Physics in the light flavoured sector

B. Ananthanarayan

Centre for High Energy Physics, Indian Institute of Science

Thanks to Gauhar Abbas, Shayan Ghosh, Heinrich Leutwyler, Bachir Moussallam and Massimiliano Procura

For a recent conference contribution, see Springer Proc.Phys. 174 (2016) 3-10; XXI DAE-BRNS High Energy Physics Symposium Proceedings, Guwahati, India, December 8 12, 2014 Editor:Bipul Bhuyan

• Introduction to strong interactions and electro-weak sector

- Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime
- Sigma term and dark matter searches

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime
- Sigma term and dark matter searches
- Determination of the CKM matrix elements $V_{|us|}$ and $V_{|ud|}$

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime
- Sigma term and dark matter searches
- Determination of the CKM matrix elements $V_{|us|}$ and $V_{|ud|}$
- Neutron edm status

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime
- Sigma term and dark matter searches
- Determination of the CKM matrix elements $V_{|us|}$ and $V_{|ud|}$
- Neutron edm status
- CP violation in the K system: ϵ and ϵ'

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime
- Sigma term and dark matter searches
- Determination of the CKM matrix elements $V_{|us|}$ and $V_{|ud|}$
- Neutron edm status
- CP violation in the K system: ϵ and ϵ'
- g − 2 of the muon

- · Introduction to strong interactions and electro-weak sector
- Determination of fundamental parameters of the standard model
- Brief introduction α_s determinations
- Determination of the light quark masses m_u , m_d , m_s and isospin breaking
- Neutral pion lifetime
- Sigma term and dark matter searches
- Determination of the CKM matrix elements $V_{|us|}$ and $V_{|ud|}$
- Neutron edm status
- CP violation in the K system: ϵ and ϵ'
- g − 2 of the muon
- Summary

• Stable matter is made up of protons, neutrons and electrons

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)
- Free neutron decays $n \rightarrow p + e^- + \bar{\nu}_e$ with lifetime of 886 s

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)
- Free neutron decays $n
 ightarrow p + e^- + ar{
 u}_e$ with lifetime of 886 s

•
$$\pi^+ \to \mu^+ \nu_\mu \ \pi^0 \to \gamma \gamma$$

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)
- Free neutron decays $n
 ightarrow p + e^- + ar{
 u}_e$ with lifetime of 886 s
- $\pi^+ \to \mu^+ \nu_\mu \ \pi^0 \to \gamma \gamma$
- Neutron decays because of the weak interaction, mediated by W^{\pm} (whose neutral counterpart is the Z^0)

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)
- Free neutron decays $n
 ightarrow p + e^- + ar{
 u}_e$ with lifetime of 886 s
- $\pi^+ \to \mu^+ \nu_\mu \ \pi^0 \to \gamma \gamma$
- Neutron decays because of the weak interaction, mediated by W^{\pm} (whose neutral counterpart is the Z^0)
- Fermi and Gamow-Teller transitions

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)
- Free neutron decays $n
 ightarrow p + e^- + ar{
 u}_e$ with lifetime of 886 s
- $\pi^+ \to \mu^+ \nu_\mu \ \pi^0 \to \gamma \gamma$
- Neutron decays because of the weak interaction, mediated by W^{\pm} (whose neutral counterpart is the Z^0)
- Fermi and Gamow-Teller transitions
- Lifetime determined by the Fermi constant, CKM mixing matrix element and available phase space

- Stable matter is made up of protons, neutrons and electrons
- Today we know that protons and neutrons are made up of u and d quarks, which are bound together by the strong interactions
- Strong interactions are a theory of quarks and gluons interacting with a strength $\alpha_S(Q^2),$ which are 'confined'
- The particles that are seen are baryons (p,n,...) and mesons (pions, kaons,...)
- $m_n = 939.565 \text{ MeV}, m_p = 938.272 \text{ MeV}, m_{\pi^+} = 139.57 \text{ MeV} m_{\pi^0} = 134.98 \text{ MeV}$ (Ab initio calculation of the neutron proton mass difference, Sz. Borsanyi et al., Science 347:1452-1455,2015)
- Free neutron decays $n
 ightarrow p + e^- + ar{
 u}_e$ with lifetime of 886 s
- $\pi^+ \to \mu^+ \nu_\mu \ \pi^0 \to \gamma \gamma$
- Neutron decays because of the weak interaction, mediated by W^{\pm} (whose neutral counterpart is the Z^0)
- Fermi and Gamow-Teller transitions
- Lifetime determined by the Fermi constant, CKM mixing matrix element and available phase space
- · Mass comes from binding, but quark masses are much smaller

LETTERS TO THE EDITOR

Proton-Neutron Mass Difference

R. P. FEVNMAN AND G. SPRIBMAN California Institute of Technology, Pasadena, California (Received Pebruary 23, 1984)

S UPPOSE all deviations from isotopic spin symmetry are due solely to electromagnetic effects. Then such things as the mass difference of charged and neutral π mesons, and the neutron-we have investigated this point and have found that it is a

We have investigated this point and have found that it is a second second second second second second second second second assumed to be elementary particles, the self-energy is quadratically divergent. If the photon propagation function $1/k^2$ is cut of by a about $3e^{ik}y^{ik}sm$, where k is the cut-off energy and m is the s^{-mean} mass, and we assumed $A \ge m$. This gives the observed 1.0 proton meases?

If I is usually assumed that the negative value of the protonequivalence of the second sec

$$\Delta M = (e^3/\pi i) \int \left[\gamma_{\mu} - \frac{\mu}{4M} (\gamma_{\mu} k - k\gamma_{\mu}) G(k) \right] (p - k - M)^{-1} \\ \times \left[\gamma_{\mu} + \frac{\mu}{4M} (\gamma_{\mu} k - k\gamma_{\mu}) G(k) \right] k^{-9} d^4k C(k)$$

in the notation of reference I. We used $G(k) = -\lambda^{2}(k^{3}-\lambda^{3})^{-1}$ to cut the moment coupling off at energies about λ_{i} and $C(k) = -A^{2}(k^{3}-A^{3})^{-1}$ to cut off the photon propagation function at energy λ_{i} . The expression for the neutron is the same, except that the γ_{i} coupling terms are omitted and the value of μ_{i} the anomalous proton. All is the nucleon mass.

For the proton the term for a -0, representing coupling of the formation of the proton term from the set of t

The high cutoff for the anomalous moment implies that the charge responsible for the moment must be spread over only a small distance (of order \hbar/M_{\odot}). This is also suggested by the relatively small changes that the nucleon moments undergo when nucleons form nuclei.

The cutoff for the propagation function may be interpreted in tro ways. Firstly, electredynamics may fail as high energies, the we could guess from our results that the failure occurs at energies in the neighborhood of the nucleon mass. Another possibility is roughly, the error committed in assuming that the particles are elemented *p*, reasoning in the case of the statistic particles are elemented *p*. The mean statistic particles are and elemented *p*. The mean statistic particles are and the case of the statistic particles are and the statistic particles are an elemented of the case of the statistic particles are also as a statistic particles are functioned as a statistic particle and the statistic particles are functioned as a statistic particle and the statistic particles are functioned as a statistic particle and the statistic particles are functioned as a statistic particle and the statistic particles are particles and the statistic particle and the statistic particles are particles and the particles are also of order *M*. In a like

B. Ananthanaravan

manner, the complex of virtual mesons presumed to be associated with nucleons may have the effect that at sufficiently high energy the same, so that the integral representing the difference of their masses may converge without multification of electropometers. In tell us something about the character of coupling with the electromenter of a high surgery, the deviations from jointoir suita-

We conclude that all of the deviations from isotopic spin symmetry could be due solely to coupling with the electromagnetic field.

 R. P. Feynman, Phys. Rev. 76, 769 (1949). We use the notation in this reference.
 ^a This result was given by one of us (RPF) at the International Conference in Theoretical Physics, Paris, 1950 (unpublished).

Polarization of Elastically Scattered Nucleons from Nuclei*

WARREN HECKBOTTE AND JOREPH V. LEPOBE Radiation Laboratory, University of California, Berkeley, California (Received February 23, 1954)

N UCLEONS of low or moderate energy which are elastically scattered from nuclei should be partially polarized, by the strong spin-orbit potential underlying the predictions of the shell model of the nucleus. This spin-orbit potential is a consequence of the collective action of many nucleons on the particular nucleon. Thus for incident nucleons whose wavelength is greater than the nuclear spacing ($E \approx 50$ Mev), it would be expected that the spinorbit potential of the shell model would make itself felt. For progressively higher energies the incident nucleon begins to see only one nucleon at a time and while a spin dependence of the elastic scattering can still be expected, it would be more a reflection of the individual nucleon-nucleon interactions than of the spinorbit potential of the shell model. It will be supposed that even at these higher energies the spin dependence has the form of the usual spin-orbit potential. In either case this spin dependence of the elastic scattering can be investigated phenomenologically by treating the interior of the nucleus in terms of a spin-dependent complex index of refraction^{*} an obvious generalization of the optical model of the nucleus."

Tor low or moderate energies there is no suitable approximate method for treating the data is exitering — phase.bit can advis is using conventional approximation methods are made uncertain by the direct dependence of the polarization on the phase of the therefore being undertaken on the University of therefore being undertaken on the University of eliform is used to the the University of the University of eliform is the university of the Un

An estimate for small angles of scattering, though rough at best, may be readily obtained by making several simplifying assumptions. The magnitude of the polarization is given by

$$P = \left(\frac{AB^* + A^*B}{d\sigma/d\Omega}\right) \sin\theta. \qquad (1)$$

Here A and B represent the scattering amplitudes corresponding to the spin-independent and spin-dependent parts of the interaction, correspondent on the spin-dependent parts of the interaction, correspondent on the spin-dependent parts of the spindependent scattering may be estimated by using the Horn approximation. Then only the imaginary part of A contributes to P. For small angles this is a perpoximately proportional to the total

For 300-Mev neutrons incident on carbon, for example, a squarewell spin-orbit interaction $(R = 1.4.4^{+}\times10^{-3} \text{ cm})$ of 2-Mev depth gives a polarization of 40 percent at five degrees. Though this is probably an overestimate, it suggests that the existence of a small

Strings to LHC IV

500

$$\alpha_{S}$$

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields: ψ_n^j , j = 1, 2, 3, $n = 1, ... N_f$ (quarks), G_μ^a , a=1,... 8 (gluons)

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields:
$$\psi_n^j$$
, $j = 1, 2, 3$, $n = 1, ... N_f$ (quarks), G_{μ}^a , $a=1,... 8$ (gluons)

•
$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} - g_{s}f_{sbc}G^{b}_{\mu}G^{c}_{\nu}$$

 $\lambda^{a}, f_{sbc}: SU(3)$ generators and structure constants

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields:
$$\psi_n^j$$
, $j = 1, 2, 3$, $n = 1, ... N_f$ (quarks), G_{μ}^a , $a=1,...8$ (gluons)

•
$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} - g_{s}f_{abc}G^{b}_{\mu}G^{c}_{\nu}$$

 λ^{a} , f_{abc} : $SU(3)$ generators and structure constants

$$\alpha_s(\mu^2) = rac{g_s^2}{4\pi}$$

$$\mu^2$$
: renormalization scale

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields:
$$\psi_n^j$$
, $j = 1, 2, 3$, $n = 1, ... N_f$ (quarks), G_{μ}^a , $a=1,...8$ (gluons)

•
$$G^{a}_{\mu\nu} = \partial_{\mu} G^{a}_{\nu} - \partial_{\nu} G^{a}_{\mu} - g_{s} f_{abc} G^{b}_{\mu} G^{c}_{\nu}$$

 $\lambda^{a}, f_{abc}: SU(3)$ generators and structure constants

$$\alpha_s(\mu^2) = rac{g_s^2}{4\pi}$$

 μ^2 : renormalization scale

• Renormalization Group Equation (RGE):

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields:
$$\psi_n^j$$
, $j = 1, 2, 3$, $n = 1, ... N_f$ (quarks), G_{μ}^a , $a=1,...8$ (gluons)

•
$$G^{a}_{\mu\nu} = \partial_{\mu}G^{a}_{\nu} - \partial_{\nu}G^{a}_{\mu} - g_{s}f_{abc}G^{b}_{\mu}G^{c}_{\nu}$$

 λ^{a} , f_{abc} : $SU(3)$ generators and structure constants

$$\alpha_s(\mu^2) = rac{g_s^2}{4\pi}$$

 μ^2 : renormalization scale

• Renormalization Group Equation (RGE):

$$\mu^2 \frac{da_s(\mu^2)}{d\mu^2} = \beta(a_s) = -\sum_{j\geq 0} \beta_j \left(a_s(\mu^2)\right)^{j+2}, \qquad a_s(\mu^2) = \frac{\alpha_s(\mu^2)}{\pi}$$

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields:
$$\psi_n^j$$
, $j = 1, 2, 3$, $n = 1, ... N_f$ (quarks), G_{μ}^a , $a=1,...8$ (gluons)

•
$$G^{a}_{\mu\nu} = \partial_{\mu} G^{a}_{\nu} - \partial_{\nu} G^{a}_{\mu} - g_{s} f_{abc} G^{b}_{\mu} G^{c}_{\nu}$$

 $\lambda^{a}, f_{abc}: SU(3)$ generators and structure constants

$$\alpha_s(\mu^2) = rac{g_s^2}{4\pi}$$

 $\mu^2 :$ renormalization scale

• Renormalization Group Equation (RGE):

$$\mu^2 \frac{d \boldsymbol{a}_s(\mu^2)}{d \mu^2} = \beta(\boldsymbol{a}_s) = -\sum_{j \ge 0} \beta_j \left(\boldsymbol{a}_s(\mu^2)\right)^{j+2}, \qquad \boldsymbol{a}_s(\mu^2) = \frac{\alpha_s(\mu^2)}{\pi}$$

• β calculated to four loops in \overline{MS} scheme: Larin et al (1997), Czakon (2005)

$$\beta_0 = 9/4, \ \beta_1 = 4, \ \beta_2 = 10.0599, \ \beta_3 = 47.228$$
 (N_f = 3)

•
$$\mathcal{L}_{QCD} = \sum_{n=1}^{N_f} \bar{\psi}_n [i\gamma^{\mu} (\partial_{\mu} - ig_s \frac{\lambda^a}{2} G^a_{\mu}) - m_n] \psi_n - \frac{1}{4} \sum_{a=1}^8 G^a_{\mu\nu} G^{\mu\nu,a}$$

• Fields:
$$\psi_n^j$$
, $j = 1, 2, 3$, $n = 1, ... N_f$ (quarks), G_{μ}^a , $a=1,...8$ (gluons)

•
$$G^{a}_{\mu\nu} = \partial_{\mu} G^{a}_{\nu} - \partial_{\nu} G^{a}_{\mu} - g_{s} f_{abc} G^{b}_{\mu} G^{c}_{\nu}$$

 λ^{a}, f_{abc} : $SU(3)$ generators and structure constants

$$\alpha_s(\mu^2) = rac{g_s^2}{4\pi}$$

 μ^2 : renormalization scale

• Renormalization Group Equation (RGE):

$$\mu^{2} \frac{da_{s}(\mu^{2})}{d\mu^{2}} = \beta(a_{s}) = -\sum_{j \geq 0} \beta_{j} (a_{s}(\mu^{2}))^{j+2}, \qquad a_{s}(\mu^{2}) = \frac{\alpha_{s}(\mu^{2})}{\pi}$$

• β calculated to four loops in \overline{MS} scheme: Larin et al (1997), Czakon (2005)

$$\beta_0 = 9/4, \ \beta_1 = 4, \ \beta_2 = 10.0599, \ \beta_3 = 47.228$$
 (N_f = 3)

• One-loop solution (important for our discussion):

$$a_{s}(\mu^{2}) = \frac{a_{s}(\mu_{0}^{2})}{1 + \beta_{0}a_{s}(\mu_{0}^{2})\ln(\mu^{2}/\mu_{0}^{2})} = \frac{1}{\beta_{0}\ln(\mu^{2}/\Lambda_{QCD})}, \quad \Lambda_{QCD} \approx 200 \,\mathrm{MeV}$$

B. Ananthanarayan Strings to LHC IV

Summary of α_S measurements at $s = M_Z^2$ (Betheke 2009)

Summary of α_S measurements at $s = M_Z^2$ (Betheke 2009)

• World average:

 $\alpha_s(M_7^2) = 0.1184 \pm 0.0007$

PDG (2012) (More recent

updates, see EPJ Web Conf. 120 (2016) 07005)

Summary of α_S measurements at $s = M_Z^2$ (Betheke 2009)

• World average:

 $lpha_s(M_Z^2) = 0.1184 \pm 0.0007$

PDG (2012) (More recent

updates, see EPJ Web Conf. 120 (2016) 07005)

• Contrast with status of α_{QED} known to 7 part in 10^{10} (see R. Bouchendira et al., Phys. Rev. Lett. **106** (2011) 080801) from recoil of rubidium atom when it absorbs a photon

Summary of α_S measurements at $s = M_Z^2$ (Betheke 2009)

World average:

 $lpha_s(M_Z^2) = 0.1184 \pm 0.0007$

PDG (2012) (More recent

updates, see EPJ Web Conf. 120 (2016) 07005)

- Contrast with status of α_{QED} known to 7 part in 10^{10} (see R. Bouchendira et al., Phys. Rev. Lett. **106** (2011) 080801) from recoil of rubidium atom when it absorbs a photon
- Other sources AC Josephson effect and quantum Hall effect

 Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function
- DIS: HERA data using PDFs

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function
- DIS: HERA data using PDFs
- Heavy quarkonia decays

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function
- DIS: HERA data using PDFs
- Heavy quarkonia decays
- Hadronic final states of e^+e^- annihilations

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function
- DIS: HERA data using PDFs
- Heavy quarkonia decays
- Hadronic final states of e^+e^- annihilations
- Hadron collider jets

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function
- DIS: HERA data using PDFs
- Heavy quarkonia decays
- Hadronic final states of e^+e^- annihilations
- Hadron collider jets
- Electroweak precision fits

- Measurements from different energies spectacularly confirm RG running of coupling constant as predicted by QCD
- Jet production and DIS NLO only
- Lattice computations
- HPQCD collaboration: long distance quantities with Wilson loops and then connects to α_S via $\Upsilon' \Upsilon$ mass difference
- JLQCD collaboration: Adler function
- DIS: HERA data using PDFs
- Heavy quarkonia decays
- Hadronic final states of e^+e^- annihilations
- Hadron collider jets
- · Electroweak precision fits
- For a comprehensive look, see S. Bethke: arXiv:1210.0325; also see EPJ Web Conf. 120 (2016) 07005

• $\tau \rightarrow hadrons + \nu_{\tau}$

• $\tau \rightarrow hadrons + \nu_{\tau}$

• $\tau \rightarrow hadrons + \nu_{\tau}$

• Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

• $\tau \rightarrow$ hadrons $+ \nu_{\tau}$

u d W V

• Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

$$R_{\tau} = \frac{\Gamma[\tau \to hadrons + \nu_{\tau}]}{\Gamma[\tau \to \mu + \bar{\nu}_{\mu} + \nu_{\tau}]} = 3.4771 \pm 0.0084$$

• $\tau \rightarrow$ hadrons $+ \nu_{\tau}$

u d W T

• Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

$$R_{\tau} = \frac{\Gamma[\tau \to hadrons + \nu_{\tau}]}{\Gamma[\tau \to \mu + \bar{\nu}_{\mu} + \nu_{\tau}]} = 3.4771 \pm 0.0084$$

• Theoretical expression:

• $\tau \rightarrow hadrons + \nu_{\tau}$

u d W w v

• Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

$$R_{\tau} = \frac{\Gamma[\tau \to hadrons + \nu_{\tau}]}{\Gamma[\tau \to \mu + \bar{\nu}_{\mu} + \nu_{\tau}]} = 3.4771 \pm 0.0084$$

• Theoretical expression:

$$R_{\tau,V/A} = \frac{N_c}{2} S_{\rm EW} |V_{ud}|^2 \left[1 + \delta^{(0)} + \delta_{\rm EW} + \sum_{D \ge 2} \delta^{(D)}_{ud} \right]$$

• $\tau \rightarrow$ hadrons $+ \nu_{\tau}$

Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

$$R_{\tau} = \frac{\Gamma[\tau \rightarrow hadrons + \nu_{\tau}]}{\Gamma[\tau \rightarrow \mu + \bar{\nu}_{\mu} + \nu_{\tau}]} = 3.4771 \pm 0.0084$$

• Theoretical expression:

$$R_{\tau,V/A} = \frac{N_c}{2} S_{\rm EW} |V_{ud}|^2 \left[1 + \delta^{(0)} + \delta_{\rm EW} + \sum_{D \ge 2} \delta^{(D)}_{ud} \right]$$

• $\delta^{(0)}$ which is the dominant perturbative QCD correction admits an expansion in powers of $lpha_s$

• $\tau \rightarrow$ hadrons $+ \nu_{\tau}$

• Total hadronic width: measured by ALEPH, OPAL, Heavy Flavour Averaging Group

$$R_{\tau} = \frac{\Gamma[\tau \to hadrons + \nu_{\tau}]}{\Gamma[\tau \to \mu + \bar{\nu}_{\mu} + \nu_{\tau}]} = 3.4771 \pm 0.0084$$

• Theoretical expression:

$$R_{\tau,V/A} = \frac{N_c}{2} S_{\rm EW} \left| V_{ud} \right|^2 \left[1 + \delta^{(0)} + \delta_{\rm EW} + \sum_{D \ge 2} \delta^{(D)}_{ud} \right]$$

• $\delta^{(0)}$ which is the dominant perturbative QCD correction admits an expansion in powers of $lpha_s$

 \Rightarrow determination of α_s at a low scale $(M_{\tau} = 1.78 \text{ GeV})$

• The inclusive hadronic decay width of the τ lepton provides one of the most precise measurements of the strong coupling.

- The inclusive hadronic decay width of the τ lepton provides one of the most precise measurements of the strong coupling.
- The perturbative corrections are large enough to give a good experimental sensitivity.

- The inclusive hadronic decay width of the *τ* lepton provides one of the most precise measurements of the strong coupling.
- The perturbative corrections are large enough to give a good experimental sensitivity.
- The perturbative corrections have been calculated to fourth order in α_s .

- The inclusive hadronic decay width of the *τ* lepton provides one of the most precise measurements of the strong coupling.
- The perturbative corrections are large enough to give a good experimental sensitivity.
- The perturbative corrections have been calculated to fourth order in α_s .
- The nonperturbative corrections are predicted to be small and can be verified by experiments.

- The inclusive hadronic decay width of the *τ* lepton provides one of the most precise measurements of the strong coupling.
- The perturbative corrections are large enough to give a good experimental sensitivity.
- The perturbative corrections have been calculated to fourth order in α_s .
- The nonperturbative corrections are predicted to be small and can be verified by experiments.
- The dominant theoretical uncertainty resides in the higher-order perturbative corrections and improvement of the perturbative series through renormalisation group method.

- The inclusive hadronic decay width of the *τ* lepton provides one of the most precise measurements of the strong coupling.
- The perturbative corrections are large enough to give a good experimental sensitivity.
- The perturbative corrections have been calculated to fourth order in α_s .
- The nonperturbative corrections are predicted to be small and can be verified by experiments.
- The dominant theoretical uncertainty resides in the higher-order perturbative corrections and improvement of the perturbative series through renormalisation group method.
- · Here we provide a third scheme and study its implications
- Accelerate the convergence of the Borel series using conformal mapping techniques

- The inclusive hadronic decay width of the *τ* lepton provides one of the most precise measurements of the strong coupling.
- The perturbative corrections are large enough to give a good experimental sensitivity.
- The perturbative corrections have been calculated to fourth order in α_s .
- The nonperturbative corrections are predicted to be small and can be verified by experiments.
- The dominant theoretical uncertainty resides in the higher-order perturbative corrections and improvement of the perturbative series through renormalisation group method.
- · Here we provide a third scheme and study its implications
- Accelerate the convergence of the Borel series using conformal mapping techniques
- Stable predictions with reduced errors

• Choice of the renormalization scale

- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series

- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series
- A new scheme that captures the renormalization group effects in a novel manner (improved fixed-order perturbation theory)
- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series
- A new scheme that captures the renormalization group effects in a novel manner (improved fixed-order perturbation theory)
- With this input we obtained from the above phenomenological value of $\delta^{(0)}$ the prediction

$$\begin{aligned} \alpha_s(M_{\tau}^2) &= 0.3378 \pm 0.0046_{\rm exp} \pm 0.0042_{\rm PC} \stackrel{+0.0062}{_{-0.0072}}(c_{5,1}) \\ &\stackrel{+0.0005}{_{-0.0004}}({\rm scale}) \stackrel{+0.00085}{_{-0.00082}}(\beta_4). \end{aligned}$$

- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series
- A new scheme that captures the renormalization group effects in a novel manner (improved fixed-order perturbation theory)
- With this input we obtained from the above phenomenological value of $\delta^{(0)}$ the prediction

$$\begin{aligned} \alpha_s(M_{\tau}^2) &= 0.3378 \pm 0.0046_{\text{exp}} \pm 0.0042_{\text{PC}} \stackrel{+0.0062}{_{-0.0072}}(c_{5,1}) \\ \stackrel{+0.0005}{_{-0.0004}}(\text{scale}) \stackrel{+0.00085}{_{-0.00082}}(\beta_4). \end{aligned}$$

· Combining in quadrature the errors we write our prediction as

$$\alpha_s(M_{\tau}^2) = 0.338 \pm 0.010.$$

Gauhar Abbas, BA and Irinel Caprini, Phys. Rev. D 85 (2012) 094018

- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series
- A new scheme that captures the renormalization group effects in a novel manner (improved fixed-order perturbation theory)
- With this input we obtained from the above phenomenological value of $\delta^{(0)}$ the prediction

$$\begin{aligned} \alpha_s(M_{\tau}^2) &= 0.3378 \pm 0.0046_{\text{exp}} \pm 0.0042_{\text{PC}} \stackrel{+0.0062}{_{-0.0072}}(c_{5,1}) \\ \stackrel{+0.0005}{_{-0.0004}}(\text{scale}) \stackrel{+0.00085}{_{-0.00022}}(\beta_4). \end{aligned}$$

· Combining in quadrature the errors we write our prediction as

$$\alpha_s(M_{\tau}^2) = 0.338 \pm 0.010.$$

Gauhar Abbas, BA and Irinel Caprini, Phys. Rev. D 85 (2012) 094018

· Improvement using conformal maps in the Borel plane

- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series
- A new scheme that captures the renormalization group effects in a novel manner (improved fixed-order perturbation theory)
- With this input we obtained from the above phenomenological value of $\delta^{(0)}$ the prediction

$$\begin{aligned} \alpha_s(M_{\tau}^2) &= 0.3378 \pm 0.0046_{\text{exp}} \pm 0.0042_{\text{PC}} \stackrel{+0.0062}{_{-0.0072}}(c_{5,1}) \\ \stackrel{+0.0005}{_{-0.0004}}(\text{scale}) \stackrel{+0.00085}{_{-0.00082}}(\beta_4). \end{aligned}$$

· Combining in quadrature the errors we write our prediction as

$$\alpha_s(M_{\tau}^2) = 0.338 \pm 0.010.$$

Gauhar Abbas, BA and Irinel Caprini, Phys. Rev. D 85 (2012) 094018

- Improvement using conformal maps in the Borel plane
- Average of these values:

$$\alpha_s(M_{\tau}^2) = 0.319^{+0.015}_{-0.012}$$
 BRGS

- · Choice of the renormalization scale
- The Adler function should not depend on $\mu^2,$ but the dependence is still present for a truncated series
- A new scheme that captures the renormalization group effects in a novel manner (improved fixed-order perturbation theory)
- With this input we obtained from the above phenomenological value of $\delta^{(0)}$ the prediction

$$\begin{aligned} \alpha_s(M_{\tau}^2) &= 0.3378 \pm 0.0046_{\text{exp}} \pm 0.0042_{\text{PC}} \stackrel{+0.0062}{_{-0.0072}}(c_{5,1}) \\ \stackrel{+0.0005}{_{-0.0004}}(\text{scale}) \stackrel{+0.00085}{_{-0.00022}}(\beta_4). \end{aligned}$$

· Combining in quadrature the errors we write our prediction as

$$\alpha_s(M_{\tau}^2) = 0.338 \pm 0.010.$$

Gauhar Abbas, BA and Irinel Caprini, Phys. Rev. D 85 (2012) 094018

- Improvement using conformal maps in the Borel plane
- Average of these values:

$$\alpha_s(M_{\tau}^2) = 0.319^{+0.015}_{-0.012}$$
 BRGS

· With conservative power-corrections, this is modified to

 $\alpha_s(M_\tau^2) = 0.319^{+0.017}_{-0.015} \qquad {\rm BRGS}$

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

where γ is the anomalous dimension now known to 4-loop order

• $\gamma_1 = 4, \ \gamma_2 = 202/3 - 20N_L/9, \dots N_L$ =number of active quark flavors

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4, \ \gamma_2 = 202/3 20N_L/9, \dots N_L =$ number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4, \ \gamma_2 = 202/3 20 N_L/9, ... N_L$ =number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and R_{τ}

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4$, $\gamma_2 = 202/3 20N_L/9$, ... N_L =number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and $R_{ au}$
- H. Leutwyler, arXiv:0911.1416; 0808.2825

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4, \ \gamma_2 = 202/3 20N_L/9, \dots N_L =$ number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and $R_{ au}$
- H. Leutwyler, arXiv:0911.1416; 0808.2825
- Customary to report the light quark masses as $\mu=2~{
 m GeV}$

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4, \ \gamma_2 = 202/3 20N_L/9, \dots N_L =$ number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and $R_{ au}$
- H. Leutwyler, arXiv:0911.1416; 0808.2825
- Customary to report the light quark masses as $\mu=2~{
 m GeV}$
- m_u/m_d is of crucial importance, since $m_u = 0$ would imply absence of strong CP problem

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4, \ \gamma_2 = 202/3 20N_L/9, \dots N_L =$ number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and $R_{ au}$
- H. Leutwyler, arXiv:0911.1416; 0808.2825
- Customary to report the light quark masses as $\mu=2~{
 m GeV}$
- m_u/m_d is of crucial importance, since $m_u = 0$ would imply absence of strong CP problem
- Sum rules for quark masses: comes from hadronic au decays and hadronic spectral functions

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4$, $\gamma_2 = 202/3 20N_L/9$, ... N_L =number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and $R_{ au}$
- H. Leutwyler, arXiv:0911.1416; 0808.2825
- Customary to report the light quark masses as $\mu = 2 \text{ GeV}$
- m_u/m_d is of crucial importance, since $m_u = 0$ would imply absence of strong CP problem
- Sum rules for quark masses: comes from hadronic au decays and hadronic spectral functions
- · See PDG review by A. V. Manohar and C. T. Sachrajda

$$\mu^2 \frac{d\overline{m}(\mu)}{d\mu^2} = -\gamma(\overline{\alpha}(\mu))\overline{m}(\mu),$$

- $\gamma_1 = 4, \ \gamma_2 = 202/3 20N_L/9, \dots N_L =$ number of active quark flavors
- · Lattice gauge theory gives ab initio determination of quark masses
- Light quark masses obtained from sum rules and $R_{ au}$
- H. Leutwyler, arXiv:0911.1416; 0808.2825
- Customary to report the light quark masses as $\mu = 2 \text{ GeV}$
- m_u/m_d is of crucial importance, since $m_u = 0$ would imply absence of strong CP problem
- Sum rules for quark masses: comes from hadronic au decays and hadronic spectral functions
- See PDG review by A. V. Manohar and C. T. Sachrajda
- Famous Physics Reports of Gasser and Leutwyler, Phys. Rep. 87 (1982) 77

• If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle \bar{q}q
 angle
 eq 0$

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle \bar{q}q \rangle \neq 0$
- Spectrum has 8 (approximate) Goldstone bosons

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle ar{q}q
 angle
 eq 0$
- Spectrum has 8 (approximate) Goldstone bosons
- Explicit breaking of symmetry $m_q \bar{q}q$, q = u, d, s

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle ar{q}q
 angle
 eq 0$
- Spectrum has 8 (approximate) Goldstone bosons
- Explicit breaking of symmetry $m_q \bar{q}q$, q = u, d, s
- Expansion in powers of m_q and p^2 (chiral perturbation theory)

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle ar{q}q
 angle
 eq 0$
- Spectrum has 8 (approximate) Goldstone bosons
- Explicit breaking of symmetry $m_q \bar{q}q$, q = u, d, s

٠

• Expansion in powers of m_q and p^2 (chiral perturbation theory)

$$M_{\pi}^2 = (m_u + m_d) \times |\langle 0|\bar{u}u|0\rangle| \times rac{1}{F_{\pi}^2}$$

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle ar{q}q
 angle
 eq 0$
- Spectrum has 8 (approximate) Goldstone bosons
- Explicit breaking of symmetry $m_q \bar{q}q$, q = u, d, s
- Expansion in powers of m_q and p^2 (chiral perturbation theory)

$$M_{\pi}^2 = (m_u + m_d) imes |\langle 0|ar{u}u|0
angle| imes rac{1}{F_{\pi}^2}$$

where

٠

$$\langle 0|\bar{d}\gamma^{\mu}\gamma_{5}u|\pi^{+}\rangle = ip^{\mu}F_{\pi}$$

and F_{π} is known from the $\pi_{\mu 2}$

- If $m_{u,d,s} \rightarrow 0$, then the QCD Lagrangian has an $SU(3)_L \times SU(3)_R$ symmetry
- Spontaneously broken by condensates $\langle ar{q}q
 angle
 eq 0$
- Spectrum has 8 (approximate) Goldstone bosons
- Explicit breaking of symmetry $m_q \bar{q}q$, q = u, d, s
- Expansion in powers of m_q and p^2 (chiral perturbation theory)

$$M_{\pi}^2 = (m_u + m_d) \times |\langle 0|\bar{u}u|0\rangle| \times \frac{1}{F_{\pi}^2}$$

where

٠

$$\langle 0|\bar{d}\gamma^{\mu}\gamma_{5}u|\pi^{+}\rangle = ip^{\mu}F_{\pi}$$

and F_{π} is known from the $\pi_{\mu 2}$

 To first order we have the mass relations (for pion mass this has been confirmed spectacularly on the lattice)

$$\begin{split} m_{\pi^0}^2 &= B(m_u + m_d) \\ m_{\pi^+}^2 &= B(m_u + m_d) + \Delta_{EM} \\ m_{K^0}^2 &= B(m_s + m_d) \\ m_{K^+}^2 &= B(m_s + m_u) + \Delta_{EM} \\ m_{\eta}^2 &= \frac{1}{3} B(4m_s + m_u + m_d) \end{split}$$

٠

 $\frac{m_u}{m_d} = \frac{\frac{2m_{\pi 0}^2 - m_{\pi^+}^2 + m_{K^+}^2 - m_{K^0}^2}{m_{K^0}^2 - m_{K^+}^2 + m_{\pi^+}^2} = 0.56$ $\frac{m_s}{m_d} = \frac{\frac{m_{K^0}^2 + m_{K^+}^2 + m_{\pi^+}^2}{m_{K^0}^2 - m_{K^+}^2 + m_{\pi^+}^2} = 20.1$

 $\frac{m_u}{m_d} = \frac{\frac{2m_{\pi 0}^2 - m_{\pi^+}^2 + m_{K^+}^2 - m_{K^0}^2}{m_{K^0}^2 - m_{K^+}^2 + m_{\pi^+}^2} = 0.56$ $\frac{m_s}{m_d} = \frac{\frac{m_{K^0}^2 + m_{K^+}^2 + m_{\pi^+}^2}{m_{K^0}^2 - m_{K^+}^2 + m_{\pi^+}^2} = 20.1$

• This is to lowest order in chiral perturbation theory.

$$\frac{m_{\mu}}{m_{d}} = \frac{2m_{\pi}^2 0 - m_{\pi}^2 + m_{K}^2 - m_{K}^2 0}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2 + m_{\pi}^2} = 0.56$$
$$\frac{m_{S}}{m_{d}} = \frac{m_{K}^2 0 + m_{K}^2 + m_{\pi}^2}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2} = 20.1$$

- This is to lowest order in chiral perturbation theory.
- The combination

$$\left(\frac{m_u}{m_d}\right)^2 + \frac{1}{Q^2} \left(\frac{m_s}{m_d}\right)^2 = 1,$$

where

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{1}{2} \left(m_u + m_d
ight).$$

$$\frac{m_{\mu}}{m_{d}} = \frac{2m_{\pi}^2 0 - m_{\pi}^2 + m_{K}^2 - m_{K}^2 0}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2 + m_{\pi}^2} = 0.56$$
$$\frac{m_{S}}{m_{d}} = \frac{m_{K}^2 0 + m_{K}^2 + m_{\pi}^2}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2} = 20.1$$

- This is to lowest order in chiral perturbation theory.
- The combination

$$\left(\frac{m_u}{m_d}\right)^2 + \frac{1}{Q^2} \left(\frac{m_s}{m_d}\right)^2 = 1,$$

where

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{1}{2} \left(m_u + m_d
ight).$$

is left invariant by certain chiral transformations.

• Yields an ellipse in the quark mass ratio plane

$$\frac{m_{\mu}}{m_{d}} = \frac{2m_{\pi}^2 0 - m_{\pi}^2 + m_{K}^2 - m_{K}^2 0}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2 + m_{\pi}^2} = 0.56$$
$$\frac{m_{S}}{m_{d}} = \frac{m_{K}^2 0 + m_{K}^2 + m_{\pi}^2}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2} = 20.1$$

- This is to lowest order in chiral perturbation theory.
- The combination

$$\left(\frac{m_u}{m_d}\right)^2 + \frac{1}{Q^2} \left(\frac{m_s}{m_d}\right)^2 = 1,$$

where

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{1}{2} \left(m_u + m_d
ight).$$

- Yields an ellipse in the quark mass ratio plane
- · Ellipse is well determined by chiral perturbation theory, but no individual quark mass ratios

.

$$\frac{m_{\mu}}{m_{d}} = \frac{2m_{\pi}^2 0 - m_{\pi}^2 + m_{K}^2 - m_{K}^2 0}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2 + m_{\pi}^2} = 0.56$$
$$\frac{m_{S}}{m_{d}} = \frac{m_{K}^2 0 + m_{K}^2 + m_{\pi}^2}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2} = 20.1$$

- This is to lowest order in chiral perturbation theory.
- The combination

$$\left(\frac{m_u}{m_d}\right)^2 + \frac{1}{Q^2} \left(\frac{m_s}{m_d}\right)^2 = 1,$$

where

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{1}{2} \left(m_u + m_d
ight).$$

- · Yields an ellipse in the quark mass ratio plane
- · Ellipse is well determined by chiral perturbation theory, but no individual quark mass ratios
- Sources of information are $\eta
 ightarrow 3\pi$ ratio and ${\cal K}^+ {\cal K}^0$ mass difference

$$\frac{m_{\mu}}{m_{d}} = \frac{2m_{\pi}^2 0 - m_{\pi}^2 + m_{K}^2 - m_{K}^2 0}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2 + m_{\pi}^2} = 0.56$$
$$\frac{m_{S}}{m_{d}} = \frac{m_{K}^2 0 + m_{K}^2 + m_{\pi}^2}{m_{K}^2 0 - m_{K}^2 + m_{\pi}^2} = 20.1$$

- This is to lowest order in chiral perturbation theory.
- The combination

$$\left(\frac{m_u}{m_d}\right)^2 + \frac{1}{Q^2} \left(\frac{m_s}{m_d}\right)^2 = 1,$$

where

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{1}{2} \left(m_u + m_d
ight).$$

- · Yields an ellipse in the quark mass ratio plane
- · Ellipse is well determined by chiral perturbation theory, but no individual quark mass ratios
- Sources of information are $\eta
 ightarrow 3\pi$ ratio and ${\it K}^+ {\it K}^0$ mass difference
- Absolute normalization of the quark masses comes from use of sum rules and au-decay

$$\eta \rightarrow 3\pi$$

$\eta ightarrow 3\pi$

• $\eta
ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation

$\eta \rightarrow 3\pi$

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane
٠

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

 $rac{m_u}{m_d} = rac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \; S = rac{m_s}{\hat{m}}$

•

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

$$\frac{m_u}{m_d} = \frac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \ S = \frac{m_s}{\hat{m}}$$

Amplitude for the decay

$$A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{e\sqrt{3}M_\pi^2 F_\pi^2} M(s,t,u)$$

.

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

$$\frac{m_u}{m_d} = \frac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \ S = \frac{m_s}{\hat{m}}$$

Amplitude for the decay

$$A(s, t, u) = -\frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{e\sqrt{3}M_\pi^2 F_\pi^2} M(s, t, u)$$

with the Mandelstam variables s, t, u satisfying $s + t + u = M_{\eta}^2 + M_{\pi^0}^2 + 2M_{\pi^{\pm}}^2$.

• Width for $\eta \to \pi^+\pi^-\pi^0$ today is 295 ± 20 eV revised from 197 ± 29 eV in 1982. Increase due to increase in total decay width relative to $\eta \to 2\gamma$

.

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

$$\frac{m_u}{m_d} = \frac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \ S = \frac{m_s}{\hat{m}}$$

Amplitude for the decay

$$A(s, t, u) = -\frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{e\sqrt{3}M_\pi^2 F_\pi^2} M(s, t, u)$$

- Width for $\eta \to \pi^+\pi^-\pi^0$ today is 295 ± 20 eV revised from 197 ± 29 eV in 1982. Increase due to increase in total decay width relative to $\eta \to 2\gamma$
- New Dalitz plot measurements from KLOE; BESIII and J/Ψ samples, see M. Ablikim et al., Phys.Rev.Lett. 118 (2017) no.1, 012001

.

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

$$\frac{m_u}{m_d} = \frac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \ S = \frac{m_s}{\hat{m}}$$

Amplitude for the decay

$$A(s, t, u) = -\frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{e\sqrt{3}M_\pi^2 F_\pi^2} M(s, t, u)$$

- Width for $\eta \to \pi^+\pi^-\pi^0$ today is 295 ± 20 eV revised from 197 ± 29 eV in 1982. Increase due to increase in total decay width relative to $\eta \to 2\gamma$
- New Dalitz plot measurements from KLOE; BESIII and J/Ψ samples, see M. Ablikim et al., Phys.Rev.Lett. 118 (2017) no.1, 012001
- New rescattering effects

.

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

$$\frac{m_u}{m_d} = \frac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \ S = \frac{m_s}{\hat{m}}$$

Amplitude for the decay

$$A(s, t, u) = -\frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{e\sqrt{3}M_\pi^2 F_\pi^2} M(s, t, u)$$

- Width for $\eta \to \pi^+\pi^-\pi^0$ today is 295 ± 20 eV revised from 197 ± 29 eV in 1982. Increase due to increase in total decay width relative to $\eta \to 2\gamma$
- New Dalitz plot measurements from KLOE; BESIII and J/Ψ samples, see M. Ablikim et al., Phys.Rev.Lett. 118 (2017) no.1, 012001
- New rescattering effects
- $Q = 21.3 \pm 0.6$, see Colangelo et al., Europhysics conference, 2011

.

- $\eta
 ightarrow 3\pi$ is forbidden in the limit of iso-spin conservation
- Extraction of the double ratio

$$Q^2 = rac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \ \hat{m} = rac{m_u + m_d}{2}$$

gives an ellipse in the m_u/m_d vs. m_s/m_d plane

$$\frac{m_u}{m_d} = \frac{4Q^2 - S^2 + 1}{4Q^2 + S^2 - 1}, \ S = \frac{m_s}{\hat{m}}$$

Amplitude for the decay

$$A(s, t, u) = -\frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{e\sqrt{3}M_\pi^2 F_\pi^2} M(s, t, u)$$

- Width for $\eta \to \pi^+\pi^-\pi^0$ today is 295 ± 20 eV revised from 197 ± 29 eV in 1982. Increase due to increase in total decay width relative to $\eta \to 2\gamma$
- New Dalitz plot measurements from KLOE; BESIII and J/Ψ samples, see M. Ablikim et al., Phys.Rev.Lett. 118 (2017) no.1, 012001
- New rescattering effects
- $Q = 21.3 \pm 0.6$, see Colangelo et al., Europhysics conference, 2011
- Consistent with estimate from the violation of Dashen's theorem (the electromagnetic mass difference of kaons and pions), see BA and B. Moussallam, JHEP 0406 (2004) 047

• Solution of the strong interactions on the computer (Kenneth Wilson)

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry
- Huge advances in the last several decades

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry
- Huge advances in the last several decades
- Enormous multi-national collaborations across the world computing properties such as masses, decay constants, condensates,...

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry
- Huge advances in the last several decades
- Enormous multi-national collaborations across the world computing properties such as masses, decay constants, condensates,...
- Different collaborations use different realizations of the action: e.g., perfect actions, clover-leaf actions,

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry
- · Huge advances in the last several decades
- Enormous multi-national collaborations across the world computing properties such as masses, decay constants, condensates,...
- Different collaborations use different realizations of the action: e.g., perfect actions, clover-leaf actions,
- Different realizations of fermions: e.g., Wilson fermions, Susskind fermions, Neuberger-Narayanan fermions, domain-wall fermions, overlap fermions, staggered fermions,...

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry
- Huge advances in the last several decades
- Enormous multi-national collaborations across the world computing properties such as masses, decay constants, condensates,...
- Different collaborations use different realizations of the action: e.g., perfect actions, clover-leaf actions,
- Different realizations of fermions: e.g., Wilson fermions, Susskind fermions, Neuberger-Narayanan fermions, domain-wall fermions, overlap fermions, staggered fermions,...
- Different collaborations use different approximations, e.g., quenched approximation...

- Solution of the strong interactions on the computer (Kenneth Wilson)
- Solution of the Euclidean action using computer simulations and Monte-Carlo algorithms
- Fermions on the lattice and chiral symmetry
- Huge advances in the last several decades
- Enormous multi-national collaborations across the world computing properties such as masses, decay constants, condensates,...
- Different collaborations use different realizations of the action: e.g., perfect actions, clover-leaf actions,
- Different realizations of fermions: e.g., Wilson fermions, Susskind fermions, Neuberger-Narayanan fermions, domain-wall fermions, overlap fermions, staggered fermions,...
- Different collaborations use different approximations, e.g., quenched approximation...
- Effort must be devoted to harmonize all the findings (FLAG reports)

• Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables
- For a recent useful review, see J. Bijnens and G. Ecker, arXiv:1405.6488

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables
- For a recent useful review, see J. Bijnens and G. Ecker, arXiv:1405.6488
- (Partial) QED corrections as well as u-d mass splitting

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables
- For a recent useful review, see J. Bijnens and G. Ecker, arXiv:1405.6488
- (Partial) QED corrections as well as u-d mass splitting
- FLAG 1 report: G. Colangelo et al., Eur. Phys. J C 71 (2011) 1695

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables
- For a recent useful review, see J. Bijnens and G. Ecker, arXiv:1405.6488
- (Partial) QED corrections as well as u-d mass splitting
- FLAG 1 report: G. Colangelo et al., Eur. Phys. J C 71 (2011) 1695
- FLAG 2 report: S. Aoki et al., Eur. Phys. J C 74 (2014) 9

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables
- For a recent useful review, see J. Bijnens and G. Ecker, arXiv:1405.6488
- (Partial) QED corrections as well as u-d mass splitting
- FLAG 1 report: G. Colangelo et al., Eur. Phys. J C 71 (2011) 1695
- FLAG 2 report: S. Aoki et al., Eur. Phys. J C 74 (2014) 9
- Major advantage is reduction of uncertainties since the lattice now have sufficiently fine spacing

- Flavianet Lattice Averaging group has provided a comprehensive report on many properties of the light quark system
- To combine several lattice approaches and to summarize the state of the art
- To harmonize the findings of various different lattice groups, their methods and implementations
- To provide a ready reference guide
- To summarize also the lattice determinations of the low energy constants of chiral perturbation theory
- Low energy effective theories are a key bridge to make contact between lattice results and observables
- For a recent useful review, see J. Bijnens and G. Ecker, arXiv:1405.6488
- (Partial) QED corrections as well as u-d mass splitting
- FLAG 1 report: G. Colangelo et al., Eur. Phys. J C 71 (2011) 1695
- FLAG 2 report: S. Aoki et al., Eur. Phys. J C 74 (2014) 9
- Major advantage is reduction of uncertainties since the lattice now have sufficiently fine spacing
- Sum rules, etc., not likely to be able to reduce uncertainties

Average mass of the u and d quarks

Mass of the s quark in $\overline{\it MS}$ scheme at $\mu=2~{\rm GeV}$

Ratio of the s quark mass to the average of the u and d quark masses

$$\pi^0
ightarrow 2\gamma$$

$$\pi^0 \rightarrow 2\gamma$$

• Process is one of the key processes in the anomaly sector of QCD

 $\pi^0 \rightarrow 2\gamma$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
$\pi^0 \rightarrow 2\gamma$

- · Process is one of the key processes in the anomaly sector of QCD
- Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta

 $\pi^0 \rightarrow 2\gamma$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, **85** (2013) 49)

 $\pi^0 \rightarrow 2\gamma$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

٠

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \,\mathrm{eV}(\tau = 0.838 \times 10^{-16} \mathrm{s})$$

$$\pi^0 \rightarrow 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

 $\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi^0}}{4\pi})^2 (\frac{lpha}{F_{\pi}})^2 = 7.760 \,\mathrm{eV}(\tau = 0.838 \times 10^{-16} \mathrm{s})$

$$\pi^0 \rightarrow 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \,\mathrm{eV}(\tau = 0.838 \times 10^{-16} \mathrm{s})$$

$$\pi^0 \to 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \,\mathrm{eV}(\tau = 0.838 \times 10^{-16} \mathrm{s})$$

• Primex experment at JLab, I. Larin et al., Physical Review Letters, 106 (2011) 162303

•
$$\Gamma = 7.82 \pm 0.14 (stat.) \pm 0.17 (syst.) eV$$

http://www.jlab.org/primex/

$$\pi^0 \to 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \text{ eV}(\tau = 0.838 \times 10^{-16} \text{s})$$

- http://www.jlab.org/primex/
- Principle of the experiment was given by H. Primakoff, Phys. Re. 31 (1951) 899.

$$\pi^0 \to 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \,\mathrm{eV}(\tau = 0.838 \times 10^{-16} \mathrm{s})$$

•
$$\Gamma = 7.82 \pm 0.14 (stat.) \pm 0.17 (syst.) eV$$

- http://www.jlab.org/primex/
- Principle of the experiment was given by H. Primakoff, Phys. Re. 31 (1951) 899.
- The principle is that a collision of a gamma-ray with a nucleus and the virtual photons surrounding the nucleus to produce a virtual pion that then decays into two photons

$$\pi^0 \to 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \text{ eV}(\tau = 0.838 \times 10^{-16} \text{s})$$

•
$$\Gamma = 7.82 \pm 0.14 (stat.) \pm 0.17 (syst.) eV$$

- http://www.jlab.org/primex/
- Principle of the experiment was given by H. Primakoff, Phys. Re. 31 (1951) 899.
- The principle is that a collision of a gamma-ray with a nucleus and the virtual photons surrounding the nucleus to produce a virtual pion that then decays into two photons
- · Line shape of the detected gamma-ray gives the width of the pion

$$\pi^0 \to 2\gamma$$

- · Process is one of the key processes in the anomaly sector of QCD
- · Coupling of quarks to the electromagnetic field
- · Corrections come from mixing of the pion with the eta
- Otherwise determined by the anomaly (see Bernstein and Holstein, Reviews of Modern Physics, 85 (2013) 49)

$$\Gamma(\pi^0 \to 2\gamma) = (\frac{M_{\pi 0}}{4\pi})^2 (\frac{\alpha}{F_{\pi}})^2 = 7.760 \text{ eV}(\tau = 0.838 \times 10^{-16} \text{s})$$

- http://www.jlab.org/primex/
- Principle of the experiment was given by H. Primakoff, Phys. Re. 31 (1951) 899.
- The principle is that a collision of a gamma-ray with a nucleus and the virtual photons surrounding the nucleus to produce a virtual pion that then decays into two photons
- · Line shape of the detected gamma-ray gives the width of the pion
- Direct lifetime measurement done by James Cronin and collaborators

Walter and Barratt¹ examined and identified the absorption spectra of Li₂, Na₂, K₂, Rb₂, Cs₂, LiK, LiRb, LiCs, NaK, NaRb, NaCs. KRb. RbCs. and KCs.

The identification of a NaLi molecule is complicated by the existence of Na2 and Li2 band systems in the regions of the visible, near infrared and ultraviolet. Since the probability of molecular formation is a function of the product of the concentration of the atoms involved, it seemed possible that one component of a sodium-lithium mixture might be held at a low vapor pressure and the other at a high vanor pressure to increase the probability of observing the NaLi molecule.

In our experiment the lithium metal was placed in an absorption cell constructed of nickel and having water-cooled quartz windows. A nickel side tube was connected to the absorption cell to contain the sodium. Heating units were arranged around the absorption cell and side tube to control the temperature of the sodium and lithium metals independently.

The lithium metal was maintained at 850°C. A series of absorption spectrograms was then taken with the sodium at temperatures of 435, 460, 485, and 510°C, respectively. A similar procedure was used for maintaining constant high sodium with increasing lithium vapor pressures.

The results of this experiment confirm the previous work of Walter and Barratt. No bands attributable to a NaLi molecule were observed in the region 3000 to 8000A. No explanation is available, particularly as it is the only member not observed of the complete set of binary molecular systems obtainable with the alkali metale

* Contribution No. 10, Department of Physics, Kansas State College, ¹ Collinguitori vo. W. Bernardi, W. H. Bureau, Memphis, Tennessee, [†] Now at Airport Station, Weather Bureau, Memphis, Tennessee, [†] Now at South Dakota State College, Brookings, South Dakota, [†] J. M. Walter and S. Barratt, Proc. Roy. Soc. (London) **A119**, 257 (1928).

Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life of the Neutral Meson*

U Democrati

Laboratory for Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts January 2, 1951

T has now been well established experimentally that neutral π -mesons (π^0) decay into two photons.¹ Theoretically, this two-photon type of decay implies zero #* spin;2 in addition, the decay has been interpreted as proceeding through the mechanism of the creation and subsequent radiative recombination of a virtual proton anti-proton pair.3 Whatever the actual mechanism of the (two-photon) decay, its mere existence implies an effective interaction between the π^{0} wave field, φ , and the electromagnetic wave field. E. H. representable in the form :

> Interaction Energy Density = $\pi(h/\omega c)(hc)^{-1} e \mathbf{E} \cdot \mathbf{H}$. (1)

> > B. Ananthanaravan

Here φ has been assumed pseudoscalar, the factors $h/\mu c$ and (hc)⁻⁺ are introduced for dimensional reasons (µ=rest mass of π⁰).

and η is a dimensionless constant determined by the decay mechanism.4

One can obtain a immediately (by a first-order perturbation calculation) in terms of the mean life, r, of a neutral *n*-meson at rest piz.5

$$\tau^{-1} = \pi^2 \eta^2 \mu c^2 / 2\hbar.$$
 (2)

The effective interaction of Eq. (1) can now be used for a calculation of the probability of the inverse process : r* production in photon-photon collisions, or, for the calculation of the probability of the more interesting process : π^0 production in the collision of a photon with an external, approximately static electric field: e.g., the Coulomb field of a (slowly recoiling) nucleus. The total cross section o for this last process is, from a first-order perturbation treatment of Eq. (1), proportional to η^{\dagger} ; i.e., to τ^{-1} ; one obtains*

$$\sigma \approx 32\pi \frac{\hbar/\mu c}{c\tau} Z \left(\frac{d}{hc} \right) \left(\frac{\hbar}{\mu} \right)^3 \frac{4}{3} \left(\frac{\hbar a}{\mu c} \right)^3, \text{ for } h\kappa \ll hk \approx \mu c$$
 (3)
 $\sigma \approx 32\pi \frac{\hbar/\mu c}{c\tau} Z^3 \left(\frac{d}{hc} \right) \left(\frac{\hbar}{\mu c} \right)^3, \text{ for } R(k-\kappa) \approx \frac{(2Z)^3 \mu c}{2 hk} \ll 1.$ (4)

In Eqs. (3) and (4), hk, $h\kappa = hk[1 - (\mu c/hk)^{\frac{1}{2}}]^{\frac{1}{2}}$ are, respectively, the momenta of the incident photon and produced neutral s-meson; the angular distribution of the mesons is strongly collimated about the direction of the incident photon if $\hbar k \gg \mu c$. In deducing Eq. (3), it has been supposed that the nuclear protons remain approximately at rest during time intervals of the order of several periods of the incident electromagnetic wave [since $v_{\text{senten}} \approx bc$ and $(ck)^{-1} \leq h/\mu c^2$, and that the probability of finding any pair of protons a distance r apart is proportional to exp(-r/R), where $R \approx \hbar (2Z)^{4}/\mu c$ is the nuclear radius. It is seen from Eqs. (3) and (4) that the electric fields of the Z protons contribute "coherently" to the π^0 production, once the photon energy exceeds \$(2Z) luc?

Thus, if τ is less than, say, 10⁻¹⁷ sec. Eq. (4) indicates that a Z² term should be observable in the total cross section for production of neutral a-mesons in photon-nucleus collisions. Since no such term has so far been experimentally detected,7 one can set a very rough lower limit on τ : $\tau > 5 \times 10^{-16}$ sec. An approximate upper limit of 5×10⁻¹⁴ sec seems to be indicated by cosmic-ray data.⁶

Assisted by the joint program of the ONR and AB

* Assisted by the joint geogram of the ONR and AEC, On baser from Washington Chaversity, St. Louis, Missoari, Steinherger, and St. Mark, M. S. Sterr, Park, B. M. (1998); Fanolisty, Steinherger, and St. Sterr, 243 (1980); D. C. Peaslee, Heiv. Phys. Acta 33, 485 (1980); we exclude the possibility of the # spin being >1. J. Steinherger, Phys. Rev. 77, 61 180 (1990); and other references quoted

⁴ Marshak, Tamor, and Wightman, Phys. Rev. 80, 765, 766 (1950);
 K. Brueckner, Phys. Rev. 79, 641, 187 (1950).
 ⁴ The mechanism of s⁴ decay via interaction with virtual proton anti-

⁴ The mechanism of *s*⁴ decay via interaction with virtual proton and seven if for example, recording a land between the meson proton science of the second seven the second seven in the second seven in the second seven in the second seven in the seven seven (seven seven) (seven seven), seven in the seven s

 $r/r' = rcN\sigma 2k^{2} [\kappa^{4} + (\mu c_{K}/\hbar)^{2}]^{-\frac{1}{2}} \approx 64 \pi^{4}Z^{2} (\kappa^{3}/\hbar c) (\hbar/\mu c)^{2} N \ll 1.$

Strings to LHC IV

¹ Observations of Steinberger, Panofsky, and Steiler quoted by R. F. Mozley, Phys. Rev. **80**, 493 (1950). * Carlson, Hoocer, and King, Phil. Mag. **41**, 701 (1950).

800

Primakoff paper

Predictions of the width with chiral corrections due to $\pi^0 - \eta$ mixing. Results to Goity, Bernstein and Holstein; Ananthanarayan and Moussallam; Kampf and Moussallam

Summary of the neutral pion width measurements

• Another key symmetry breaking parameter is the pion-nucleon sigma term

- Another key symmetry breaking parameter is the pion-nucleon sigma term
- Allows one to bridge the gap from the quark level to the nucleon level

- Another key symmetry breaking parameter is the pion-nucleon sigma term
- Allows one to bridge the gap from the quark level to the nucleon level
- · Besides being a fundamental parameter, it is of consequence for dark matter searches

- Another key symmetry breaking parameter is the pion-nucleon sigma term
- Allows one to bridge the gap from the quark level to the nucleon level
- · Besides being a fundamental parameter, it is of consequence for dark matter searches
- It is an input for dark matter simulation packages such as MicroOmegas

- · Another key symmetry breaking parameter is the pion-nucleon sigma term
- · Allows one to bridge the gap from the quark level to the nucleon level
- · Besides being a fundamental parameter, it is of consequence for dark matter searches
- It is an input for dark matter simulation packages such as MicroOmegas
- See recent work of A. Crivellin, M. Hoferichter and M. Procura, Phys. Rev. D 89 (2014) 054021

- · Another key symmetry breaking parameter is the pion-nucleon sigma term
- · Allows one to bridge the gap from the quark level to the nucleon level
- · Besides being a fundamental parameter, it is of consequence for dark matter searches
- It is an input for dark matter simulation packages such as MicroOmegas
- See recent work of A. Crivellin, M. Hoferichter and M. Procura, Phys. Rev. D 89 (2014) 054021
- · Clarifies the role of the term in determination of the scalar couplings to DM

- · Another key symmetry breaking parameter is the pion-nucleon sigma term
- · Allows one to bridge the gap from the quark level to the nucleon level
- · Besides being a fundamental parameter, it is of consequence for dark matter searches
- It is an input for dark matter simulation packages such as MicroOmegas
- See recent work of A. Crivellin, M. Hoferichter and M. Procura, Phys. Rev. D 89 (2014) 054021
- · Clarifies the role of the term in determination of the scalar couplings to DM
- Provides a clean separation of 2 flavor and 3 flavor sector for scalar couplings f_u and f_d

- · Another key symmetry breaking parameter is the pion-nucleon sigma term
- · Allows one to bridge the gap from the quark level to the nucleon level
- · Besides being a fundamental parameter, it is of consequence for dark matter searches
- It is an input for dark matter simulation packages such as MicroOmegas
- See recent work of A. Crivellin, M. Hoferichter and M. Procura, Phys. Rev. D 89 (2014) 054021
- Clarifies the role of the term in determination of the scalar couplings to DM
- Provides a clean separation of 2 flavor and 3 flavor sector for scalar couplings f_u and f_d
- "Blind spots" where new physics scenarios evade experimental bounds are where the iso-spin violating couplings appear to be important
- For the MSSM studied in detail in Andreas Crivellin, Martin Hoferichter, Massimiliano Procura, Lewis C. Tunstall, JHEP 1507 (2015) 129

• The electro-weak sector involves the interaction of the quarks with the Higgs condensate

$$\mathcal{L}_{Y} = -Y^{d}_{ij}\overline{Q^{\prime}_{L_{i}}}\phi d^{\prime}_{R_{j}} - Y^{u}_{ij}\overline{Q^{\prime}_{L_{i}}}\epsilon \phi^{*}u^{\prime}_{R_{j}}$$

• The electro-weak sector involves the interaction of the quarks with the Higgs condensate

$$\mathcal{L}_{Y} = -Y_{ij}^{d} \overline{Q_{L_{i}}^{l}} \phi d_{R_{j}}^{l} - Y_{ij}^{u} \overline{Q_{L_{i}}^{l}} \epsilon \phi^{*} u_{R_{j}}^{l}$$

• Physical states obtained by diagonalizing $Y^{u,d}$ by 4 unitary matrices $V_{L,R}^{u,d}$

• The electro-weak sector involves the interaction of the quarks with the Higgs condensate

$$\mathcal{L}_{Y} = -Y_{ij}^{d} \overline{Q_{L_{i}}^{l}} \phi d_{R_{j}}^{l} - Y_{ij}^{u} \overline{Q_{L_{i}}^{l}} \epsilon \phi^{*} u_{R_{j}}^{l}$$

- Physical states obtained by diagonalizing $Y^{u,d}$ by 4 unitary matrices $V_{L,R}^{u,d}$
- The charged-current W^{\pm} interactions couple to physical u and d quarks with coupling involving the CKM matrix

• The electro-weak sector involves the interaction of the quarks with the Higgs condensate

$$\mathcal{L}_{Y} = -Y^{d}_{ij}\overline{Q^{\prime}_{L_{i}}}\phi d^{\prime}_{R_{j}} - Y^{u}_{ij}\overline{Q^{\prime}_{L_{i}}}\epsilon \phi^{*}u^{\prime}_{R_{j}}$$

- Physical states obtained by diagonalizing $Y^{u,d}$ by 4 unitary matrices $V_{L,R}^{u,d}$
- The charged-current W^{\pm} interactions couple to physical u and d quarks with coupling involving the CKM matrix

$$V_{CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

The electro-weak sector involves the interaction of the quarks with the Higgs condensate

$$\mathcal{L}_{Y} = -Y^{d}_{ij}\overline{Q^{\prime}_{L_{i}}}\phi d^{\prime}_{R_{j}} - Y^{u}_{ij}\overline{Q^{\prime}_{L_{i}}}\epsilon \phi^{*}u^{\prime}_{R_{j}}$$

- Physical states obtained by diagonalizing $Y^{u,d}$ by 4 unitary matrices $V_{L,R}^{u,d}$
- The charged-current W[±] interactions couple to physical u and d quarks with coupling involving the CKM matrix

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

• Note: best $|V_{ud}|$ measurement comes from super-allowed Fermi nuclear decay

The electro-weak sector involves the interaction of the quarks with the Higgs condensate

$$\mathcal{L}_{Y} = -Y_{ij}^{d} \overline{Q_{L_{i}}^{l}} \phi d_{R_{j}}^{l} - Y_{ij}^{u} \overline{Q_{L_{i}}^{l}} \epsilon \phi^{*} u_{R_{j}}^{l}$$

- Physical states obtained by diagonalizing $Y^{u,d}$ by 4 unitary matrices $V_{L,R}^{u,d}$
- The charged-current W[±] interactions couple to physical u and d quarks with coupling involving the CKM matrix

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight)$$

- Note: best $|V_{ud}|$ measurement comes from super-allowed Fermi nuclear decay
- For reviews on V_{us} from τ-decay, see A. Lusiani, arXiv:1411.4526; from lattice, see V. Lubicz, arXiv:1309.2530; fom kaon decays, see C. Bloise, PoS GQL2010 (2011) 016

• Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399

- Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399
- The semi-leptonic decays are the processes $K \to \pi I \nu_I$ (and $\tau \to \pi K \nu_{\tau}$).

- Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399
- The semi-leptonic decays are the processes $K \to \pi I \nu_I$ (and $\tau \to \pi K \nu_{\tau}$).
- The matrix element for K_{I3}^+ has the structure:

$$\begin{split} T &= \frac{G_F}{\sqrt{2}} V_{us}^* I^{\mu} F_{\mu}^+(p',p) \\ I^{\mu} &= \overline{u}(p_{\nu}) \gamma^{\mu} (1-\gamma_5) v(p_l) \\ F^+(p',p)_{\mu} &= \langle \pi^0(p') | \overline{s} \gamma_{\mu} u | K^+(p) \rangle = \frac{1}{\sqrt{2}} ((p'+p)_{\mu} f_+(t) + (p-p')_{\mu} f_-(t)) \end{split}$$

- Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399
- The semi-leptonic decays are the processes $K \to \pi I \nu_I$ (and $\tau \to \pi K \nu_{\tau}$).
- The matrix element for K⁺₁₃ has the structure:

$$\begin{split} T &= \frac{G_F}{\sqrt{2}} V_{us}^* I^{\mu} F_{\mu}^+(p',p) \\ I^{\mu} &= \overline{u}(p_{\nu}) \gamma^{\mu} (1-\gamma_5) v(p_l) \\ F^+(p',p)_{\mu} &= \langle \pi^0(p') | \overline{s} \gamma_{\mu} u | K^+(p) \rangle = \frac{1}{\sqrt{2}} ((p'+p)_{\mu} f_+(t) + (p-p')_{\mu} f_-(t)) \end{split}$$

• Neutral $F^0_{\mu}(p',p)$ defined without the $1/\sqrt{2}$ Recent review for isospin violation, A. Kastner and H. Neufeld, European Physical Journal C57 (2008) 541.
- Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399
- The semi-leptonic decays are the processes K → πlν_l (and τ → πKν_τ).
- The matrix element for K⁺₁₃ has the structure:

$$\begin{split} T &= \frac{G_F}{\sqrt{2}} V_{us}^* I^{\mu} F_{\mu}^+(p',p) \\ I^{\mu} &= \overline{u}(p_{\nu}) \gamma^{\mu} (1-\gamma_5) v(p_l) \\ F^+(p',p)_{\mu} &= \langle \pi^0(p') | \overline{s} \gamma_{\mu} u | K^+(p) \rangle = \frac{1}{\sqrt{2}} ((p'+p)_{\mu} f_+(t) + (p-p')_{\mu} f_-(t)) \end{split}$$

- Neutral $F^0_{\mu}(p',p)$ defined without the $1/\sqrt{2}$ Recent review for isospin violation, A. Kastner and H. Neufeld, European Physical Journal C57 (2008) 541.
- f₊(t), t = (p' − p)² is known as the vector form factor as it is the P-wave projection of the crossed channel matrix element (0)sγ_μu|K⁺π⁰, in).

- Recent review: V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399
- The semi-leptonic decays are the processes K → πlν_l (and τ → πKν_τ).
- The matrix element for K⁺₁₃ has the structure:

$$\begin{split} T &= \frac{G_F}{\sqrt{2}} V_{us}^* l^{\mu} F_{\mu}^+(p',p) \\ l^{\mu} &= \overline{u}(p_{\nu}) \gamma^{\mu} (1 - \gamma_5) v(p_l) \\ F^+(p',p)_{\mu} &= \langle \pi^0(p') | \overline{s} \gamma_{\mu} u | K^+(p) \rangle = \frac{1}{\sqrt{2}} ((p'+p)_{\mu} f_+(t) + (p-p')_{\mu} f_-(t)) \end{split}$$

- Neutral $F^0_\mu(p',p)$ defined without the $1/\sqrt{2}$ Recent review for isospin violation, A. Kastner and H. Neufeld, European Physical Journal C57 (2008) 541.
- f₊(t), t = (p' − p)² is known as the vector form factor as it is the P-wave projection of the crossed channel matrix element ⟨0|s̄γ_µu|K⁺π⁰, in⟩.
- The scalar form factor

$$f_0(t) = f_+(t) + rac{t}{M_K^2 - M_\pi^2} f_-(t)$$

is the analogous S-wave projection

• The value $f_+(0)$ comes from theory.

- The value $f_+(0)$ comes from theory.
- Chiral theorems for the scalar form factors which are related to F_{π}/F_{K} .

- The value $f_+(0)$ comes from theory.
- Chiral theorems for the scalar form factors which are related to F_{π}/F_{K} .
- The slope and curvature parameters are determined from fitting to Dalitz plot distributions.

- The value $f_+(0)$ comes from theory.
- Chiral theorems for the scalar form factors which are related to F_{π}/F_{K} .
- The slope and curvature parameters are determined from fitting to Dalitz plot distributions.
- More recently from τ decays. BELLE has fitted them with resonances in the time-like region on the unitarity cut.

- The value $f_+(0)$ comes from theory.
- Chiral theorems for the scalar form factors which are related to F_{π}/F_{K} .
- The slope and curvature parameters are determined from fitting to Dalitz plot distributions.
- More recently from τ decays. BELLE has fitted them with resonances in the time-like region on the unitarity cut.
- Solutions of Muskelishvili-Omnès equations for form factors using phase shift information and some additional inputs to self- consistently generate them. Work of Moussallam, group of Jamin, Oller, Pich, Boito, Escribano

- The value $f_+(0)$ comes from theory.
- Chiral theorems for the scalar form factors which are related to F_{π}/F_{K} .
- The slope and curvature parameters are determined from fitting to Dalitz plot distributions.
- More recently from τ decays. BELLE has fitted them with resonances in the time-like region on the unitarity cut.
- Solutions of Muskelishvili-Omnès equations for form factors using phase shift information and some additional inputs to self- consistently generate them. Work of Moussallam, group of Jamin, Oller, Pich, Boito, Escribano
- $f_+(0) = 1$ in the limit of $m_d = m_u = m_s$ (SU(3) limit). Corrections to the relation due to SU(3) breaking ~ 20%. Even smaller due to Ademollo-Gatto theorem (symmetry breaking effects are 2nd order in the breaking term)

Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f₊(0)V_{us} appears in the expression for rates and Dalitz plot densities.

- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f₊(0)V_{us} appears in the expression for rates and Dalitz plot densities.
- Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives $f_+(0) = 0.964(5)$. They use 2+1 flavour of dynamical wall quarks.

- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f₊(0)V_{us} appears in the expression for rates and Dalitz plot densities.
- Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives $f_+(0) = 0.964(5)$. They use 2+1 flavour of dynamical wall quarks.
- Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25 (1984) 91.

- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f₊(0)V_{us} appears in the expression for rates and Dalitz plot densities.
- Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives $f_+(0) = 0.964(5)$. They use 2+1 flavour of dynamical wall quarks.
- Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25 (1984) 91.
- Review on method of unitarity bounds: Gauhar Abbas, BA, I. Caprini, I. Sentitemsu Imsong, and S. Ramanan, Eur. Phys. J. A 45 (2010) 389.

- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f₊(0)V_{us} appears in the expression for rates and Dalitz plot densities.
- Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives $f_+(0) = 0.964(5)$. They use 2+1 flavour of dynamical wall quarks.
- Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25 (1984) 91.
- Review on method of unitarity bounds: Gauhar Abbas, BA, I. Caprini, I. Sentitemsu Imsong, and S. Ramanan, Eur. Phys. J. A 45 (2010) 389.
- Gauhar Abbas, BA, Irinel Caprini and I. Sentitemsu Imsong, Phys. Rev. D 82 (2010) 094018

- Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the combination f₊(0)V_{us} appears in the expression for rates and Dalitz plot densities.
- Recent determinations from the lattice, e.g., RBC+UKQCD collaboration [P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives $f_+(0) = 0.964(5)$. They use 2+1 flavour of dynamical wall quarks.
- Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25 (1984) 91.
- Review on method of unitarity bounds: Gauhar Abbas, BA, I. Caprini, I. Sentitemsu Imsong, and S. Ramanan, Eur. Phys. J. A 45 (2010) 389.
- Gauhar Abbas, BA, Irinel Caprini and I. Sentitemsu Imsong, Phys. Rev. D 82 (2010) 094018

Summary of CKM matrix elements

CKM summary from FLAG

Summary of CKM matrix elements from FLAG report

CKM plane summary from FLAG

Allowed regions in the CKM matrix element plane

• Brief review of CP violation

- Brief review of CP violation
- C(=charge conjugation), P(=parity) and T(=time reversal) are three discrete symmetries of the special theory of relativity

- Brief review of CP violation
- C(=charge conjugation), P(=parity) and T(=time reversal) are three discrete symmetries of the special theory of relativity
- · Weak interactions violate parity, e.g., neutrinos are left-handed

- Brief review of CP violation
- C(=charge conjugation), P(=parity) and T(=time reversal) are three discrete symmetries of the special theory of relativity
- · Weak interactions violate parity, e.g., neutrinos are left-handed
- CP violated in K-meson system (1964), $K_L \rightarrow 2\pi$ (Cronin, Fitch and Turlay)

- Brief review of CP violation
- C(=charge conjugation), P(=parity) and T(=time reversal) are three discrete symmetries of the special theory of relativity
- · Weak interactions violate parity, e.g., neutrinos are left-handed
- CP violated in K-meson system (1964), $K_L \rightarrow 2\pi$ (Cronin, Fitch and Turlay)
- Now established in B-meson system (Kobayashi and Maskawa)

- Brief review of CP violation
- C(=charge conjugation), P(=parity) and T(=time reversal) are three discrete symmetries of the special theory of relativity
- · Weak interactions violate parity, e.g., neutrinos are left-handed
- CP violated in K-meson system (1964), $K_L \rightarrow 2\pi$ (Cronin, Fitch and Turlay)
- Now established in B-meson system (Kobayashi and Maskawa)
- Electric dipole moments of elementary particles also implies T and CP violation

CP violation in the K sector

• CP violation first detected in the neutral kaon system in 1964

- CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ')

- CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,

- CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in ${\cal K}_L o \pi^+\pi^-e^+e^-$

- CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in ${\cal K}_L o \pi^+\pi^-e^+e^-$
- 'Superweak' ($\epsilon' = 0$) vs. 'milliweak' (SM is milliweak)

- CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in ${\cal K}_L o \pi^+\pi^-e^+e^-$
- 'Superweak' ($\epsilon' = 0$) vs. 'milliweak' (SM is milliweak)
- Measurement of $|\eta_{00}/\eta_{+-}|^2,$ involving branching ratios to neutral and charged pions

- · CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in $K_L \to \pi^+\pi^-e^+e^-$
- 'Superweak' ($\epsilon' = 0$) vs. 'milliweak' (SM is milliweak)
- Measurement of $|\eta_{00}/\eta_{+-}|^2,$ involving branching ratios to neutral and charged pions
- Now measured by NA31: ${\rm Re}(\epsilon'/\epsilon)=(3.3\pm1.1)10^{-3}$ and now KTeV gives $(2.07\pm0.28)10^{-3}$

- · CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in ${\cal K}_L o \pi^+\pi^-e^+e^-$
- 'Superweak' ($\epsilon' = 0$) vs. 'milliweak' (SM is milliweak)
- Measurement of $|\eta_{00}/\eta_{+-}|^2,$ involving branching ratios to neutral and charged pions
- Now measured by NA31: ${\rm Re}(\epsilon'/\epsilon)=(3.3\pm1.1)10^{-3}$ and now KTeV gives $(2.07\pm0.28)10^{-3}$
- For a (somewhat old) review, see V. Cirigliano, Eur. Phys. J. C 33 (2004) s01, s333-s336

- · CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in ${\cal K}_L o \pi^+\pi^-e^+e^-$
- 'Superweak' ($\epsilon' = 0$) vs. 'milliweak' (SM is milliweak)
- Measurement of $|\eta_{00}/\eta_{+-}|^2,$ involving branching ratios to neutral and charged pions
- Now measured by NA31: ${\rm Re}(\epsilon'/\epsilon)=(3.3\pm1.1)10^{-3}$ and now KTeV gives $(2.07\pm0.28)10^{-3}$
- For a (somewhat old) review, see V. Cirigliano, Eur. Phys. J. C 33 (2004) s01, s333-s336
- · Work remains to be done in the analysis of short-distance vs. long-distance effects
- · CP violation first detected in the neutral kaon system in 1964
- CP violation in 'mixing' (ϵ) vs. CP violation in 'decay' (ϵ ')
- $K_L \rightarrow 2\pi, \pi^+\pi^-\gamma$,
- asymmetry in decay planes of $\pi^+\pi^-$ and e^+e^- in ${\cal K}_L o \pi^+\pi^-e^+e^-$
- 'Superweak' ($\epsilon' = 0$) vs. 'milliweak' (SM is milliweak)
- Measurement of $|\eta_{00}/\eta_{+-}|^2,$ involving branching ratios to neutral and charged pions
- Now measured by NA31: ${\rm Re}(\epsilon'/\epsilon)=(3.3\pm1.1)10^{-3}$ and now KTeV gives $(2.07\pm0.28)10^{-3}$
- For a (somewhat old) review, see V. Cirigliano, Eur. Phys. J. C 33 (2004) s01, s333-s336
- · Work remains to be done in the analysis of short-distance vs. long-distance effects
- Lattice could also improve the status

• The discrete symmetries of C, P and T

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- Electrons, quarks, receive contributions from loops in the SM

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- · Electrons, quarks, receive contributions from loops in the SM
- Imperceptibly small

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- · Electrons, quarks, receive contributions from loops in the SM
- Imperceptibly small
- Quark edm can give rise to edm for the neutron

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- · Electrons, quarks, receive contributions from loops in the SM
- Imperceptibly small
- Quark edm can give rise to edm for the neutron
- Best upper bound is $2.9\times 10^{-26}\,$ e-cm

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- · Electrons, quarks, receive contributions from loops in the SM
- Imperceptibly small
- · Quark edm can give rise to edm for the neutron
- Best upper bound is $2.9\times 10^{-26}\,$ e-cm
- Imposes constraints on the θ_{QCD} parameter of the strong CP sector

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- · Electrons, quarks, receive contributions from loops in the SM
- Imperceptibly small
- · Quark edm can give rise to edm for the neutron
- Best upper bound is $2.9\times 10^{-26}\,$ e-cm
- Imposes constraints on the θ_{QCD} parameter of the strong CP sector
- · Experiments with ultra-cold neutrons

- The discrete symmetries of C, P and T
- Manifestation is a permanent electric dipole moment of an elementary particle
- · Electrons, quarks, receive contributions from loops in the SM
- Imperceptibly small
- · Quark edm can give rise to edm for the neutron
- Best upper bound is $2.9\times 10^{-26}\,$ e-cm
- Imposes constraints on the θ_{QCD} parameter of the strong CP sector
- Experiments with ultra-cold neutrons
- S. K. Lamoreaux and R. Golub, J. Phys. G 36 (2009) 104002

• M. Benayoun et al., arXiv:1407.4021 ' $(g-2)_{\mu}$: Quo vadis?'

- M. Benayoun et al., arXiv:1407.4021 ' $(g-2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/

- M. Benayoun et al., arXiv:1407.4021 '(g − 2)_µ: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP}(\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$

- M. Benayoun et al., arXiv:1407.4021 ' $(g-2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP}(\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- · Improvement by a factor of 4 envisaged for future experiments

- M. Benayoun et al., arXiv:1407.4021 ' $(g 2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP} (\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- · Improvement by a factor of 4 envisaged for future experiments
- · Theoretical error dominated by hadronic uncertainties

- M. Benayoun et al., arXiv:1407.4021 ' $(g 2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP}(\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- · Improvement by a factor of 4 envisaged for future experiments
- Theoretical error dominated by hadronic uncertainties
- Hadronic light by light scattering (for a recent discussion giving a solid dispersive framework, see G. Colangelo et al., Phys. Lett. B 738 (2014) 6)

- M. Benayoun et al., arXiv:1407.4021 ' $(g 2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP}(\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- · Improvement by a factor of 4 envisaged for future experiments
- Theoretical error dominated by hadronic uncertainties
- Hadronic light by light scattering (for a recent discussion giving a solid dispersive framework, see G. Colangelo et al., Phys. Lett. B 738 (2014) 6)
- Pion electromagnetic form factor

- M. Benayoun et al., arXiv:1407.4021 ' $(g 2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP} (\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- Improvement by a factor of 4 envisaged for future experiments
- Theoretical error dominated by hadronic uncertainties
- Hadronic light by light scattering (for a recent discussion giving a solid dispersive framework, see G. Colangelo et al., Phys. Lett. B 738 (2014) 6)
- Pion electromagnetic form factor
- BA, Irinel Caprini, Diganta Das and I. Sentitemsu Imsong, Phys. Rev. D 89 (2014) 036007; Phys.Rev. D 93 (2016), 116007

- M. Benayoun et al., arXiv:1407.4021 ' $(g 2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP} (\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- Improvement by a factor of 4 envisaged for future experiments
- Theoretical error dominated by hadronic uncertainties
- Hadronic light by light scattering (for a recent discussion giving a solid dispersive framework, see G. Colangelo et al., Phys. Lett. B 738 (2014) 6)
- Pion electromagnetic form factor
- BA, Irinel Caprini, Diganta Das and I. Sentitemsu Imsong, Phys. Rev. D 89 (2014) 036007; Phys.Rev. D 93 (2016), 116007
- Status

- M. Benayoun et al., arXiv:1407.4021 ' $(g 2)_{\mu}$: Quo vadis?'
- Brookhaven experiment: http://www.g-2.bnl.gov/
- $a_{\mu}^{EXP} (\equiv \frac{g-2}{2}) = 11659208.9(6.3) \times 10^{-10}$
- · Improvement by a factor of 4 envisaged for future experiments
- Theoretical error dominated by hadronic uncertainties
- Hadronic light by light scattering (for a recent discussion giving a solid dispersive framework, see G. Colangelo et al., Phys. Lett. B 738 (2014) 6)
- · Pion electromagnetic form factor
- BA, Irinel Caprini, Diganta Das and I. Sentitemsu Imsong, Phys. Rev. D 89 (2014) 036007; Phys.Rev. D 93 (2016), 116007
- Status
- Fermilab experiment http://muon-g-2.fnal.gov/

• 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- · New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path
- · Pulsed kicked redirects the incoming muons to the ring's storage volume

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path
- · Pulsed kicked redirects the incoming muons to the ring's storage volume
- · Four electric quadrupoles provide vertical focusing without disturbing the magnetic field

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path
- · Pulsed kicked redirects the incoming muons to the ring's storage volume
- · Four electric quadrupoles provide vertical focusing without disturbing the magnetic field
- g-2 measurement based on polarized muons being injected and precession being studied, with parity violating weak decay being the spin analyzer

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path
- · Pulsed kicked redirects the incoming muons to the ring's storage volume
- · Four electric quadrupoles provide vertical focusing without disturbing the magnetic field
- g-2 measurement based on polarized muons being injected and precession being studied, with parity violating weak decay being the spin analyzer
- Since the electrons from the decay have less energy than the muon, they curl into the storage ring

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path
- · Pulsed kicked redirects the incoming muons to the ring's storage volume
- · Four electric quadrupoles provide vertical focusing without disturbing the magnetic field
- g-2 measurement based on polarized muons being injected and precession being studied, with parity violating weak decay being the spin analyzer
- Since the electrons from the decay have less energy than the muon, they curl into the storage ring
- Arrival time is measured as a function of time after injection, and oscillation on top of an exponentially falling rate gives precession frequency

- 14-m diameter electromagnet has moved from Brookhaven to Fermilab in 2013
- New milestone achieved with reassembly in summer 2014
- Next milestone would be cooling of superconducting coils and storage-ring magnet, spring 2015 [no updates available on web-site]
- Highly uniform, essentially pure 1.45 T dipole field throughout the circumference
- 3.1 GeV muons produced from pion-decay enters the magnetic field along a nearly field-free path
- · Pulsed kicked redirects the incoming muons to the ring's storage volume
- · Four electric quadrupoles provide vertical focusing without disturbing the magnetic field
- g-2 measurement based on polarized muons being injected and precession being studied, with parity violating weak decay being the spin analyzer
- Since the electrons from the decay have less energy than the muon, they curl into the storage ring
- Arrival time is measured as a function of time after injection, and oscillation on top of an
 exponentially falling rate gives precession frequency
- http://cerncourier.com/cws/article/cern/58931

• We have described the state of the art of the knowledge of the
- We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S

- We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses

- We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$

- We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules
 - lattice theory

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision
 - Tests of anomaly sector such as $\pi^0 \rightarrow 2\gamma$ width

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision
 - Tests of anomaly sector such as $\pi^0 \rightarrow 2\gamma$ width
- · Challenges remain for the standard model such as in the setting of

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision
 - Tests of anomaly sector such as $\pi^0 \rightarrow 2\gamma$ width
- · Challenges remain for the standard model such as in the setting of
 - the g 2 of the muon, both theory and experiment

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- · The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - · dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision
 - Tests of anomaly sector such as $\pi^0 \rightarrow 2\gamma$ width
- · Challenges remain for the standard model such as in the setting of
 - the g 2 of the muon, both theory and experiment
 - · tests of CP conservation in, e.g, the neutron dipole moment

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - · dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision
 - Tests of anomaly sector such as $\pi^0 \rightarrow 2\gamma$ width
- · Challenges remain for the standard model such as in the setting of
 - the g 2 of the muon, both theory and experiment
 - tests of CP conservation in, e.g, the neutron dipole moment
 - improvements of knowledge of symmetry breaking including, e.g., the pion-nucleon sigma term with implications to dark matter searches

- · We have described the state of the art of the knowledge of the
 - The strong coupling constant α_S
 - The three light quark masses
 - The magnitudes of the elements of the CKM matrix $|V_{us}|$ and $|V_{ud}|$
 - The evidence of the complex nature of the CKM matrix elements from ϵ'/ϵ measurements
- The methods include those coming from standard methods of field theory, such as
 - renormalization group methods
 - dispersion relations and sum rules
 - lattice theory
 - · large variety of experiments at high precision
 - Tests of anomaly sector such as $\pi^0 \rightarrow 2\gamma$ width
- · Challenges remain for the standard model such as in the setting of
 - the g 2 of the muon, both theory and experiment
 - tests of CP conservation in, e.g, the neutron dipole moment
 - improvements of knowledge of symmetry breaking including, e.g., the pion-nucleon sigma term with implications to dark matter searches
- This is indeed a precision science, unprecedented in history of particle physics.