
Multi-time correlation of integrated current in

diffusive system on infinite line

Abstract. We study dynamical properties of integrated current in one dimensional

diffusive system using macroscopic fluctuations theory. For the simplest example of

diffusing point particles with hard-core repulsion we find an exact expression of the

cumulant generating functional of history of current. This allows one to extract all

multi-time correlations of integrated current. We verify our results from an exact

calculation starting from microscopic rates (still to finish). For symmetric exclusion

process we derive an exact result of two-time correlation.

Keywords:.

1. Hydrodynamic formulation

The starting point is a fluctuating hydrodynamic equation of the macroscopic density

profile ρ(x, t) of the interacting diffusing particles.

∂tρ = ∂x

[
D(ρ)∂xρ+

√
σ(ρ)η

]
, (1)

where η(x, t) is a Gaussian noise with mean zero and covariance

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). (2)

The angular bracket denotes ensemble average.

We consider the history of the integrated current Q(t) at the origin in a time window

[0, T ]. The integrated current at a time t is defined in terms of the density profile by

Q(t) =

∫ ∞
0

dx [ρ(x, t)− ρ(x, 0)] (3)

The statistics of the history of Q(t) can be characterized in terms of the generating

function 〈exp[
∫
dt λ(t)Q(t)]〉, where λ(t) is a continuous function. The logarithm of the

average is the cumulant generating functional

µ[λ] = log

[〈
exp

(∫ T

0

dt λ(t)Q(t)

)〉]
, (4)

where we use square brackets to denote a functional.

Starting with the fluctuating hydrodynamic equation (1) for the density profile

ρ(x, t), one writes the moment generating function as a path integral

〈e
∫ T
0 dtλ(t)Q(t)〉 =

∫
D [ρ, ρ̂] e−S[ρ,ρ̂], (5)
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with the action

S[ρ, ρ̂] = −
∫ T

0

dtλ(t)Qt[ρ] + F [ρ(x, 0)]

+

∫ T

0

dt

∫ ∞
−∞

dx

{
ρ̂∂tρ−

σ(ρ)

2
(∂xρ̂)2 +D(ρ) (∂xρ) (∂xρ̂)

}
.

The function F [ρ] characterizes the initial state: for the quenched setting F [ρ] = 0

whereas for the annealed setting it is the free energy associated to the initial density

fluctuation ρ(x). For the step initial state with uniform average density

ρ0(x) = Θ(−x)ρa + Θ(x)ρb (6)

this is

F [ρ(x)] =

∫ ∞
−∞

dx

∫ ρ(x)

ρ0(x)

dr
2D(r)

σ(r)
[ρ(x)− r] (7)

The action S[ρ, ρ̂] grows with increasing time and at large T the path integral is

dominated by the paths that corresponds to the least action. We denote this optimal

path by (q, p) = (ρ, ρ̂). One finds that the least action path

∂tq − ∂x (D(q)∂xq) = −∂x (σ(q)∂xp) , (8)

∂tp+D(q)∂xxp = −1

2
σ′(q) (∂xp)

2 − λ(t)Θ(x). (9)

The boundary conditions also come from minimizing action: for annealed case

p(x, 0) = Θ(x)

∫ T

0

dt λ(t) +

∫ q(x,0)

ρ0(x)

dr
2D(r)

σ(r)
(10)

p(x, T ) = 0. (11)

Here Θ(x) is the Heaviside step function. For quenched case

q(x, 0) = ρ0(x), (12)

p(x, T ) = 0. (13)

Using the least action equations one can simplify the expression for the cumulant

generatng function leading to

µ[λ] =

∫ T

0

dtλ(t)Qt[q]− F [q(x, 0)]−
∫ T

0

dt

∫ ∞
∞

dx
σ(q(x, t))

2
(∂xp(x, t))

2 , (14)

with the corresponding F for the annealed or quenched setting. In establishing (14) we

have taken into account that the derivatives ∂xp and ∂xq vanish as x→ ±∞.

As a self consistency check we verify that by substituting λ(t) = Bδ(T − t), we get

the variational problem for the analysis of the current at final time, derived in [Derrida,

Gerschenfeld].
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2. Analysis for σ(ρ) = 2ρ and D(ρ) = 1

This corresponds to non-interacting particles or particles with hard-core repulsive

interaction. The cumulant generating function

µ[λ(t)] =

∫ T

0

dt λ(t)Q(t)− F [q(x, 0)]−
∫ ∞
−∞

dx

∫ T

0

dt q (∂xp)
2 . (15)

where

F [q] =


∫ ∞
−∞

dxq(x, 0) ln

[
q(x, 0)

ρ0(x)

]
−
∫ ∞
−∞

dx [q(x, 0)− ρ0(x)] , for annealed

0. for quenched

(16)

The optimal equations determining the q(x, t) and p(x, t) are

∂tq − ∂xxq = −∂x (2q∂xp) , (17)

∂tp+ ∂xxp = − (∂xp)
2 − λ(t)Θ(x). (18)

The boundary conditions are

p(x, T ) = 0 (19)

for both annealed and quenched setting whereas

q(x, 0) =

{
ρ0(x) ep(x,0)−Θ(x)

∫ T
0 dt λ(t) for annealed ,

ρ0(x) for quenched.
(20)

Before we procced with an explicit solution of the optimal equations, we use them

to simplify the expression for the cumulant generating function. For this we use the

identity

q(∂xp)
2 = ∂t(pq)− ∂x [p∂xq − q∂xp− 2qp∂xp] + λ(t)Θ(x)q, (21)

which can be proved using the optimal equations. Substituting this in the expression

for µ in (15) and using the boundary conditions we find

µ[λ] =


∫ ∞
−∞

dx [q(x, 0)− ρ0(x)] for annealed,∫ ∞
−∞
dx

{
p(x, 0)−Θ(x)

∫ T

0

dtλ(t)

}
ρ0(x) for quenched.

(22)

In order to solve the optimal equation we make a change of variables p = lnPλ and

q = RλPλ. This yields the corresponding equations

∂tPλ + ∂xxPλ = −λ(t)Θ(x)Pλ and ∂tRλ − ∂xxRλ = λ(t)Θ(x)Rλ.

The boundary conditions in terms of this new variables yield Pλ(x, T ) = 1 and

Rλ(x, 0) =


ρ0(x) e−Θ(x)

∫ T
0 dtλ(t) for annealed,

ρ0(x)

Pλ(x, 0)
for quenched.

(23)
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Using the above boundary condition, the cumulant generating function can be expressed

in terms of these new variables. For the annealed case we find

µA[λ] =

∫ ∞
−∞

dx ρ0(x)
[
Pλ(x, 0)e−Θ(x)

∫ T
0 dtλ(t) − 1

]
(24)

whereas for quenched this is

µQ[λ] =

∫ ∞
−∞

dx ρ0(x) ln
[
Pλ(x, 0)e−Θ(x)

∫ T
0 dtλ(t)

]
. (25)

We only need the solution for Pλ(x, 0) in order to determine the generating function.

The expression could be rewritten in an alternate form using a symmetry

Pλ(−x, t) = P−λ(x, t)e
∫ T
t dt′λ(t′) (26)

which can be derived using the equation for P . This leads to

µA[λ] = ρb

∫ ∞
0

dx
[
Pλ(x, 0)e−

∫ T
0 dtλ(t) − 1

]
+ ρa

∫ ∞
0

dx
[
P−λ(x, 0)e

∫ T
0 dtλ(t) − 1

]
(27)

µQ[λ] = ρb

∫ ∞
0

dx ln
[
Pλ(x, 0)e−

∫ T
0 dtλ(t)

]
+ ρa

∫ ∞
0

dx ln
[
P−λ(x, 0)e

∫ T
0 dtλ(t)

]
. (28)

In this form one can easily see that for ρa = ρb the cumulant generating function is even

function of λ.

The solution for Pλ(x, t) can be expressed in the form of an integral equation

Pλ(x, t) = 1 +

∫ T

t

dt1

∫ ∞
0

dz1λ(t1)g(z1, t1|x, t)Pλ(z1, t1), (29)

where g is the diffusion propagator

g(z, τ |x, t) =
1√

4π(τ − t)
exp

[
−(z − x)2

4(τ − t)

]
(30)

At this stage we introduce a parameter ε by defining

λ(t) = ε h(t). (31)

An iterative expansion transforms the solution for Pλ as

Pλ(x, t) = 1 +
∞∑
n=1

εn
∫ T

t

dt1

∫ T

t1

dt2 · · ·
∫ T

tn−1

dtnh(t1) · · ·h(tn) Kn[x, t, t1, · · · , tn], (32)

where we defined

Kn[x, t, t1, · · · , tn] =

∫ ∞
0

dz1 · · ·
∫ ∞

0

dzn g(zn, tn|zn−1, tn−1) · · · g(z1, t1|x, t). (33)

The above solution substituted in the expressions (27)-(28) yields the result for the

cumulant generating functions.

Using the results one can show that for annealed case the n point cumulant with

t1 ≤ t2 ≤ · · · ≤ tn is

〈Q(t1), . . . , Q(tn)〉annealed = (ρa + (−1)nρb)
n∑
k=1

∑
σk

(−1)kΨk(σkt) (34)
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where the σkt is a subset of k elements chosen from the set {t1, . . . , tn} and ordering

them according to their increasing values. For example σn−1t includes elements

{(t1, . . . , tn−1), (t2, . . . , tn), (t1, t3, . . . , tn−1), . . . , (t1, . . . , tn−2, tn))}. (35)

The quantity Ψk is defined as

Ψn(t1, . . . , tn) =

∫ ∞
0

dx[Kn(x, 0, t1, . . . , tn)− 1] (36)

One can verify that this leads to first few cumulants

〈Q(t)〉 = (ρa − ρb)
1√
t

(37)

〈Q(t1)Q(t2)〉 = (ρa + ρb)
1

2
√
π

[
√
t1 +
√
t2 −

√
|t2 − t1|] (38)

Similar computation can be done for the annealed case (I still have to finish this)

Microscopic analysis *** Can one prove the result by counting ? ***

3. Two-time correlation

We consider the equilibrium case with ρa = ρb = ρ. In this case the average current

〈Q(t)〉 = 0. We write a series expansion

q(x, t) = ρ+ ε q1(x, t) + ε2 q2(x, t) + · · · , (39)

p(x, t) = ε p1(x, t) + ε2 p2(x, t) + · · · , (40)

where we have used that, for ε = 0 the solution q(x, t) = ρ and p(x, t) = 0.

The cumulant generating function can also be expanded in a series as

µ[εh(t)] = εµ1[h(t)] + ε2µ2[h(t)] + · · · . (41)

By definition, the coefficient of εn gives the n-time cumulant of the X(t).

µn[h] =

∫ T

0

dt1...

∫ T

0

dtn h(t1)...h(tn)
1

n!
〈X(t1)...X(tn)〉c. (42)

With the series expansion (39)–(40), the optimal equations at the linear order

becomes

∂tp1 +D(ρ)∂xxp1 = − h(t)Θ(x), (43)

∂tq1 −D(ρ)∂xxq1 = − σ(ρ)∂xxp1., (44)

One can similarly find the linear order term of current Q(t) is

Q1(t) =

∫ ∞
0

dx [q1(x, t)− q1(x, 0)] , (45)

Substituting the series expansion in the expression (14) we get

µ2[h(t)] =

∫ T

0

dt

∫ ∞
0

dx h(t) [q1(x, t)− q1(x, 0)]− F2 −
σ(ρ)

2

∫ T

0

dt

∫ ∞
−∞

dx (∂xp1)2 (46)
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where F2 is the order ε2 term of the F [q(x, 0)]

F2 =


0 for quenched

D(ρ)

σ(ρ)

∫ ∞
−∞

dx (q1(x, 0))2 for annealed
(47)

Comparing with the analysis in [Krapivsky, Mallick, Sadhu, JSM 2015] one can

easily see that

〈Q(t1)Q(t2)〉quench =
σ(ρ)√
πD(ρ)

1

2

[√
t1 + t2 −

√
|t1 − t2|

]
. (48)

whereas

〈Q(t1)Q(t2)〉anneal =
σ(ρ)√
πD(ρ)

1

2

[√
t1 +
√
t2 −

√
|t1 − t2|

]
(49)

Non-equilibrium case

The perturbative analysis can be done for D(ρ) = 1.

4. Microscopic calculation for symmetric exclusion process

Consider a symmetric exclusion process on an infinite line with step initial condition

ρ0(x) = ρaΘ(−x) + ρbΘ(x). We derive the two point correlation of integrated current

between any two sites.

We start with writing the equation for average occupation variable

〈τ(t)〉
dt

= M〈τ(t)〉 (50)

where τ = {· · · , τi, · · ·} and M is the Laplacian matrix

Mi,j = δi,j+1 − 2δi,j + δi,j−1. (51)

The solution is

〈τ(t)〉 = G(t, 0)〈τ(0)〉 (52)

where we defined a generating function (matrix)

dG(t, t′)

dt
= MG(t, t′) with G(t′, t′) = I (identity) (53)

We denote the elements of G(t, t′) as gi,j(t, t
′).

From the rates one finds that the average of integrated current between sites i and

i+ 1 as

〈Qi(t)〉
dt

= 〈τi(t)〉 − 〈τi+1(t)〉. (54)

The solution is

〈Qi(t)〉 =

∫ t

0

dt′ [〈τi(t′)〉 − 〈τi+1(t′)〉]

=

∫ t

0

dt′
∑
j

[gi,j(t
′, 0)− gi+1,j(t

′, 0)] 〈τj(0)〉 (55)
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Auto-correlation: Starting from the rates one can write

〈Qj(t)Qi(t
′)〉c

dt
= 〈τj(t)Qi(t

′)〉c − 〈τj+1(t)Qi(t
′)〉c (56)

For the right hand side we use

〈τj(t)Qi(t
′)〉c =

∑
k

gj,k(t, t
′)〈τk(t′)Qi(t

′)〉c. (57)

This leads to

d〈Qj(t)Qi(t
′)〉c

dt
=
∑
k

[gj,k(t, t
′)− gj+1,k(t, t

′)] 〈τk(t′)Qi(t
′)〉c (58)

Integrating

〈Qj(t)Qi(t
′)〉c = 〈Qj(t

′)Qi(t
′)〉c +

∑
k

∫ t

t′
dt′′ [gj,k(t

′′, t′)− gj+1,k(t
′′, t′)] 〈τk(t′)Qi(t

′)〉c (59)

The two-time correlation of current is expressed in terms of two equal time

correlations: the 〈τj(t)Qi(t)〉c and 〈Qj(t)Qi(t)〉c. In the following we determine them.

Starting from the rates one finds

d〈τj(t)Qi(t)〉c
dt

=
∑
k

Mj,k〈τk(t)Qi(t)〉c + Aj,i(t) (60)

with

Aj,i(t) =


〈[τj+1(t)− 〈τj(t)〉] [τi(t)− τi+1(t)]〉, for j = i

〈[τj−1(t)− 〈τj(t)〉] [τi(t)− τi+1(t)]〉, for j = i+ 1

〈τj(t)τi(t)〉c − 〈τj(t)τi+1(t)〉c, for others

(61)

Integrating one obtains

〈τj(t)Qi(t)〉c =
L∑
k=1

∫ t

0

dt′gj,k(t, t
′)Ak,i(t

′) (62)

This leads to for T2 > T1:

〈Qj(T2)Qi(T1)〉c = 〈Qj(T1)Qi(T1)〉c

+
∑
k

∑
`

∫ T2

T1

dt

∫ T1

0

dt′ [gj,k(t, T1)− gj+1,k(t, T1)] gk,`(T1, t
′)A`,i(t

′). (63)

The last quantity to determine is 〈Qj(T )Qi(T )〉c. We show for j 6= i

d〈Qj(T )Qi(T )〉c
dT

= 〈τj(T )Qi(T )〉c−〈τj+1(T )Qi(T )〉c+〈τi(T )Qj(T )〉c−〈τi+1(T )Qj(T )〉c(64)

whereas for j = i we get

d〈Q2
i (T )〉
dT

= 2 [〈τi(T )Qi(T )〉c − 〈τi+1(T )Qi(T )〉c]+〈(τi(T )− τi+1(T ))2〉.(65)

Integrating over time and using (62) we get for j 6= i

〈Qj(T )Qi(T )〉c =
L∑
k=1

∫ T

0

dt

∫ t

0

dt′ [gj,k(t, t
′)− gj+1,k(t, t

′)]Ak,i(t
′)
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+
L∑
k=1

∫ T

0

dt

∫ t

0

dt′ [gi,k(t, t
′)− gi+1,k(t, t

′)]Ak,j(t
′) + δj,i

∫ T

0

〈[τi(t)− τi+1(t)]2〉 (66)

The (66) along with (63) is the solution for the two-time correlation in symmetric

exclusion process. For an explicit solution one needs to use the result of the two-point

correlations of the occupation variables given in [Derrida, Gerschenfeld, Bethe ansatz

Paper]. For the special case of ρa = 1 and ρb = 0 the expression is simple

〈τi(t)〉 =

∫
dz

2πîz
et(z+1/z−2) zi

1− z
(67)

〈τi(t)τj(t)〉c =

∫
dzdz′

4π2zz′
et(z+1/z+z′+1/z′−4) zizj

zz′ + 1− 2z′
(68)

This leads to an exact expression of the two-time correlation between any two

sites. For the large time behaviour one may use the scaling function given in Eq(37) in

[Derrida, Gerschenfeld].

Simple case: A simple example is the equilibrium case where ρa = ρb = ρ. Here the

two-point correlation function is independent of time and

〈τj(t)τi(t)〉c = ρ(1− ρ)δi,j. (69)

Show that the time dependence is same as found using macroscopic approach in (49).

Appendix A. A closed form solution for P and Q (I have to check carefully).

P (x, t) =

{
P1(x, t) for x < 0

P2(x, t) for x > 0
, (A.1)

where

P1(x, t) = 1 +

∫ T

t

dτ
1

2
erfc

(
−x√

4(τ − t)

)
λ(τ) exp

(
1

2

∫ T

τ

dr λ(r)

)

P2(x, t) = exp

(∫ T

t

dr λ(r)

)[
P (x, T )−

∫ T

t

dτ
1

2
erfc

(
x√

4(τ − t)

)
λ(τ) exp

(
−1

2

∫ T

τ

dr λ(r)

)]
.

Similarly, the solution for Q(x, t) yields, The solution

Q(x, t) =

{
Q1(x, t) for x < 0

Q2(x, t) for x > 0
, (A.2)

where

Q1(x, t) = P (x, 0) +

∫ t

0

dτ
1

2
erfc

(
−x√

4(t− τ)

)
λ(τ) exp

(
1

2

∫ τ

0

dr λ(r)

)

Q2(x, t) = exp

(∫ t

0

dr λ(r)

)[
P (x, 0)−

∫ t

0

dτ
1

2
erfc

(
x√

4(t− τ)

)
λ(τ) exp

(
−1

2

∫ τ

0

dr λ(r)

)]
.
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