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1. Introduction

Understanding the steady state properties of non-equilibrium systems is an important

topic in modern statistical physics. For interacting particle systems a general approach

is based on a fluctuating hydrodynamics description [1, 2]. Such a description is the

starting point of a recently developed macroscopic fluctuation theory [3–7] which has

proved useful to calculate large deviation functions of diffusive systems. While a large

amount of results have been obtained based on the fluctuating hydrodynamics approach,

they are mostly about one-time statistics [1,2,8–21]. In this work, we use this framework

to see how some other dynamical properties in a non-equilibrium steady state, namely

multi-time correlations, spectral distribution, and linear-response can be calculated.

We consider the non-equilibrium steady state of a one-dimensional system coupled

with reservoirs at two ends. It may be a system of interacting particles coupled with

reservoirs at different chemical potentials, or a thermal conducting rod coupled with

heat baths at different temperatures. One uses fluctuating hydrodynamics to describe

such a system in the large system size L limit; in systems where diffusion is the transport

mechanism, one defines hydrodynamics coordinates x = X
L

and τ = t
L2 where X and

t are position and time, respectively. The time evolution of the system is described

in terms of a hydrodynamic density ρ(x, τ) and a hydrodynamic current J(x, τ) which

satisfy [1, 2]

∂τρ(x, τ) = −∂xJ(x, τ) with J(x, τ) +D(ρ(x, τ))∂xρ(x, τ) = η(x, τ) (1)

where D(ρ) is the diffusivity. What (1) tells us is that on average the current follows

Fick’s law (J = −D(ρ)∂xρ) and the fluctuations are modeled by a Gaussian random

noise η(x, τ) with a covariance

〈η(x, τ)η(y, τ ′)〉 =
1

L
σ(ρ(x, τ)) δ(x− y) δ(τ − τ ′) (2)

where σ(ρ) is the mobility.

In this paper, we use (1)-(2) to derive the two-time correlations 〈ρ(x, τ)ρ(y, τ ′)〉c
and 〈J(x, τ)J(y, τ ′)〉c, and to obtain the correlations of the integrated current q(x, τ)

which is defined as the time integral of J(x, τ). We will show in particular that

〈q(x, τ)q(x, τ ′)〉c '


min(τ, τ ′)

L

∫ 1

0

dzσ(ρ(z)) for τ, τ ′ � 1

1

L

[√
τ +
√
τ ′ −

√
|τ − τ ′|

] σ(ρ(x))

2
√
πD(ρ(x))

for τ, τ ′ � 1

(3)

where ρ(x) is the average density in the steady state. At large times the asymptotic

behavior corresponds to a standard Brownian motion with known [22] variance whereas

at short time the covariance is that of a fractional Brownian motion [23]. One can notice

that the short time behavior also gives the correlation of the integrated current of an

infinite system at equilibrium. (One may infer the time dependence from the correlation

of the height fluctuations in the Edwards-Wilkinson interface growth [24].)
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Our approach is valid for a general diffusive system in a non-equilibrium steady state

for which the microscopic details are embedded in the two transport coefficients D(ρ)

and σ(ρ) which appear in (1,2). We will compare our results with an exact solution of the

symmetric exclusion process which corresponds to D(ρ) = 1 and σ(ρ) = 2ρ(1−ρ) [6,22].

This is a system of diffusing particles on a lattice with simple exclusion interactions

among them. Starting with microscopic dynamics we will derive an explicit formula

of the two-time correlations 〈τi(t)τj(t′)〉c and 〈Ji(t)Jj(t′)〉c for the occupation number

τi(t) = 0, 1 of the site i and for the particle current Ji(t) across a bond (i, i + 1). We

show that, in the hydrodynamic limit, the formulas lead to their corresponding results

for 〈ρ(x, τ)ρ(y, τ ′)〉c and 〈J(x, τ)J(y, τ ′)〉c. These exact calculations allow us to directly

verify the fluctuating hydrodynamics equation (1).

2. Macroscopic fluctuation theory

Starting with the fluctuating hydrodynamics equation (1) one can write the generating

function〈
eL
∫ T
0 dτ

∫ 1
0 dxλ(x,τ)J(x,τ)

〉
=

∫
D[J, ρ]δ (∂τρ+ ∂xJ) e

L
∫ T
0 dτ

∫ 1
0 dx

[
λ(x,τ)J(x,τ)− (J+D(ρ)∂xρ)

2

2σ[ρ]

]
(4)

where T is an arbitrary large time. The path integral is over all density and current

fields with a boundary condition

ρ(0, τ) = ρa, ρ(1, τ) = ρb. (5)

The delta finction can be written as an integral over an additional field ρ̂(x, τ).

This field ρ̂(x, τ) must vanish at the boundary as the particles are not conserved

ρ̂(0, τ) = 0 = ρ̂(1, τ). (6)

Completing the Gaussian integration over the current J(x, τ) one arrives at〈
eL
∫ T
0 dτ

∫ 1
0 dxλ(x,τ)J(x,τ)

〉
=

∫
D[ρ̂, ρ] e−L S[ρ̂,ρ], (7)

where S[ρ̂, ρ] can be written as a classical Action

S[ρ̂, ρ] =

∫ T

0

dτ

(∫ 1

0

dx ρ̂ ∂τρ−H[ρ̂, ρ]

)
(8)

with a Hamiltonian

H[ρ̂, ρ] =

∫ 1

0

dx

(
σ[ρ]

2
(∂xρ̂+ λ)2 −D(ρ) (∂xρ̂+ λ) ∂xρ

)
(9)

(Compare the expression with Action for large deviation of density.)

For a large system of length L the integral on the right had side in (7) is dominated

by the minimal value of the Action. Denoting the paths associated to the least Action

by (ρ̂, ρ) ≡ (p, q) one gets the cumulant generating function of current

µ[λ] = lim
L→∞

L−1 log
〈
eL
∫ T
0 dτ

∫ 1
0 dxλ(x,τ)J(x,τ)

〉
= − S[p, q]. (10)
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The optimal fields satisfy Hamilton’s equation

∂τp+ ∂x (∂xp+ λ) = − σ′[q]

2
(∂xp+ λ)2 (11a)

∂τq − ∂xxq = − ∂x (σ[q](∂xp+ λ)) (11b)

The corresponding boundary conditions come from minimizing the Action and given by

p(x, T ) = 0 and q(x, 0) = ρ(x) = ρa(1− x) + ρbx. (12)

In addition there are conditions

p(0, τ) = 0 = p(1, τ), and q(0, τ) = ρa, q(1, τ) = ρb at all time τ . (13)

The expression for the minimal Action can be simplified using the optimal equation

(11b) leading to

µ[λ] = −
∫ T

0

dt

∫ 1

0

dx

{
σ(q)

2
(∂xp+ λ)2 + λ∂xq − λσ(q) (∂xp+ λ)

}
(14)

Remark: Using (10) and the definition

µ[λ] =

∫ T

0

dτ

∫ 1

0

dx 〈J(x, τ)〉+1

2

∫ T

0

dτ1dτ2

∫ 1

0

dx1dx2 〈J(x1, τ1)J(x2, τ2)〉c+· · ·(15)

one gets for large L,

〈J(x1, t1), · · · , J(xk, tk)〉c '
1

Lk−1
c(x1, t1, · · · , xk, tk), (16)

where c(x1, t1, · · · , xk, tk) is a scaling function.

2.1. A perturbation solution

Introducing a parameter ε by defining

λ(x, t) = ε h(x, t). (17)

and expanding the optimal fields in powers of ε one writes

p = εp1 + ε2p2 + · · · (18)

q = q0 + εq1 + ε2q2 + · · · . (19)

(Vanishing of the zeroth order term in p can be seen from the Hamilton’s equation and

the corresponding boundary condition.)

Substituting the expansion in (14) gives

µ[ε h] = εµ1[h] + ε2µ2[h] + · · · , (20)

where

µ1[h] = −
∫ tc

0

dt

∫ 1

0

dx h(x, t)∂xq0(x, t), (21)

and

µ2[h] =

∫ tc

0

dt

∫ 1

0

dx

(
σ[q0]h

2 − 1

2
σ[q0] (∂xp1)

2 − h∂xq1
)
. (22)
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The multi-time cumulants are related to the terms in the above expansion of the

cumulant generating function:

µk[h] =
1

k!

[
k∏
`=1

∫ tc

0

dt`

∫ 1

0

dx` h(x`, t`)

]
〈J(x1, t1) · · · J(xk, tk)〉c . (23)

Using this definition for the linear order immediately leads us to the expected result

〈J(x, t)〉 = −∂xq0(x, t). (24)

For an explicit result, we solve the equation for q0(x, t) which is

∂tq0 − ∂xxq0 = 0. (25)

The corresponding boundary conditions are

q0(x, 0) = ρ0(x), q0(0, t) = ρa, and q0(1, t) = ρb. (26)

One can easily see that the solution is time independent and equal to the initial profile:

q0(x, t) = ρ0(x). (27)

Substituting this result in the expression (24) we obtain

〈J(x, t)〉 = ρa − ρb. (28)

Two-time correlation: The ε2 order term µ2 involves solution of the optimal fields upto

the linear order in ε. We first solve for p1(x, t) which satisfies

∂tp1 + ∂xxp1 = −∂xh (29)

along with a boundary condition

p1(x, tc) = 0, p1(0, t) = 0, and p1(1, t) = 0. (30)

The corresponding solution can be written as

p1(x, t) = −
∫ tc

t

dτ

∫ 1

0

dy ∂yG(y, τ |x, t)h(y, τ) (31)

where we defined

G(y, τ |x, t) = 2
∞∑
n=1

e−n
2π2(τ−t) sin(nπy) sin(nπx) for all τ ≥ t. (32)

In deriving (31) we have used that G(y, τ |x, t) = 0 when either y or x are at the

boundary.

Similarly, we find that q1(x, t) satisfies an equation

∂tq1 − ∂xxq1 = −∂x (σ[q0] (∂xp1 + h)) (33)

with a the boundary condition

q1(x, 0) = 0, and q1(0, t) = 0 = q1(1, t). (34)

The corresponding solution can also be written in terms of G(y, τ |x, t) as

q1(x, t) =

∫ t

0

dτ

∫ 1

0

dy σ[q0(y, τ)]∂yG(x, t|y, τ) (∂yp(y, τ) + h(y, τ)) . (35)
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Using the above solutions we determine the following integral which appears in the

expression for µ2[h] in (22).

I1 =

∫ 1

0

dt1

∫ 1

0

dx1h(x1, t1)∂x1q1(x1, t1). (36)

Using (35) we rewrite the above as

I1 =

∫ tc

0

dt1

∫ t1

0

dt2

∫ 1

0

dx1

∫ 1

0

dx2 h(x1, t1)h(x2, t2) σ[ρ0(x2)]∂x1x2G(x1, t1|x2, t2)

+

∫ tc

0

dt1

∫ t1

0

dt2

∫ 1

0

dx1

∫ 1

0

dx2h(x1, t1) σ[ρ0(x2)]∂x1x2G(x1, t1|x2, t2)∂x2p1(x2, t2).

In writing the above equation we have used that q0[x, t] = ρ0(x).

The second integral which appears in (22) is

I2 =
1

2

∫ tc

0

dt2

∫ 1

0

dx2 σ[ρ0(x2)] (∂x2p1)
2 (37)

wching using (31) we rewrite as

I2 = −1

2

∫ tc

0

dt1

∫ t1

0

dt2

∫ 1

0

dx1

∫ 1

0

dx2 h(x1, t1)σ[ρ0(x2)]∂x1x2G(x1, t1|x2, t2)∂x2p1(x2, t2)

Combining altogether we obtain

I1 + I2 =

∫ tc

0

dt1

∫ t1

0

dt2

∫ 1

0

dx1

∫ 1

0

dx2 h(x1, t1)h(x2, t2) σ[ρ0(x2)]∂x1x2G(x1, t1|x2, t2)

+
1

2

∫ tc

0

dt1

∫ t1

0

dt2

∫ 1

0

dx1

∫ 1

0

dx2h(x1, t1) σ[ρ0(x2)]∂x1x2G(x1, t1|x2, t2)∂x2p1(x2, t2).

To further evaluate, we substitute the solution p1(x, t) from (31), and following a

straightforward algebra we arrive at

I1 + I2 =
1

2

∫ tc

0

dt1

∫ t1

0

dt2

∫ 1

0

dx1

∫ 1

0

dx2 h(x1, t1)h(x2, t2)
{
σ[ρ0(x2)]∂x1x2

G(x1, t1|x2, t2)−
∫ t2

0

dτ

∫ 1

0

dy σ[ρ0(y)]∂x1yG(x1, t1|y, τ)∂x2yG(x2, t2|y, τ)
}

+ (1↔ 2)

where the last term on the right hand side denotes the expression obtained by

interchange of indices 1 and 2 in the terms precceeding it.

Using the above result in (22) along with the definition of the second cumulant in

(23) we arrive at

〈J(x1, t1)J(x2, t2)〉c = σ[ρ0(x1)]δ(x1 − x2)δ(t1 − t2)
+f(x1, t1, x2, t2)Θ(t2 − t1) + f(x2, t2, x1, t1)Θ(t1 − t2) (38)

where

f(x1, t1, x2, t2) = −σ[ρ0(x1)]∂x2x1G(x2, t2|x1, t1)

+

∫ t1

0

dτ

∫ 1

0

dy σ[ρ0(y)]∂x2yG(x2, t2|y, τ)∂x1yG(x1, t1|y, τ). (39)

This leads us to the scaling function in (10):

c(x1, t1;x2, t2) = σ[ρ(x1)]δ(x1−x2)+f(x1, t1, x2, t2)Θ(t2−t1)+f(x2, t2, x1, t1)Θ(t1−t2)(40)
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δ
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Figure 1. Jump rates in the symmetric exlusion process coupled with a reservoir of

density ρa at the left boundary and a reservoir of density ρb at the right boundary.

3. The symmetric exclusion process using microscopic dynamics

The symmetric exclusion process is defined on a one-dimensional lattice of L sites,

coupled with two reservoirs of density ρa and ρb. Particles within the bulk jump from

a site to one of its neighbor sites as long as the jump respects simple exclusion: at any

time there could be at most one particle at a site. The time scale is set by choosing bulk

jump rates equal to 1. (This is equivalent to setting D(ρ) = 1 in the hydrodynamic

limit.) At the boundary sites, the coupling to the reservoirs is modeled by injection

and extraction rates of particles as shown in figure 1; the density of the reservoirs are

related [6] to these boundary rates by

ρa =
α

α + γ
; ρb =

δ

β + δ

At long time, the system reaches a steady state where the average occupation per

site is linear in space, and the average current is constant [6, 8, 41],

〈τi〉 =
1

N
[ρa (L+ b− i) + ρb (i− 1 + a)] ; 〈Ji〉 ≡ 〈J 〉 =

(ρa − ρb)
N

(41)

where we defined

a =
1

α + γ
; b =

1

β + δ
; and N = L+ a+ b− 1 (42)

The steady state two-point correlation function of occupation variables as well as

higher order correlation functions are known [6,8, 41]. For example,

〈τiτj〉c =

−
[

(ρa − ρb)2

N2(N − 1)

]
(i+ a− 1)(L+ b− j) for i < j

〈τi〉 (1− 〈τi〉) for i = j

(43)

Using the definition of the model, one can write the time evolution of these averages.

For example,

d 〈τ (t)〉
dt

= −M · 〈τ (t)〉+ B (44)
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where

τ (t) =



τ1(t)

τ2(t)

.

.

.

τL(t)


; M =



1 + 1
a
−1 0 . . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

. . . . . . .

. . . 0 −1 2 −1

. . . . 0 −1 1 + 1
b


; B =


α

0

.

0

δ

(45)

We shall use bold font to denote matrices.

The solution of (51) is simple to write in terms of a microscopic Green’s function

g(t) = [gi,j(t)]L×L defined as the solution of

dg(t)

dt
+M · g(t) = δ(t)1 (46)

where 1 is the identity matrix. The solution of (51) in the large time limit gives steady

state density

〈τ 〉 =

∫ ∞
0

dt g(t) ·B (47)

The average current in the steady state is expressed in terms of the average density

〈Ji〉 =


α− 1

a
〈τ1〉 for i = 0

〈τi〉 − 〈τi+1〉 for 1 ≤ i < L

1

b
〈τL〉 − δ for i = L

(48)

Two-time correlations of occupation variables are derived in [Sadhu, Derrida,

JSTAT]

3.1. Correlation of current

We present the result first and defer the proof to the ??. In the steady state

〈Ji(t)Jj(0)〉c = 〈Wi(t)〉1 〈Uj〉 − 〈Wi(t)〉2 〈Vj〉 (49)

where

W (t) =



− 1
a
n1(t)

.

.

ni(t)− ni+1(t)

.

.
1
b
nL(t)


; U =



α(1− τ1)
.

.

τi(1−τi+1)

.

.

βτL


; V =



γτ1
.

.

(1− τi)τi+1

.

.

δ(1− τL)


(50)

where the column vectors are of size i = 0, ..., L.

The 〈ni(t)〉1(2) are the solution of

〈n(t)〉1(2)
dt

= −M · 〈n(t)〉1(2) (51)
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with M given in (45) and initial condition

〈ni(0)〉1 =


−〈τj〉 for i = j

1− 〈τj+1〉 for i = j + 1

〈τiτj〉c − 〈[τi − 〈τi〉] τjτj+1〉
〈τj(1− τj+1)〉

for the rest.

(52)

〈ni(0)〉2 =


1− 〈τj〉 for i = j

−〈τj+1〉 for i = j + 1

〈τiτj+1〉c − 〈[τi − 〈τi〉] τjτj+1〉
〈(1− τj)τj+1〉

for the rest

(53)

with a choice that 〈τ0〉 = ρa and 〈τL+1〉 = 1− ρb

3.2. An explicit solution

Solution of (51) is

〈ni(t)〉1(2) =
∑
λ

e−λ tψi(λ)

[∑
`

ψ?` (λ) 〈n`(0)〉1(2)

]
(54)

where ψi(λ) is normalized eigen function of M corresponding to eigenvalue λ, and ?

denotes complex conjugate. Substituting this solution in (49) one gets

〈Ji(t)Jj(0)〉c =



∑
λ

e−λ s
[
−ψ1(λ)

a

]∑
`

ψ`(λ)A`,j for i = 0∑
λ

e−λ s [ψi(λ)− ψi+1(λ)]
∑
`

ψ`(λ)A`,j for rest

∑
λ

e−λ s
[
ψL(λ)

b

]∑
`

ψ`(λ)A`,j for i = L

(55)

where

A`,j = 〈n`(0)〉1 〈Uj〉 − 〈n`(0)〉2 〈Vj〉 (56)

Substituting (52), (53) and (50) one gets

A`,j =


−1

a
〈τ`τ1〉c + δ`,1 [α− (α− γ) 〈τ1〉] for j=0

〈τ`τj〉c − 〈τ`τj+1〉c + (δ`,j+1 − δ`,j)
〈
(τj − τj+1)

2〉 for rest

1

b
〈τ`τL〉c + δ`,L [(δ − β) 〈τL〉 − δ] for j=0

(57)

It is straighforward to show that the eigenfunctions are

ψj(λ) = zjλ − z
−j+1
λ fa(z) (58)

where we defined

fr(zλ) =
1 +

(
1
r
− 1
)
zλ

1
r
− 1 + zλ

. (59)
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The zλ are the complex roots of the polynomial equation

z2Lλ = fa(zλ)fb(zλ) (60)

The eigenvalues are determined in terms of these roots as

λ = 2− zλ − z−1λ . (61)

There are L distinct roots which lead to L linearly independent eigenfunctions and

associated distinct eigenvalues.

To apply the results in the formula (55) we write

ψj(λ)− ψj+1(λ) = (1− zλ)
(
zjλ + z−jλ fa(zλ)

)
, (62)

which can be shown from (58). Similarly we get∑
k

ψk(λ)2 =
z2λ

1− z2λ
[1− fa(zλ)fb(zλ)]

[
1 +

fa(zλ)

fb(zλ)

]
− 2Lzλfa(zλ) (63)

where in addition to (58) we used (60).

Substituting the above two expressions in the solution (55) we arrive at

〈Jj(s)Ji(0)〉c=
∑
λ

e−λ s
(1− z2λ)Hj(zλ)

∑
`

(
z`λ − z−`+1

λ fa(zλ)
)
R`,i

z2λ [1− fa(zλ)fb(zλ)]
[
1 + fa(zλ)

fb(zλ)

]
− 2Lzλ(1− z2λ)fa(zλ)

(64)

where

Hj(zλ) = [1 + (b− 1)δj,L]−1
{

(1− zλ)
[
zjλ + z−jλ fa(zλ)

]
+ zLλ

[
zλ −

1

fb(zλ)

]
δj,L

}
(65)

where δ`,j is the Kronecker delta.

The remaining quantity to evaluate is R`,i. Using the initial conditions (52)-(53)

in the formula (??) we find that R`,i involves up to two-point correlations 〈τjτk〉ss. We

use the known results of the correlations [6] and arrive at

R`,i=


Ω`,i+κi [δ`,i+1−δ`,i]+Γi [δ`,i+1+δ`,i]+〈J 〉ss[1−2 〈τi〉ss]δ`,i for 1≤ i< L

Ω`,L +

[
〈J 〉2ssN
(N − 1)

(1− b)− δ(1− bδ)

]
δ`,L for i = L

(66)

where we defined

κi = 〈τi〉ss [1− 〈τi〉ss] +
〈J 〉2ss
N − 1

(a+ i− 1) (b+ L− i− 1) (67)

Γi =
〈J 〉2ss
N − 1

(a+ i− 1) (68)

and

Ω`,i =


− 〈J 〉

2
ss

(N − 1)
(a+ `− 1) for ` ≤ i

〈J 〉2ss
(N − 1)

(b+ L− `) for ` ≥ i+ 1.

(69)

We deferred a detailed derivation of the expression for R`,i in the ??.

The above constitutes the solution for the auto-correlation of current. In the rest

we analyse the result and derive a closed form expression.
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Appendix A. Derivation of the correlation of current.

Current Ji(t) = Yi(t)
dt

where Yi(t) is the number of jumps across bond (i, i+ 1) in a small

time window [t− dt, t]. Then

〈Ji(t)Jj(0)〉 = lim
dt→0

〈Yi(t)Yj(0)〉
dt2

In the steady state one can rewrite the above formula as

〈Ji(t)Jj(0)〉 = 〈Ji(t)〉1
P [Yj(0)=1]

dt
− 〈Ji(t)〉2

P [Yj(0)= −1]

dt
(A.1)

for t ≥ 0, where P [Yj(0)] denotes probability of Yj(0) jumps in a small time window

[−dt, 0]. The 〈〉1(2) denotes average conditioned on Yj(0) = 1 (−1).

In the steady state

(a) for i = 0

P (Y0 =1)=α [1− 〈τ1〉] dt; P (Y0 =−1)=γ 〈τ1〉 dt (A.2)

(b) for 1 ≤ i < L

P (Yi=1)=〈τi (1− τi+1)〉 dt; P (Yi=−1)=〈(1− τi) τi+1〉 dt (A.3)

(c) for i = L

P (YL=1)=β 〈τL〉 dt; P (YL=−1)=δ (1− 〈τL〉) dt (A.4)

The conditional averages

〈Ji(t)〉1(2) =


α− 1

a
〈τ1(t)〉1(2) for i = 0

〈τi(t)− τi+1(t)〉1(2) for 1 ≤ i < L

1

b
〈τL(t)〉1(2) − δ for i = L

(A.5)

The conditioned average satisfies the same equation (51); the difference is only in

the initial condition:

(a) for i = j,

〈τj(0)〉1 = 0 and 〈τj(0)〉2 = 1 (A.6)

(b) for i = j + 1,

〈τj+1(0)〉1 = 1 and 〈τj+1(0)〉2 = 0 (A.7)

This condition (A.6, A.7) comes from Yi(0) = 1 (−1) in the time window [−dt, 0]. For

the rest of the sites,

(c) for i 6= j or j + 1, and

(i) for bulk sites 1 ≤ j ≤ L− 1

〈τi(0)〉1 =
〈τiτj(1− τj+1)〉
〈τj(1− τj+1)〉

and 〈τi(0)〉2 =
〈τi(1− τj)τj+1〉
〈(1− τj)τj+1〉

(A.8)
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(ii) for j = 0

〈τi(0)〉1 =
〈τi(1− τ1)〉

1− 〈τ1〉
and 〈τi(0)〉2 =

〈τiτ1〉
〈τ1〉

(A.9)

(iii) for j = L

〈τi(0)〉1 =
〈τiτL〉
〈τL〉

and 〈τi(0)〉2 =
〈τi(1− τL)〉
(1− 〈τL〉)

(A.10)

Condition (A.8-A.10) is obtained using that τi = 0 or 1, and

〈τi〉1(2) = P [τi = 1|Yj = 1 (−1)] =
P [τi = 1, Yj = 1 (−1)]

P [Yj = 1 (−1)]
(A.11)

where P [τi, Yj] is the joint probability and P [τi|Yj] is the conditional probability of τi
given Yj in the steady state.

Substituting the above results in (A.1) and expressing in terms of nj(t) = τj(t)−〈τj〉
one gets
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