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Graphical Enumeration Techniques in

Statistical Physics:

I: Series expansions and Animal problems

Deepak Dhar
Department of Theoretical Physics,

Tata Institute of Fundamental Research,
Homi Bhabha Road, Mumbai 400 005, INDIA

Abstract

This is a pedagogical introduction to some graphical enumeration

problems in statistical physics. I start with the high-temperature and

low-temperature expansions of the Ising model. I then discuss enumer-

ation of clusters in the percolation problem, and Martin’s algorithm

for their enumeration. Exact enumeration of two-dimensional directed

animals then described, and extention of this result to the generating

function of more general heaps is explained.
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The aim of these lecture notes is to introduce the readers to the tech-
niques of graphical enumeration, for solving problems in statistical physics.
I assume that you have already had the first course in statistical physics, and
basic principles of equilibrium statistical physics are known. In particular,
I assume that you have already seen the statistical mechanical treatment of
ideal gases (classical monoatomic ideal gases, and the ideal Bose and Fermi
gases). The problem of a system of coupled harmonic oscillators reduces to
that of non-interacting normal modes, and can be solved similarly. Thus one
can calculate the partition function of a system of non-interacting phonons,
or of photons, and see how the average energy of the system varies as a
function of temperature.

1 Ising Model in one dimension

Let us consider a line of N sites, labelled by integers 1 to N . At each site i,
we have a spin σi, which takes values ±1. The Hamiltonian of the system is

H = −J
N−1
∑

i=1

σiσi+1 (1)

There are 2N distinct configurations. The system is in contact with a
heat bath at temperature T , and each configuration C occurs in the canonical

ensemble, with a probability Prob(C) = exp[−βH(C)]/Z, where

Z =
∑

C

e−βH(C) (2)

Our first problem is to calculate Z(β).
Method 1: We consider a change of variables. Define Ising variables {τi},
with τ1 = σ1, and τi = σi−1σi, for i > 1.

Then, we get H = −J
∑N

i=2 τi. The summation over 2N values of {σi} is
same as summation over 2N values of {τi}. And we get

Z = 2N [cosh βJ ]N−1 (3)

We can define free energy per site in the thermodynamical limit of large
N as f(β) = limN→∞−kBT (logZ)/N . Then we get

f(β) = −kBT log(2 cosh βJ) (4)
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Figure 1: A ladder graph.

Method 2: The Transfer Matrix Method:
Define Zn(+) = partition function of a chain of n sites with left-most site
held fixed +1, and sum over the rest. Define Zn(−) similarly. Then we can
write the recursion equation

[

Zn+1(+)
Zn+1(−)

]

=

[

eβJ e−βJ

e−βJ eβJ

] [

Zn(+)
Zn(−)

]

(5)

Calling the matrix on the right hand side of this equation as the transfer
matrix T, we write

[

Zn+1(+)
Zn+1(−)

]

= T

[

Zn(+)
Zn(−)

]

. (6)

These recursion equations can be easily solved to give Zn(+) and Zn(−)
explicitly as functions of n

[

Zn(+)
Zn(−)

]

= Tn−1

[

1
1

]

(7)

with
Zn = Zn(+) + Zn(−) (8)

Let the eigenvalues of T be λ+ and λ−, with λ+ > λ−. Then, for large
N , we get ZN ∼ λN

+ , and f(β) is as calculated before.
Exercise 1: Show that the partition function of Ising model on a one-dimensional
ring of N sites is ZN = Tr[T N ].
Exercise 2: Calculate the partition function of the Ising model on a 2 × N
ladder graph ( Fig. 1). In this case, the transfer matrix T is a 4× 4 matrix.
Excercise 3: Suppose we add an external magnetic field, so that the hamil-
tonian is H ′ = H − h

∑

i σi. Extend the treatment above, using the transfer
matrix, to calculate the free energy per spin f(β, h).

3



2 High -temperature expansions for Ising sys-

tems

We now want to calculate Z for a more non-trivial case. Consider the two-
dimensional Ising model. Here we have Ising spins on the vertices of an
L × M square lattice. Each spin has a ferromagnetic coupling to its nearest
neighbor of strength J . Let σi,j be the spin at site (i, j). The hamiltonian is
now written as

H = −J
∑

i,j

[σijσi+1,j + σi,jσi,j+1] (9)

We want to calculate the partition function

Z =
∑

{σ}

exp[−βH({σ})] (10)

where {σ} denotes a configuration of spins on the lattice, and the sum over
{σ} is sum over all spin configurations.

For Ising variables σ and σ′, which take only values ±1, we have the
identity

exp(βJσσ′) = cosh(βJ)[1 + xσσ′] (11)

where x = tanh(βJ).
Then we get

Z = [cosh βJ ]NB
∑

{σ}

∏

B

(1 + xσBσ′
B) (12)

where the product over B is over all bonds of the lattice, and σB and σ′
B

denote two spins at the end of the bond B. NB is the number of bonds in
the graph. Now Z is a polynomial in x (apart from the simple multiplying
prefactor). We expand the product, and then first do the summation over
{σ} for each term, and then sum the terms.

Since the number of terms is very large, we need a good way of specifying
the different terms. The most convenient scheme that has been found to
work is this: we think of the square lattice as specified by its graph, i.e. a
set of vertices, with a bond between vertices that are nearest neighbor on
the square lattice. After this, we do not worry about the actual distances
between vertices, or angles between bonds. Each term in the expansion is
associated with a diagram; we draw a bond between two sites for the term
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Figure 2: A configuration that contributes to the high temperature expansion
for the Ising model

xσBσ′
B, and no bond corresponding to the 1 in (1 + xσBσ′

B). Each such
diagram has only a subset of bonds of the original graph. There is a one-to-
one correspondence between different terms in the expansion, and different
diagrams. Then the summation over the 2NB terms in the expansion Eq.(12)
is equivalent to summing over all possible 2NB diagrams.

Now consider one particular diagram corresponding to specific term. It is
easy to sum over {σi}, and we get zero, if there is any vertex in the diagram
that has an odd number of bonds. If the number is even at all vertices (an
example of such a diagram is shown in Fig. 2), then the weight is 2Ns , where
Ns is the number of sites in the graph ( using σ2

i,j = 1).

Then, the partition function Z can be written as Z = 2Ns[cosh(βJ)]NB Z̃,
with

Z̃ =
∑

ℓ

C(ℓ, L, M)xℓ (13)

where C(ℓ, L, M) is the number of ways one can draw a diagram with ℓ links
on the L × M square lattice , where each vertex has even number of bonds.
The problem of determining the partition function of the Ising model has
been reduced to the enumeration problem of some kinds of diagrams. For
high temperatures (small x), we may keep only terms upto some maximum
power of x. Then the result is exact upto that order in x. Hence the name
“high temperature expansion”.

We note that C(0, L, M) = 1. Let us assume periodic boundary condi-
tions for the lattice. For ℓ = 1, 2, 3, we have C(ℓ, L, M) = 0. The coefficient
C(4, L, M) is the number of ways one can put a small square in different
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+4 +2

Figure 3: All possible lattice polygons of perimeter 8 on the square lattice.

positions on the lattice. Hence this number is LM = Ns. For ℓ = 6, only
diagram possible is a hexagon enclosing two adjacent small squares. Thus,
the RHS of Eq.(13) can be written as

1 + Nsx
4 + 2Nsx

6 + O(x8) (14)

The enumeration of terms of order x8 is more complicated. One can have
two small squares, separated from each other, or one can have one simple
polygon of perimeter 8. There are Ns(Ns − 5)/2 terms of the first type. An
exhaustive enumeration of possible lattice octagons ( see Fig. 3) shows that
the term is Ns(Ns + 9)x8/2.
We define

F (x) = lim
Ns→∞

1

Ns
log Z̃ (15)

We assume that F (x) has a Taylor expansion in powers of x :

F (x) = F4x
4 + F6x

6 + F8x
8 + . . . (16)

Then clearly exp[NsF (x)] has a Taylor expansion in powers of x given by

exp[NsF (x)] = 1+NsF4x
4 +NsF6x

6 +[(1/2)F 2
4 N2

s +F8Ns]x
8 +O(x10) (17)

Comparing with the exact calculated numbers C(ℓ, L, M), we see that
F4 = 1, F6 = 2, and F8 = 9/2. So that we have

F (x) = x4 + 2x6 +
9

2
x8 + . . . (18)

We can also write series expansion for eF (x), which is called the partition
function per site

eF (x) = 1 + x4 + 2x6 + 5x8 + . . . (19)

At higher orders, C(ℓ, L, M) would have terms that vary as larger powers
of Ns. However, these higher powers cancel out exactly automatically, if
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we have matched the terms of order N exactly to all lower orders in x.
Then, the coefficients Fℓ are independent of Ns. The fact that terms in the
partition function that vary as higher power of Ns than 1 cancel on taking the
logarithm, is a consequence of the extensivity of free energy. This important
technique is variously called the linked cluster expansion, or the cumulant
expansion. For a more general discussion, see [1]. A very readable elementary
account of series expansion methods in statistical physics may be found in
[2].

So, now, with the linked cluster expansion theorem, the graphical enumer-
ation problem, for any fixed order ℓ, reduces to a finite enumeration problem,
where the formal limit L, M → ∞ has been taken already.

Clearly, evaluation of still higher orders requires some practice in graph-
ical enumerations. One can use the enormous power provided by digital
computers, to calculate these series to very high orders. For example, for
the three dimensional Ising model, the high-temperature series has been ex-
tended up to 46th order in x [3]. For many other lattice models, similarly long
series expansions have been calculated. For special cases, one can get much
longer series. For example, for the directed percolation on the square lattice,
the series expansion is known exactly to 171 orders! And this is the best one
can do, the exact solution is not known [4]. The series expansion method
provides a systematic method of making better and better approximations to
the exact answer for a problem with no analytical exact solution. Note that,
in contrast, most other approximations used in different branches of physics
often involve an error that cannot be made “as small as you wish” if you are
willing to work harder ( e.g. “the effective medium approximation”, or the
“random phase approximation”).

Since one can generate such series to very high orders, the analysis of such
series has also become quite sophisticated. For example, in [5], a high order
series is used to guess the exact functional form of the answer for counting a
type of almost-convex polygons ( polygons whose perimeter differs from that
of bounding rectangle by at most 4 units), by exact enumeration of the series
for perimeter up to ℓ = 110!. [An exclamation mark, not a factorial sign.]
Excercise 4: Use the high temperature expansion, to show that for the prob-
lem in Excercise 1, ZN = [2 cosh βJ ]N(1 + xN).
Excercise 5: Consider the Ising model on the square lattice with 4-spin cou-
plings

H4 = −J
∑

squares

σi,j σi,j+1 σi+1,j σi+1,j+1 (20)
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Figure 4: A configuration of the Ising model at low temperatures. The +
and − signs denote regions where the spins are + and − respectively.

Show that in the high temperature expansion of this model, all terms except
the lowest order are zero.
Excercise 6: Extend the calculation of high temperature series expansion
given in Eq.(19) to order x10.

3 Low-temperature expansion of the Ising model

and self-duality

One can also develop a low-temperature expansion for the free energy of the
Ising model. We note that at low temperatures, a typical configuration would
have most spins aligned parallel ( say +), and a few − spins interspersed [Fig.
4]. Then, a configuration in which there are ℓ ‘bad’ bonds has a relative
weight exp(−2ℓβJ), compared to the ground state. writing this weight as yℓ,
we see that the partition function looks like

Z = e2NsβJ [1 + Nsy
4 + 2Nsy

6 + . . .] (21)

These graphs are the same as in the high temperature expansion! We thus
get a non-trivial relation between the partion function Z(β) and partition
function Z(β ′) at a different value β ′ given by

tanh β ′J = e−2βJ , sinh βJ sinh β ′J = 1 (22)
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and
Z(β) exp(−2NsβJ) = Z(β ′)[2 cosh2 β ′J ]−Ns (23)

If β is small, β ′ is large, and vice versa. At one particular value β∗ we have
β = β ′. Then this point must be the common boundary between the high -
and low-temperature phases. Thus, we get that the critical temperature for
the square lattice Ising model is given by the condition

sinh(J/kBTc) = 1 (24)

More generally, the high-temperature graphical expansion of the partition
function of a lattice model can often be reinterpreted as the low-temperature
graphical expansion of some other model. Such models are said to be low-
tempearture-high temperature duals of each other. The Ising model on the
square lattice is said to be self-dual.

4 Percolation and Animal Problems

We will now discuss the use of graphical enumeration technique in percola-
tion and animal problems. The percolation problem is easy to state, and
quite nontrivial to study. In particular, it provides a very simple setting for
studying phase transitions.

Consider a box full of many small wooden and metal balls, equal in size,
and thrown in at random. These will form what is known in literature as a
random closed pack structure. We would like to determine the bulk electical
conductivity of this mixture, as a function of the relative fraction of metal
balls. Call this fraction p. If p is very small, there are few isolated metal balls
in a sea of insulating spheres, and the bulk material is an insulator. If p is
near 1, the material will be conducting. Also, we note that if we change any
ball from insulating to conducting, the conductivity can only increase. Thus,
the conductance of this disordered medium is a non-decreasing function of p.
And there is some value pc, such that for p < pc, the conductance is zero, but
for p > pc, there are conducting paths between opposite faces of the sample,
and the mean bulk conductance is non-zero.

Thus, we have a phase transition from an insulating to a conducting
phase, as p is increased above pc. Perhaps this is the simplest example of a
phase transition. It is a geometrical phase transition, and the phase transition
occurs as a function of the concentration p. Temperature does not play any
role.
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Figure 5: Schematic dependence of the normalized conductance of a medium
containing insulating and conducting beads, on the concentration p of con-
ducting beads

One can define a lattice model of percolation, instead of the continuum
model defined above, which is simpler to study. In our mixed bead example,
we imagine that the beads are packed in a regular closed packed lattice
structure. In the site percolation model, we have a lattice, say a hypercubical
lattice in d dimensions, and each site is occupied or empty, independent of
other sites, with probability p or (1−p) respectively. In the bond-percolation
model, all sites are present, but links between nearest neighbor sites may be
present or absent, again independent of other links, with probability p and
(1−p) respectively. In Fig. 6, we have shown a realization of site percolation
on a square lattice for different p.

In fact, the percolation transition is one of the simplest examples of a
continuous phase transition. As p tends to pc from below, The mean size of
a connected cluster diverges as |pc − p|−ν . The mean number of sites in the
cluster to which a randomly chosen site belongs, diverges as |pc − p|−γ. For
p > pc, the mean fraction of sites in the infinite cluster increases as (p−pc)

β .
These exponents ν, γ, and β are similar to the exponents defined in other

critical phase transitions. In fact, the relationship of percolation model to
Ising model is quite deep. One can define a more general model, called the
q-state Potts model, for which q = 1 is the percolation problem, and q = 2
corresponds to the Ising model [6]. Constraints of time and space do not

10



Figure 6: Site percolation on a square lattice. some typical configurations
as a function of density of occupied sites. The number in each panel gives
the density in percent. A spanning cluster is indicated for p = 0.60. Figure
taken from [7].
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Figure 7: Different unrooted clusters with 5 sites on the square lattice.

permit us to pursue this direction here.
Consider site-percolation on the square lattice. Define Probp(s) as the

probability that the origin belongs to a connected cluster of exactly s oc-
cupied sites. This is independent of the size of the lattice, so long as the
boundaries are far enough, and the largest s-site cluster cannot reach the
boundary.

It is easy to see that Probp(s = 0) = q, Probp(s = 1) = pq4, and
Probp(s = 2) = 4p2q6. Here q = 1 − p. For larger s, one has to consider all
possible different clusters that can occur having s sites. For a cluster having
s sites, and t perimeter sites ( nearest neighbor of sites in cluster, but not
part of cluster), the probability weight is psqt. In general, we have

Probp(s) =
∑

t

N(s, t)psqt (25)

We would like to determine N(s, t) for different s and t, and for different
lattices. In Fig. 7, we have shown all the different types of clusters with
5 sites. The number in front of the cluster is the total number of distinct
clusters obtainable from it by reflections or rotations. Also, the clusters
shown are unrooted. The number of rooted clusters is larger than this by
a factor 5, as in any cluster, there are 5 ways of marking which site is the
origin.

5 Algorithm for enumerating clusters

While, in principle, for any finite s, there is a finite number of possible
clusters, which can be put into a finite list, producing such a list becomes
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quite nontrivial, even for s = 6. One has to ensure that no cluster is omitted,
and there is no double counting. One needs an algorithm to organize such
a list. Then the actual tedious enumeration can be done by a computer.
One such algorithm is called the Martin’s algorithm. It allows us to encode
a complicated branched structure of the cluster by a finite binary sequence
10011001 . . .1.

Given a cluster of s sites on the square lattice, Martin’s algorithm assigns
a label 1, 2, 3... to the sites of the cluster, and its perimeter sites. Let us
denote the ith entry of the list as S(i), which is the site with label i. We
define the occupation number N(i) = 1, if S(i) is occupied, and 0 otherwise.
Since in this process we assign labels to all occupied sites, and their neighbors,
the number of labels used when the above process stops is greater than s.
Let the number be r. Then the cluster is coded by an r-bit binary sequence
10011100101 . . ., where the i-th bit in the sequence gives the value of N(i).

The algorithm proceeds to generate the labeling of sites as follows:
1. We first choose a priority ordering of neighbors for each site of the lattice.
This rule can be different at different sites, but will remain the same for all
clusters. For example, on the square lattice, we may choose the ordering
N > E > W > S for all sites.
2. The root is labelled as site 1. Clearly, N(1) = 1.
3. At this point, there is only 1 entry in the list S, i.e. the root.
4. Go to the first unvisited occupied site in the list.
5. Assign labels to all unassigned neighbors of this site consecutively, using
the chosen priority rule, and add them to the list.
6. If there are no occupied sites without assigned labels, stop. Else, go to
step 4.

Clearly, the algorithm will produce a unique binary sequence N(i) for any
given cluster. But, a little bit of thought shows that given the sequence N(i),
and the known priority rule for neighbors at each site, one can reconstruct
the cluster completely.

As an example, for the left-most cluster in Fig. 7 in the lower row, if the
root site is the left-most occupied site, the corresponding binary sequence is
101000101100000. Also, there is no valid cluster corresponding to the binary
sequence 100001.

A cluster with s sites will have a binary sequence with s ones. The
number of zeroes in the sequence will be different for different clusters, but it
is ≤ 2s+2 for the square lattice. Then, one can produce all binary sequences
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with s ones, and at most 2s + 2 zeroes, list the sequences that correspond
to valid connected clusters in (say) the dictionary order. This can be done
efficiently on the computer using the backtracking strategy. A very elegant
and short computer program in Fortran that implements this for a general
translationally invariant lattice, using less than 40 lines of program, is given
in [8].

6 The Animal Problem

The solution of the percolation problem, then, involves determination of
the cluster numbers N(s, t), for different s, t, and for different lattices. In
particular, we are interested in studying how these numbers vary when s and
t are much greater than 1. This is usually a difficult problem, and has been
solved exactly only in a few lucky cases.

One can define the two-variable generating function for N(s, t) as

Ñ(x, y) =
∞
∑

s=1

∞
∑

t=1

N(s, t)xsyt (26)

For the original percolation problem, y = 1 − x. A simpler case of the
problem corresponds to setting y = 1. This was given the catchy name
“the Animal problem” by Harary, where one imagines all possible shapes an
animal with s cells, living on a lattice, can have, with the only constraint
being the connectivity constraint that all cells must be connected. We define
A(s) as the number of animals of s sites. Then

A(s) =
∞
∑

t=1

N(s, t) (27)

and the corresponding generating function

Ã(x) =
∞
∑

s=1

A(s)xs = Ñ(x, y = 1) (28)

Let us first prove that A(s) increases at most exponentially with s. We
note that on a lattice with coordination number z, a cluster of s sites, will
have at most zs perimeter sites. Then the corresponding binary sequence
will be at most of length (z+1)s. This number is ≤ 2(z+1)s. Not all of binary
sequences correspond to connected clusters. Hence

A(s) ≤ 2(z+1)s. (29)
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B(x)

B(x)

B(x)

Figure 8: (a) A binary tree. The root site is denoted by a filled circle. (b)
Generating function for enumerating animals on the 3-coordinated Bethe
lattice. Here B(x) denotes sum over all animals on the binary tree with that
root.

Exercise 7: Improve the bound (29).
Also, it is easy to see that A(s) > 2s. Thus, it grows exponentially with

s, for large s. In fact, one finds that

A(s) ∼ Cλss−θ (30)

where C and λ are constants, and θ is some exponent, that is found to be
independent of the details of the lattice, and only depends on dimension.

In the original percolation problem, for p < pc, the probability that a
randomly chosen site belongs to a cluster of size varies as Dpe

−Cpss−θ, where
Cp and Dp are p-dependent functions, for Cps ≫ 1. The exponent θ is
independent of p. It can thus be considered as an off-critical exponent of the
percolation problem. Thus, while the “critical exponents” of percolation can
only be seen only very near the critical point, the “off-critical exponent” θ is
seen in the entire low-density phase of percolation theory. For a discussion
of other off-critical exponents of the percolation theory, see [9].

6.1 The Bethe lattice

One simple case where the function Ã(x) can be determined exactly is for
a Bethe lattice with coordination number z. We will consider here the case
z = 3. We define Ã(x) as the sum over all animals containing the origin,
with the weight of an animal of size s being xs. Let B(x) be the generating
function of all animals rooted to the vertex of an infinite binary tree ( see

15



Fig. 8). Then, clearly, we have

B(x) = x[1 + B(x)]2 (31)

This quadratic equation can be solved for B(x), giving

B(x) =
1

2x
[1 − 2x −

√
1 − 4x] (32)

Which can be Taylor expanded to give

B(x) = x + 2x2 + 5x3 + . . . (33)

Finally, the generating function Ã(x) is given by

Ã(x) = x[1 + B(x)]3 (34)

Which then gives

Ã(x) = x + 3x2 + 9x3 + 28x4 + . . . (35)

The singularity closest to origin of Ã(x) in the complex x-plane occurs at
x = 1/4, and from Eq. (31) and (33), it is easy to see that Ã(x = 1/4− ǫ) ∼
2 − 12

√
ǫ to leading order in ǫ, for small ǫ. This implies that An ∼ 4nn−3/2,

for large n.

6.2 Directed Animals

One can also obtain the exact animal generating function for a variant of the
animal problem for a regular two dimensional graph. We consider a directed
square lattice, where all bonds are directed right or up. A directed animal is
a connected cluster of sites where each site belonging to the cluster is either
the origin, or has a downward or leftward neighbor that also belongs to the
cluster. An example is shown in Fig. 9.

The directed animal problem turns out to be much simpler than the
corresponding undirected problem, as the allowed configurations of animals
for x + y > T depend on the sites occupied on the line x + y = T and not on
the configuration of the animal below this line. In fact, one can think of T as
a “time” coordinate, and then the directed animal becomes the space-time
plot of a process where a particle can move one step left or right, divide into
two, or die.
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Figure 9: A directed animal on a square lattice.

Let An be the number of animals with n sites on the square lattice. We
define A(x) =

∑

n Anxn. Then it is easily seen that

A(x) = x[1 + 2A(x) + A11(x)] (36)

where A11(x) is the generating function for all directed animals that have a
source at two adjacent point along the line x + y = 1, say (1, 0) and (0, 1).
Similarly, we can write A11(x) in terms of more complicated functions

A11(x) = x2[1 + 3A(x) + 2A11(x) + A101(x) + A111(x)] (37)

Here A101(x) and A111(x) are generating function for animal with source 101
and 111 along a constant -T line ( in a fairly self-explanatory notation).

One can similarly write recursion equations for A101(x) etc. More gen-
erally, let C be a configuration of occupied sites on a line of constant time
x + y = T . Then AC(x) is the generating gunction of all directed animals
with starting from a point in C. Then it is easy to see that AC(x) satisfies
the recursion equation

AC(x) = x|C|

[

1 +
∑

C′

AC′(x)

]

(38)

where C ′ is a possible nonempty configuration of occupied sites on the line
x+y = T +1, and the sum over C ′ is over all such sources. |C| is the number
of sites in C.
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One can use such recursion relations to generate the series expansions for
AC(x) to very high orders [10].

We can use these recursion relations to establish the equivalence of the
1 + 1-dimensional directed animal problem to that of time evolution of a
one dimensional lattice gas with nearest neighbor exclusion, and no particle
conservation. This then gives us a very simple example of the important
phenomena of dimensional reduction, where the calculation of properties of
some d-dimensional system reduces to that of a different lower -dimensional
problem ( here lower by 1). This is very useful, as the lower dimensional
problems are usually easier to solve [11].

Let us consider time evolution of a lattice gas on a line. Assume that
evolution is discrete time, Markovian, with odd-even parallel update with
the following evolution rule: A site x at time t is occupied with probability
p, if at time t − 1 both sites x − 1 and x + 1 were empty, and is unoccupied
otherwise, irrespective of its earlier value. It is easy to see that these rules
satisfy detailed balance condition corresponding to the hamiltonian

H = +∞
∑

i

nini+1 − µ
∑

i

ni (39)

The somewhat non-standard notation is a short hand for interaction strength
J , in the limit J tends to infinity. In the long time steady state of the
Markov chain, the probabilities of different configurations are same as in the
Boltzmann-Gibbs measure corresponding to H . In the latter, one can easily
determine the average density ρ(z) of the gas corresponding to the activity
z = exp(βµ). We have

ρ(z) =
1

2

[

1 − 1√
1 + 4z

]

(40)

We can now ask what is the probability that in the steady state of this
Markov process, if we observe at a particular time T , the set of sites C
will be all occupied. Denote this by Prob(C). Clearly, Prob(C) is equal to
the probability that each of the sites was vailable of occupation, and it was
occupied. The latter probability is p|C|. the former is the probability that
each of the neighbors of sites in C was not occupied. This is easily determined
using the inclusion -exclusion principle. Thus, Prob(C) satisfies the recursion
equation

Prob(C) = p|C|

[

1 +
∑

C′

(−1)|C
′|Prob(C ′)

]

(41)
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Here the sum over C ′ is over all proper subsets of set of neighbors of C.
Comparing with the eq. (34), we can make the identification

AC(x = −p) = (−1)|C|Prob(C) (42)

In particular, the mean density of this Markovian evolving gas gives us the
generating function of the 2-d site animals. We note that the activity of the
gas in terms of p is z = p/(1 − p) = −x/(1 + x). This gives

A(x) = −ρ(z =
−x

1 + x
) (43)

Eq. (40) then gives

A(x) =
1

2





√

1 + x

1 − 3x
− 1



 (44)

From this it is easily seen that for large n, An increases as 3nn−1/2.
Note that the singularity of A(x) closest to the origin occurs for x = 1/3.

This corresponds to the Markovian evolution of the 1-dimensional lattice
gas, but with p = −1/3 [12]. Negative values of p, of course, are unphysical.
One has to think of the Markov matrix ( whose matrix elements are simple
polynomial functions of p), and analytically continue this matrix to negative
values of p. Equivalently, one can think of the stochastically evolving lattice
-gas as a particular kinetic Ising model, where the spins are evolving in the
presence of a field, and then take the analytical continuation to magnetic
fields that are imaginary. Then this problem becomes equivalent to the crit-

ical dynamics of Ising model near the Lee-Yang Edge singularity. The study
of Lee-Yang edge singularity is an important problem in statistical physics,
as it relates to the analytical structure of singuraities of equation of state
of hard core gases (see [13] for a longer discussion of this point). But it is
difficult to study, as the corresponding Boltzmann weights are non-positive,
and usual thermodynamic convexity relations do not hold. The directed an-
imals problem gives us a realization of the Lee-Yang problem with positive
weights.

This relationship between equilibrium statistics of a d-dimensional nearest
neighbor exclusion gas to the d + 1-dimensional directed animal is valid for
arbitrary d. In particular, one can use the known exact solution of the
hard hexagon lattice gas by Baxter [14] to determine the exact number of
3-dimensional directed animals [15]. One can also relate correlation functions
of the lattice gas to those of the animals problem [16].
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Figure 10: A heap in three dimensions, made of two different types of hori-
zontal rectangular pieces.

7 Heaps

The problem of directed animals has a very elegant, and nontrivial gener-
alization to heaps [17]. Informally, heaps are like directed animals, but are
made up of different types of “pieces”. In Fig. 10, we have shown a 3-
dimensional heap made of two types of rectangles. The heap is made up of
different layers of tiles. In each layer, the tiles are non-overlapping, and each
tile is “supported” from below, i.e. it can not fall down to the lower layer
under gravity, as at least one site below is already occupied by another tile
in the lower layer.

We consider heaps defined on a discrete space. The “base” is the lower-
most layer, and consists of a finite number of sites. Each higher layer is an
exact copy of the base placed “vertically above” it. Each tile covers a finite
number of sites in one layer. We assume we have a finite number of different
types of tiles. We associate activity z1, z2, z3 . . ., with tiles of type 1, 2, 3 . . ..
The weight of a heap H containing ni tiles of type i is zH =

∏

i z
ni

i . We define
the heap generating function

H({zi}) =
∑

H

zH (45)

Let D({zi}) be the grand partition function of the gas of non-overlapping
tiles placed on the base space. This is just all possible heaps with tiles only
in the first layer. i.e.

D({zi}) =
∑

H1

zH1 (46)

Example: Consider a base space consisting of only four sites forming a 2× 2
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square. There are two types of tiles : dimers that occupy two adjacent sites,
and have activity z1, and triangular pieces that occupy three sites, and have
activity z2. Then clearly, D(z1, z2) is a finite polynomial in z1, z2, given by

D(z1, z2) = 1 + 4z1 + 2z2
1 + 4z2 (47)

Here H(z1, z2) is the formal infinite series, which starts as

H(z1, z2) = 1 + 4z1 + 4z2 + 14z2
1 + 8z1z2 + 16z2

2 + . . . (48)

Then, with H and D defined by Eqs. (45) and (46), we have the remark-
able general result

H({zi}) = 1/D({−zi}) (49)

where D({−zi}) is the polynomial obtained by replacing zi by −zi, for all
i in D({zi}). Note that the result is valid independent of the number and
shape of tiles. In fact, the structure of the base space also does not come
into picture. It shows the dimensional reduction, by expressing that the par-
tition function of “3-dimensional” heaps in terms of the “two-dimensional”
partition function D.
Proof: We define a tile in a heap to be maximal, if there is no tile above it,
i.e. it can be removed from top without encountering other obstructing tiles.
We can write Eq.(49) as

H({zi})D({−zi}) =
∑

H,H
1

(−1)|H1|zHzH1 = 1 (50)

The proof of relation follows by showing different terms in the expansion
corresponding to configurations having at least one tile can be paired in way
that each pair adds up to zero. Then the total sum is equal to the only un-
paired term in the summation, which corresponds to the trivial configuration
with no tiles.

Given the heaps H and H1, we define a set of tiles T , which contains tiles
in H1, and those maximal tiles in H that do not overlap with any tile in H1.
Now, the sum over H,H1 in Eq.(50) can be written as sum over different
possible T , and H′, the remainder of H on removing the maximal pieces.
Now, consider the summation over T , for a fixed H′. In this summation,
each allowed T contains non-overlapping tiles. Any one tile may come from
H, or from H1. If the tile i is allowed in this sum, and comes from H, it
contributes a factor zi, but if it comes from H1, it contributes a factor (−zi).
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These factors cancel exactly, and the only nonvanishing term in the sum in
Eq.( 50) comes from the term where H and H1 are both empty sets. This
contribution is exactly 1, proving the claim.

Note that the theorem remains valid, if we make the weights of pieces
space-dependent and associate activities zi({~x}) for the tile i at positions
~x along the base. Then differentiating the logarithm of the grand partition
function D({zi}) with respect to zi(~x) gives the probability that tile i will
be present at position ~x in the ensemble. Interestingly, this has a direct
combinatorial interpretation, which is a generalization of the Eq.(43). The
analogue a single directed animal in the heaps is called a ‘pyramid’, that is a
heap with a single maximal piece (one should think of the inverted pyramid
as a heap supported at base by only one tile). The generating function of
a pyramid with maximal piece M is given by PM({zi}) = N({zi})/D({zi})
where

N{zi}) =
∑

H′

1

(−1)H1zH
′

1 (51)

where the prime over summation indicates that the summation in which the
tile M is not used. The proof of this proposition is very similar to the earlier
proof, and is omitted here [17].

The heaps were first discussed in the context of applications in computer
science. One thinks of distributed computing, where there are N different
processors, and several jobs to be executed. Let us consider for simplicity
the case where each job takes one unit of time. Each job corresponds to a
tile and may occupy more than one processor. There is a time ordering of
jobs on any one processor, but no necessary relative time order between jobs
that do not involve common processors. Then, in the optimal scheduling,
the space-time-history of computation is a heap, where occupied/unocupied
sites denote which processors are busy /idle at what times [18].

More recently, heaps have been used in modelling random space -time
stuctures involved in theories of quantum gravity. Unfortunately, details of
this very interesting subject are outside the scope of these lectures. The
interested reader may consult [19].
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