Multi-time correlations

1. Correlations from fluctuating hydrodynamics

Define € = % The fluctuating hydrodynamics

Oup(w1) = By [D(pl, 0)Dap(, )] = €0, [V lpl, 1)) i, )]

with covariance

(n(z, t)n(y,t')) = o(x —y)o(t =)

1.1. Series expansion:

pla,t) = px) + eri(a,t) + Sorala, ) + -

2!
Leads to
D(p) = D)+ D'@r + 5 [11D"(7) + 12D (7)] +- -
=, €9
Volp) = Vo) +3 o
and

2

D(p)2.p = DP)0:p + 0, (D)) + S0, [D(p)rs + D' (p)r] + -+

Substituting in the fluctuating hydrodynamics equation (1) one gets
(i) Zeroth order
0p — 9; [D(p)0:p] = 0
(ii) Linear order
o = 2 [D@)r] = 0. |/ 7) )
(iii) The € order

Oirs — &2 [D(P)ra) = 32 [D/(p) 3] + 0.

) n]
Va(p)



Green’s function and solution
0,G(x,y,t) = 0; [D(P)G(z,y,t)] =0 with G(z,y,0) = d(z —y) (10)

The solution

= —/ ds/o dz20,G(x,z,t — s)\/o(p(2)) n(z, s) (11)

Tg(az,t):—/_ds /glz@zG(a:,z,t— s) {%rl(z s)n(z, $)+0. [D’(ﬁ(z))r%(z,s)]} (12)

In writing we made an integration by parts in z variable.

Remark: By definition (ry(x,¢)) = 0. In order to get this from the solution (12) one
chooses

(ri(z, t)n(x,t)) =0 and 9 [D'(p(z)) (ri(z,t))] =0 (13)
This is consistent with another result (J) = — (D(p)0.p) = —D(p)0.p in (6). (** Is
this an Ito-Stratonovich type choise?**)

1.2. Two-time correlation
(p(ay, 01)p(2, t2)), = € (r1(w1, t1)r1 (22, 12)) + O(€%) = € (a1, t; 22, 12) + O(e%)  (14)

where from (11) one gets

min(t1,t2) 1
c(xy,t1; 29, ty) = / ds/ dzo(p(2)) [0.G(x1, z,t1 — 8)] [0.G(xs, 2,5 — s)]  (15)
0

—00

1.3. Three-time correlation

(p(z1,t1)p(z9, t2) p(3, ZS»C = € (r1(w1, t1)r1 (2, ta)r1 (23, 1))

+5 | (e tn (e t)ra(@s, 1)) + (2 3) + (1 3)| +--+ (16)

where (i <+ j) denotes interchange of coordinate indices (z;,t;) <> (z;,t;) in the first

term inside square brackets. (The prefactor 1 comes from the same prefactor of 75 in

2
(3).)
It is easy to check that the €3 term vanishes due to (nnn) = 0.
For the €' order term we use (11)-(12) and explicitly write

<p($1,t1)p<$2,t2>p(l’3,t3 ~ ——/ dSl/ d21/ dSQ/ dZQ/ ng/ ng

0:,G (1, 21, t1 — 51)0.,G (22, 22, t2 — 52)0.,G (23, 23,13 — S3)
[W(Zb 51, %2, 52, 23, 83) + (JJ(Zl, 51, %2, 52, %3, 83)] (17)

where

w = oGNP - LE ez, 20z, 5)r (230 53))




+(2<3)+ (1 3)

B =\o(p(21)a(p(22)) 0z [D'(B(25)) (121, 51)1(22, 82)17 (23, 53))]
+(2+43)+ (14 3)

The average in w and @ can be calculated using Wick’s theorem

(mmenar1) = (mns) (mar1) + (2ns) (mry) + (mn2) (Mar1)

Using (13) one finds (n(zs, s3)r1(23,53)) = 0 which makes the last term above vanish.
From the rest of the terms and using (2) one gets

w=/0(p(22)) o' (p(23)) (n(22, s2)r1(23, 53)) (21 — 23)0(s1 — s3)
+vo(p(z1)) o'(p(23)) (21, 51)71(23, 83)) 3 (22 — 23)0(52 — 83)
+(2<3)+(1+3)
Writing in closed form
w = Z Vo (p(z2)) o' (p(23)) (n(z2, s2)711(23, 83)) 6(21 — 23)d(51 — 53) (18)
perm(1,2,3)

where the sum is over all 6 permutations over the coordinate indices (1,2, 3).
For a similar calculation of & one uses

(mnar?) =2 (mr1) (nar1) + (mn2) (1)

Then, using (13) to get 0., [D'(p(z3)) (r?(23,s3))] = 0 which makes contribution from
last term above vanish. This leads to

D= Volp(1))o(p(22)) s [D'(B(2s)) (n(z1, s1)r1 (25, 53)) ((22, 52)71 (23, 53))] (19)

perm(1,2,3)

Using (11) one can easily check that the contribution in (17) from the term with w
in (18) is

64 min(t17t3) 1 _
5 Z / d83 /d238Z3G($1, Z3, tl — 53)623G(:1:3, Z3, t3 — 83)6(1‘2, tz; Z3, Sg)UI(p(Zg))
perm(1,2,3) o0 0

- (20)
where c(xg, to; x3,t3) = (r1(za, ta)ri(zs,t3)). Similarly contribution from the term with

W in (19) is

64 t3 1
D) Z / d83/0 d230:,G (23, 23,13 — 83) 0 [D'(P(23) (1, 1 23, 53)c(Ta, T2 23, 53)]
) o0

perm(1,2,3

=71 (21)
Then the three-time correlation is sum of the above two terms.

(p(x1,01)p(wa, t2)p(x3, 1)), = T+ T (22)



1.4. Equal-time correlation

Using (15) one gets the equal-time correlation

e, 22) = (w1, 0: 79, 0) = /0 s /0 d210(5(21)) [0 G (a1, 21, 5)] [0 G a9, 21, )

where we changed the integration variable s. Using integration by parts and introducing
another integration variable 2z, by using

d ! d
—G(x9,21,8) = / dzoG (9, 29,5)—0(29 — 21)
0 dz

le 1

one can rewrite

0 1 1
c(xy, ) :/ ds/ dzl/ dzoG(x1, 21, $)G (29, 22, 5) Qz1, 22) (23)
0 0 0

where

Qe ) = - 0@ -2 =5 S - aoE)] ()

perm(1,2)
(compare with (27¢).)
An advantage of this form is that derivation of the differential equation for the
correlation is simple. Using (10) one gets

82 [D(p(x1))c $1,€E2 +52 ($1,$2)]
/ dzl/ de/ ds— (1,21, 8)G (32, 22, 5)] Q(z1, 22)
$17$2 (25)

Three point correlation: We show below that the three point correlation can also be
written in a form similar to (23), more precisely,

(p(1,0)p(w2,0)p(w3,0)), = €' (1, x5, 73) (26)

where

~ [l 1 1

c(xy, x9, x3) :/ds/ dzl/ d22/ dz3G (21, 21, 5)G (22, 22, 5)G(x3, 23, 5)S2(21, 22, 23) (27a)
o Jo 0 0

(Note, there is only one integration over time.) This way it is simple to check (like in

(25)) that

02, [D(p(x1))c(w1, 22, 23)] + 02, [D(p(x2)) (21, 22, 23)] 4 02, [D(p(x3))c(21, 2, 23)]
= —Q(xl,xQ,xg) (27b)

We show that
Q(21, 29, 23) 2{82 [D'(p(23))c(21, 23)c(22, 23)] + Osy [0'(21 — 23)c(22, 23)0" (p(23))] } (27 ¢)

perm(l 2,3)



Derivation: Setting t; =ty = t3 = 0 in (20) one gets

1:% / ds / dz3 [0.,G (21, 23, 8)] [02,G(23, 23, 5)] (22, 0; 23, —s) 0’ (p(23)) (28)

perm(1,2,3)

where we made a change of variable s3 — —s. Further simplification comes from the
following two equations

1
c(xq,0; 23, —S$) —/ dzoG (19, 29, $)c(22, 23) (29)
0
d ! d
—G(x1, 23,8) = dz1G (21, 21,8)—0(21 — 23) (30)
dz Z3 0 dZB
Substltutmg in (28) and using integration by parts over z3 variable leads to
I = / ds/ dz1dzedz3G (21, 21, $)G (29, 22, $)G (23, 23, 5)
perm(l 2,3)
d [0'(P(23))c(z2, 23)0 (21 — 23)] (31)
z3
Similarly, setting t; =ty = t3 = 0 in (21) and using integration by parts one gets
~ d?
I= / ds/ dz3G(x3, 23, )d [D'(p(23))c(x1,0; 23, —8) (e, 0; 23, —5)](32)
perm(l 2,3)

Further, substituting (29) one gets

1= / ds/ dz1dzedz3G (11, 21, $)G (29, 22, $)G (3, 23, 5)

perm(l 2,3)

d23 [D'(P(Za)) (21, 23)c(22, 23)] (33)

Adding the two contributions I + I one gets (27a)-(27¢).

Congecture: One expects similar structure for higher order correlation

Up(ar) - pla /ds/dz1 / G (1, 2, 8) - -+ Glp 200 8) U1, -+ 22)(34)

It is easy to check (like in (25))

Z 0, D(p(xa)) ((p(@1) -+~ plr))) = =€ 2w, -+, 1) (35)

as obtained in the paper by Bertini et al JSP 2009 using macroscopic fluctuation theory;
a derivation is given in the next section.

Remark: (need to check more carefully.) One can write multi-time correlation in a
closed form. For D(p) = 1 one gets a general form

min(¢1,t2)
c(xy,t1; 9, to) Z ds/dzl/dZQG(xl,zl,tl — 8)G (g, z2,t0 — 8)A (21, 22)

perm(1,2 0



with
1d
2 le

The permutation is over only the (z,t) coordinates and not on (z,t).

A(z1, 29) = [0'(21 — z2)a(21)]

For three point correlation

min(tl,tg)
C(.I'l,tl;l'g,tg;l'g,tg) = Z / dS/le/dZQ/dZ;gG(iCl,Zl,tl —S>
) 0

perm(1,2,3
G(xg, 22, t2 — 5)G(x3, 23, t3 — 5)A(21, 22, 23)

with

A(z1, 20, 23) = di% [0"(23 — 21)0”(23)c(22, 23)]

N | —

2. Derivation using Hamilton-Jacobi method

The large deviation function ¢[p] of a density fluctuation is defined as
Plp(z)] ~ e~ Lolo()]

Using macroscopic fluctuation theory one shows that the large deviation function follows

Aﬂm{édm(@%QQ—wwﬂxm(@%D}zn (36)

This is the Hamilton-Jacobi equation for minimal action (Bertini et al 2001).

The generating function of density correlation is defined by
1

! 1! 1
ulh] = / dxh(z)p(x) + o1 / dridrsc(xy, o) + 30 / dridxedrsce(xy, o, x3) + - -+ (37)
0 *Jo +Jo

The plh] and ¢[p] are related by Legendre transformation.

mm=ww+ldmmmw

where

_ 99lp]
h(z) = 5p() and

Substituting (38) in (36) one gets

/01 da {%a <5}fé)) (D.h)? — (a%—i) D (52593)) (axh)} _0 (39)




7

Correlations: The differential equations followed by correlations can be obtained by
substituting the expansion (37) in (39) and expand in orders of h(z).
In the leading order one gets

A(mmwauxmmmmun:o (40)

where we used integration by parts. The solution D(p(z))0.p(z) = J determines p(z).
In the second order

Admwmuww){é%@A((ﬁﬁ@rﬂ@ﬁﬁiW@WMdmwm}=0MU

A possible reason (to get (25)) the integral vanishes is because the integrand is anti-
symmetric under exchange of x; and x.

/01 dordrah(z)h(m) fnme) = 0 it flan,2a) = —f(2a, 21)
This leads to
0;, [D(p(x1))e(x1, 22)] + 03, [D(p(w2))e(w2, 21)] = _%amam [o(p(21))0 (21 — 22)]
- 3@3@[ (P(22))6(x2 — 1)]

Rewriting the right hand side one gets
05, [D(P(x1))e(xr, 22)] + 85, [D(B(x2)) (1, 22)] = Ory [0(A(21))0 (21 — 22))] (42)

which is same as (25).
In the cubic order one follows similar argument. From (39) one gets

/0 dridxedxsh(zy)h(xe)h(z3) f(x1, 22, 23) =0 (43)
where
fw1, 9, 25) = 07, [D(p(a1)) (w1, w2, x3)] + 02, [D'(B(21))el1, w2)c(wy, 23)]
+0u, [0/ (P(21))d (21 — w2)c(21, 22)] (44)

Now, one possible reason why the integral vanishes, is
> flwrwa,as) =0 (45)
perm(1,2,3)

(for example, if f(x1, 2, x3) is odd under interchange of pairs.) This leads to

2{0, [D(p(x1))c(xr, v, 23)] + 07, [D(p(x2))c(21, o, w3)] + 07, [D(p(xs)) (21, 2, 23)] }
=— Y {2 [D'(p(x1))e(w1, w2) (w1, 73)] + On, [0 (B(1))0 (1 — wa)e(y, 72)] }

perm(1,2,3)

This leads to the same equation as in (35).



3. Writing large deviation function for SEP in terms of Greens function

Given (34) can one write the known result of generating function plh| for symmetric
exclusion process in terms of Greens functions?
Generating function

julh] = /01 do {log(l—i—F(eh 1)) —log } (46)

Pb — Pa

with
" (eh - 1>(FI>2 i

BEYaCE) PO =p E =0 0

Equilibrium:  for p, = py one gets F' = p and leads to

Heglh] = /0 dz {log (14 p(e"™ — 1))} (48)

Equilibrium correlations

o) = "y e = T2 s a2y (a9)

el z.w) = D2 [1 = 30(p)] (a — )z — )6z — ) (50)

Question: can one reproduce this using Greens function? Is there a general formula of
the equilibrium correlation for arbitrary D and o?

Remark: In out of equilibrium one may and write
! 1+ F(eh —1) F'
hl = h+/dx{lo { — }—lo —} 51
p“[ ] MO[ } 0 g l—i—p(x)(eh—l) gpb_pa ( )
where pi9[h| contains the equilibrium part of the correlation which one can easily write
as delta correlated. May be its best to write F' = p(z) + ¥ (x)

Out of equilibrium Write h — eh. An expansion

F(z) = p(z) + ey (z) + EFy(x) + - - (52)
One shows

Fi(o) = ~(ou = )" [ duhy)U (s, (53)
where

Ulz,y) = /OO dsG(z,y,s) (54)
One may verify this from 0the equation for F which is

F{/(z) = h(z) [Fy(x)]’ (55)
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