry

� Huge advances in the last several decades

� Enormous multi-national collaborations across the world computing properties
such as masses, decay constants, condensates,...

� Different collaborations use different realizations of the action: e.g., perfect
actions, clover-leaf actions, ....

� Different realizations of fermions: e.g., Wilson fermions, Susskind fermions,
Neuberger-Narayanan fermions, domain-wall fermions, overlap fermions,
staggered fermions,...

� Different collaborations use different approximations, e.g., quenched
approximation...

� Effort must be devoted to harmonize all the findings (FLAG reports)
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� (Partial) QED corrections as well as u-d mass splitting

� FLAG 1 report: G. Colangelo et al., Eur. Phys. J C 71 (2011) 1695

� FLAG 2 report: S. Aoki et al., Eur. Phys. J C 74 (2014) 9

� Major advantage is reduction of uncertainties since the lattice now have
sufficiently fine spacing

� Sum rules, etc., not likely to be able to reduce uncertainties
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� Γ = 7.82 ± 0.14(stat.) ± 0.17(syst.) eV

� http://www.jlab.org/primex/

� Principle of the experiment was given by H. Primakoff, Phys. Re. 31 (1951) 899.

� The principle is that a collision of a gamma-ray with a nucleus and the virtual photons
surrounding the nucleus to produce a virtual pion that then decays into two photons

� Line shape of the detected gamma-ray gives the width of the pion

� Direct lifetime measurement done by James Cronin and collaborators
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Neutral pion width with chiral corrections

Predictions of the width with chiral corrections due to π0 − η mixing. Results to Goity, Bernstein

and Holstein; Ananthanarayan and Moussallam; Kampf and Moussallam
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Summary of the neutral pion width measurements
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Pion-nucleon sigma term

� Another key symmetry breaking parameter is the pion-nucleon sigma term

� Allows one to bridge the gap from the quark level to the nucleon level

� Besides being a fundamental parameter, it is of consequence for dark matter searches

� It is an input for dark matter simulation packages such as MicroOmegas

� See recent work of A. Crivellin, M. Hoferichter and M. Procura, Phys. Rev. D 89 (2014)
054021

� Clarifies the role of the term in determination of the scalar couplings to DM

� Provides a clean separation of 2 flavor and 3 flavor sector for scalar couplings fu and fd

� “Blind spots” where new physics scenarios evade experimental bounds are where the iso-spin
violating couplings appear to be important

� For the MSSM studied in detail in Andreas Crivellin, Martin Hoferichter, Massimiliano
Procura, Lewis C. Tunstall, JHEP 1507 (2015) 129
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Determination of CKM matrix elements

� The electro-weak sector involves the interaction of the quarks with the Higgs condensate

LY = −Y
d
ij Q I

Li
φd

I
Rj

− Y
u
ij Q

I
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ǫφ∗

u
I
Rj
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LY = −Y
d
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� Physical states obtained by diagonalizing Y u,d by 4 unitary matrices V
u,d
L,R

� The charged-current W± interactions couple to physical u and d quarks with coupling
involving the CKM matrix

VCKM =

0
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1

A
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� Note: best |Vud | measurement comes from super-allowed Fermi nuclear decay
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� The electro-weak sector involves the interaction of the quarks with the Higgs condensate

LY = −Y
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� Physical states obtained by diagonalizing Y u,d by 4 unitary matrices V
u,d
L,R

� The charged-current W± interactions couple to physical u and d quarks with coupling
involving the CKM matrix

VCKM =

0

@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A

� Note: best |Vud | measurement comes from super-allowed Fermi nuclear decay

� For reviews on Vus from τ -decay, see A. Lusiani, arXiv:1411.4526; from lattice, see V. Lubicz,
arXiv:1309.2530; fom kaon decays, see C. Bloise, PoS GQL2010 (2011) 016

B. Ananthanarayan Strings to LHC IV



Kaon semi-leptonic decays

B. Ananthanarayan Strings to LHC IV



Kaon semi-leptonic decays

� Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399

B. Ananthanarayan Strings to LHC IV



Kaon semi-leptonic decays

� Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399

� The semi-leptonic decays are the processes K → πlνl (and τ → πKντ ).

B. Ananthanarayan Strings to LHC IV



Kaon semi-leptonic decays

� Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399

� The semi-leptonic decays are the processes K → πlνl (and τ → πKντ ).

� The matrix element for K+
l3 has the structure:

T =
GF√

2
V

∗
us l

µ
F

+
µ (p′, p)

l
µ

= u(pν )γ
µ
(1 − γ5)v(pl )

F
+(p′, p)µ = 〈π0(p′)|sγµu|K+(p)〉 =

1
√

2
((p′ + p)µf+(t) + (p − p

′)µf−(t))
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1
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′)µf−(t))

� Neutral F 0
µ(p′, p) defined without the 1/

√
2

Recent review for isospin violation, A. Kastner and H. Neufeld, European Physical Journal
C57 (2008) 541.

B. Ananthanarayan Strings to LHC IV



Kaon semi-leptonic decays

� Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399

� The semi-leptonic decays are the processes K → πlνl (and τ → πKντ ).

� The matrix element for K+
l3 has the structure:

T =
GF√

2
V

∗
us l

µ
F

+
µ (p′, p)

l
µ

= u(pν )γ
µ
(1 − γ5)v(pl )

F
+(p′, p)µ = 〈π0(p′)|sγµu|K+(p)〉 =

1
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2
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� Neutral F 0
µ(p′, p) defined without the 1/

√
2

Recent review for isospin violation, A. Kastner and H. Neufeld, European Physical Journal
C57 (2008) 541.

� f+(t), t = (p′ − p)2 is known as the vector form factor as it is the P-wave projection of the

crossed channel matrix element 〈0|sγµu|K+π0, in〉.
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� Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399

� The semi-leptonic decays are the processes K → πlνl (and τ → πKντ ).

� The matrix element for K+
l3 has the structure:

T =
GF√
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+
µ (p′, p)

l
µ

= u(pν )γ
µ
(1 − γ5)v(pl )

F
+(p′, p)µ = 〈π0(p′)|sγµu|K+(p)〉 =

1
√

2
((p′ + p)µf+(t) + (p − p

′)µf−(t))

� Neutral F 0
µ(p′, p) defined without the 1/

√
2

Recent review for isospin violation, A. Kastner and H. Neufeld, European Physical Journal
C57 (2008) 541.

� f+(t), t = (p′ − p)2 is known as the vector form factor as it is the P-wave projection of the

crossed channel matrix element 〈0|sγµu|K+π0, in〉.
� The scalar form factor

f0(t) = f+(t) +
t

M2
K
− M2

π

f−(t)

is the analogous S-wave projection
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Kaon decays continued

� The value f+(0) comes from theory.

� Chiral theorems for the scalar form factors which are related to Fπ/FK .

� The slope and curvature parameters are determined from fitting to Dalitz plot distributions.

� More recently from τ decays. BELLE has fitted them with resonances in the time-like region
on the unitarity cut.

� Solutions of Muskelishvili-Omnès equations for form factors using phase shift information and
some additional inputs to self- consistently generate them. Work of Moussallam, group of
Jamin, Oller, Pich, Boito, Escribano

� f+(0) = 1 in the limit of md = mu = ms (SU(3) limit). Corrections to the relation due to
SU(3) breaking ∼ 20%. Even smaller due to Ademollo-Gatto theorem (symmetry breaking
effects are 2nd order in the breaking term)
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� Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f+(0)Vus

appears in the expression for rates and Dalitz plot densities.

� Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al.,
Physical Review Letters 100 (2008) 141601] gives f+(0) = 0.964(5). They use 2+1 flavour of
dynamical wall quarks.
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|
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 decays, FlaviaNet 2010l3K
 0.0013±0.2254 

 decays, FlaviaNet 2010l2K
 0.0013±0.2252 

CKM unitarity
 0.0010±0.2255 

, HFAG 2012νπ → τ / ν K→ τ
 0.0021±0.2229 

, HFAG 2012ν K→ τ
 0.0022±0.2214 

 s inclusive, HFAG 2012→ τ
 0.0022±0.2173 

 average, HFAG 2012τ
 0.0015±0.2202 

HFAG-Tau
Winter 2012

Summary of CKM matrix elements
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CKM plane summary from FLAG
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Allowed regions in the CKM matrix element plane
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CP violation in the light quark sector

� Brief review of CP violation

� C(=charge conjugation), P(=parity) and T(=time reversal) are three discrete
symmetries of the special theory of relativity

� Weak interactions violate parity, e.g., neutrinos are left-handed

� CP violated in K-meson system (1964), KL → 2π (Cronin, Fitch and Turlay)

� Now established in B-meson system (Kobayashi and Maskawa)

� Electric dipole moments of elementary particles also implies T and CP violation
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CP violation in the K sector

� CP violation first detected in the neutral kaon system in 1964

� CP violation in ‘mixing’ (ǫ) vs. CP violation in ‘decay’ (ǫ′)

� KL → 2π, π+π−γ,

� asymmetry in decay planes of π+π− and e+e− in KL → π+π−e+e−

� ‘Superweak’ (ǫ′ = 0) vs. ‘milliweak’ (SM is milliweak)

� Measurement of |η00/η+−|2, involving branching ratios to neutral and charged
pions

� Now measured by NA31: Re(ǫ′/ǫ) = (3.3 ± 1.1)10−3 and now KTeV gives
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� This is indeed a precision science, unprecedented in history of particle physics.
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