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phase transitions, Yang and Lee initiated an ambitious and very fruitful approach. We
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1. Introduction

Boiling of water, denaturation of a protein, or formation of a percolation cluster in a

random graph are examples of phase transitions. Description and understanding of

these ubiquitous phenomena, that appear in physics, biology, or chemistry, remains

one of the major challenges of thermodynamics and statistical mechanics.

The simplest and relatively well-understood phase transitions appear in sys-

tems in thermal equilibrium with their environment. A prototypical example of

such an equilibrium phase transition is the liquid-gas transition. Crossing the coex-

istence curve, by varying e.g., the temperature, one can move between vapor and

liquid phases. Such a transition is called first-order (or discontinuous) because in

the framework of thermodynamics this phenomenon is understood in terms of ther-

modynamic potentials showing discontinuities in their first derivatives with respect

4269

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
5.

19
:4

26
9-

43
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 1

0/
23

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



November 16, 2005 11:45 WSPC/140-IJMPB 03275

4270 I. Bena, M. Droz & A. Lipowski

to the control parameters. The coexistence line terminates at a particular point,

the critical point, where the two phases become undistinguishable. Close to this

point, second derivatives of the thermodynamic potential exhibit power-law singu-

larities and this indicates a second-order (or continuous) phase transition. In the

late fifties, giving a microscopic description of first- and second-order phase tran-

sitions became a challenge that culminated in the development of scaling theories

and then renormalization group methods. Although these techniques are compu-

tationally very effective and reliable, they do not explain all the aspects of phase

transitions. In particular, it is not clear how free energy can develop singularities at

the first-order phase transitions. To address this problem, Yang and Lee devised an

approach where the partition function (that is used to calculate the thermodynamic

potentials) is considered as a function of complex control parameters. Singularities

of the thermodynamic potentials, given as zeros of the partition function, were then

shown to accumulate exactly at the transition point. This approach, that was later

on generalized and extended to various systems, provides a lot of information about

equilibrium phase transitions.

However, an equilibrium system is rather often only an abstract idealization.

Typically, a given system is not in equilibrium with its environment, but is ex-

changing matter and/or energy with it; fluxes are present in the system. The

usual way to describe the physics of such a system is to write down a master

equation for the time-dependent probability that a given mesoscopic state is re-

alized at time t. The physics is then embedded in the transition rates between

these mesoscopic states. In the long-time limit the system eventually settles into a

steady-state and, depending on the values of some control parameters or the initial

configuration, different nonequilibrium steady states (NESS) can be reached, and

sometimes a breaking of ergodicity takes place. Upon varying some control param-

eters the system may change its steady state and this is called a nonequilibrium

phase transition. In the particular situation in which the so-called detailed balance

condition is fulfilled, one recovers the case of equilibrium phase transitions. Our

understanding of NESS from a microscopic point of view is not as advanced as

for equilibrium. Accordingly, it is legitimate to try to extend the Yang–Lee the-

ory to NESS. It was argued recently, and illustrated on several examples, that

Yang–Lee ideas should apply, at least to some extent, to nonequilibrium phase

transitions.

This review provides an overview of the Yang–Lee theory for equilibrium phase

transition and describes recent advances in applying it to nonequilibrium systems.

In addition, we included an extensive bibliographical list that offers an interested

reader the relevant references where one may find further details on a more specific

subject. Although not exhaustive, the bibliography we are proposing covers all the

relevant aspects and recent progress in the field. Our presentation is elementary

and intuitive, and we omitted a number of technical details.

The structure of our paper is as follows. The first part of this review is de-

voted to the description of the Yang–Lee theory for equilibrium phase transitions.
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A first paragraph is devoted to the question of the role played by the thermody-

namic limit. Then the general Yang–Lee theory for the grand-canonical partition

function is discussed. The celebrated Circle theorem is revisited, as well as its

generalization to different models. Several aspects of the characterization of the

critical behavior in terms of the Yang–Lee zeros are analyzed (density of zeros near

criticality, Yang–Lee edge singularity, finite size effects). A brief discussion of the

relation between the Pirogov–Sinai theory and the Yang–Lee zeros for first-order

transitions is given. Then the problem of the Fisher zeros of the canonical parti-

tion function is revisited. Finally, the Potts model is discussed in order to compare

several possible types of description of the phase transitions within the Yang–Lee

formalism.

The second part of this review is devoted to the question of extending Yang–Lee

formalism to NESS phase transitions. In a first paragraph, the description in terms

of a master equation is given, and the question of detailed balance discussed. Then

the problem of a possible candidate for nonequilibrium steady-state partition func-

tion is approached. Applications to driven-diffusive systems, reaction-diffusion sys-

tems, directed percolation models, and systems exhibiting self-organized criticality

are reviewed. The connection with equilibrium system with long-range interactions

is also considered. Finally, some conclusions and perspectives are given in the last

paragraph.

PART I: EQUILIBRIUM PHASE TRANSITIONS

2. Phase Transitions and the Thermodynamic Limit

When one varies a control parameter (e.g., the temperature or an external field), a

physical system can exhibit a qualitative change of its equilibrium state, i.e., it can

undergo a phase transition. In the framework of thermodynamics such a phase tran-

sition shows up as a discontinuity or a singularity of physical observables (e.g., spe-

cific heat, susceptibility, etc.) as functions of the control parameter. A characteristic

thermodynamic potential or some of its derivatives are discontinuous or singular,

thus nonanalytic at the transition point.

How is it possible to understand this phenomenon from a microscopic perspec-

tive? From the point of view of the equilibrium statistical mechanics, the thermo-

dynamic potentials can be expressed in terms of some properties of the microstates

in the phase space of the system, that are determined by the microscopic inter-

actions between the constituents of the system (particles, spins, etc.), as well as

by the externally imposed constraints — like a fixed value of a control parameter.

More explicitly, the characteristic potential is proportional to the logarithm of the

partition function of the system. This partition function is a sum of the statistical

weights over different configurations that are accessible to the system in the phase

space under the given constraints, and these statistical weights are positively defined
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analytic functions of the control parameter.a If the sum contains a finite number

of such statistical weights, then the partition function is finite, and its logarithm,

i.e., the corresponding characteristic potential, is an analytic function of the control

parameter, and therefore no phase transition is possible. To obtain a nonanalyticity

of the characteristic potential, the partition function should thus necessarily become

zero for a certain value of the control parameter. However, as justified above, this

cannot happen in a finite system. A nonanalytic behaviour could only be obtained

for a system containing an infinite number N of constituents, and thus one has to

work in the so-called thermodynamic limit, in which both N → ∞ and the volume

of the system V → ∞, such that the density n = N/V is constant.

One may object that all the systems in nature are finite. However, because

of the huge number of its components (of the order of Avogadro’s number), any

macroscopic system behaves, from an experimental point of view, like an infinite

system (except eventually in a very narrow domain in the vicinity of the transition

point). The effects of the finite-size of the system on the appearance and properties

of the phase transition will be subject of further discussion in Sec. 10.

To summarize, the presence of a phase transition, from a statistical mechanics

point of view, should be related to the vanishing of the partition function for a

certain value of the control parameter. Thus, one has to look for the zeros of the

partition function, and such zeros should only show up in the thermodynamic limit.

Let us briefly comment now on the properties of the interaction potential be-

tween the constituents of the system that allow for the existence of a correct ther-

modynamic limit.b Roughly speaking (see Refs. 1–5 for further technical details),

for systems with two-body central interactions, the interaction potential u(r) (with

r the distance between the particles) has to obey the following three conditions:

(i) The intermolecular forces have to approach zero rapidly enough for large inter-

particle separations, i.e., in terms of the interaction potential, |u(r)| 6 C1/r
d+ε

aFor example, consider a system in equilibrium with a heat bath at temperature T (that repre-
sents a control parameter in this case). The free energy (which is the characteristic potential) is
proportional to the logarithm of the canonical partition function, that is defined as a sum over
all the microstates α of the Boltzmann weight exp(−Eα/kBT ), where Eα is the energy of the
microstate α.
bFor such a system, under some supplementary constraints on the regularity of its frontier, taking
the thermodynamic limit N → ∞, V → ∞ at fixed n = N/V implies that: (i) The various sta-
tistical ensembles are equivalent, and the relevant thermodynamic parameters are thus uniquely
defined. For example, the pressure has the same thermodynamic limit, positively definite, in both
the canonical and grand-canonical ensembles. (ii) The values of the thermodynamic potentials
(energy, free energy, grand-canonical potential, enthalpy, etc.) per particle are finite. The sys-
tem enjoys the additivity property, which means that its total Hamiltonian is the sum of the
Hamiltonians of any combination of macroscopic parts taken separately (i.e., one can safely ne-
glect the surface interaction energy between macroscopic component parts) – and so do all the
thermodynamic potentials (free energy, enthalpy, etc.). (iii) The thermodynamic stability of the
system is ensured, i.e., the thermodynamic potentials enjoy the required conditions of convex-
ity/concavity. For example, the compressibility coefficient is positive, which means the pressure
is a non-decreasing function of the particle-number density n. (iv) The effects of the boundaries
(e.g., surface energy or tension) are extinguished, and we speak only of bulk effects.
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as r → ∞ (with C1 > 0 and ε positive constants), where d is the dimension of

the system. Such systems are currently called short-range interaction systems.

(ii) The potential u(r) should have a repulsive part for small enough values of

r (preventing the system from collapse at high particle number densities).

Throughout this paper, we shall consider systems with a hard-core interparticle

repulsion at small distances, u(r) = ∞ for r < r0 ∼ b1/d (where b is the

single-particle excluded volume), which means that a system of volume V can

accommodate a finite maximum number of particles M = V/b.c

(iii) Finally, the interaction potential has to be everywhere bounded from below,

u(r) > −u0 whatever r is (with u0 a positive constant).

Note a rather general result concerning the one-dimensional equilibrium sys-

tems with short range interactions, namely van Hove’s theorem,1,5,7 according to

which no phase transition is possible in such systems, in contrast to what happens

generically in corresponding nonequilibrium systems (see Ref. 8 for a brief review).

A recent critical discussion9 of this result allowed us to highlight some exceptions

to this theorem, but we shall not be concerned here with these rather pathological

situations.

Many physical situations can be modeled by interaction potentials with the char-

acteristics (i)–(iii) above. There are, however, a few exceptions. The most salient

example is that of the systems with long-range interactions (or non-additive sys-

tems), which include, e.g., systems with gravitational or Coulombian forces [see

Ref. 6 for a modern review of their (thermo)dynamical properties studies]. Such

systems exhibit an unequivalence of the statistical ensembles, and it is not clear

yet how to apply the concepts of the Yang–Lee theory (as described below) to their

phase transitions. We will not address them further here. A limiting case of such

systems is that of mean-field interactions, on which we will briefly comment in

Secs. 7.2, 12 and 13.3.

3. Yang–Lee Zeros of the Grand-Canonical Partition Function:

The General Framework

We shall address here two problems, namely:

(A) The location of the phase transition point: How, when knowing the

partition function (in the thermodynamic limit), can one locate a phase transition

point by investigating the zeros of this partition function with respect to the control

parameter of the system.

(B) The characteristics of the transition: How can one extract information on

the nature of the phase transition (e.g. if it is a discontinuous or continuous one)

from the properties and distribution of these zeros.

cAs shown in Ref. 3, one can relax the hard-core condition to u(r) > C2/rd+ε as r → 0 (with C2

and ε positive constants), but we will not consider this situation here.

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
5.

19
:4

26
9-

43
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 1

0/
23

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



November 16, 2005 11:45 WSPC/140-IJMPB 03275

4274 I. Bena, M. Droz & A. Lipowski

The presentation in this section follows, with slight modifications, the same

general lines of thought as in Ref. 10.

(A) The location of the phase transition point. Let us start with this first

problem and concentrate on the case of a generic system with short-range inter-

actions as described above, for which the thermodynamic limit is well-defined. For

concreteness, and following the original papers of Yang and Lee,11,12 we consider

here the grand-canonical description of the system. The corresponding partition

function, for a given volume V and a fixed temperature T , is expressed as:

ΞV (T, z) =

M
∑

m=0

Zm(T )zm , (1)

where M = V/b (with b the single-particle excluded volume) is the maximum

number of particles that can be accommodated in the system (as determined by

the hard-core part of the binary interaction potential); Zm(T ) is the canonical

partition function of the system with fixed number of particles m; and finally z is

the fugacity of the system,

z = exp(µ/kBT ) , (2)

which is obviously a real, positive quantity expressed in terms of µ, the chemical

potential of the system in contact with an external reservoir of particles; kB is

Boltzmann’s constant.

One notices that ΞV (T, z) is a polynomial of M -th order in the fugacity z. Let us

consider its roots, i.e., the solutions of ΞV (T, z) = 0; according to the fundamental

theorem of algebra, there are M such roots, zi = zi(T ), with i = 1, . . . ,M . More-

over, because the coefficients of all the powers of z in the expression of ΞV (T, z)

are real and positive, all these roots zi(T ) appear in complex-conjugated pairs in

the complex-fugacity plane, away from the real, positive semi-axis. One can express

ΞV (T, z) in terms of these roots,

ΞV (T, z) = ξ

M
∏

i=1

[

1 − z

zi(T )

]

(3)

(where ξ is a multiplicative constant, that we shall ignore in the foregoing), and the

corresponding finite-size grand-canonical potential ΩV = −kBT ln ΞV = −PV V

leads to the following expression of the finite-size pressure PV :

PV (z) = kBT
1

V

M
∑

i=1

ln

[

1 − z

zi(T )

]

. (4)

Note that throughout this section we shall consider the temperature T as a fixed

parameter, and therefore all the quantities like PV (z), ρ(z), P (z), ϕ(z), ψ(z), λ(s),

as well as C (see below) are temperature-dependent.

Let us consider now the complex extension of PV (z), that is defined through

Eq. (4) above for all complex z with the exception of the points zi. From the standard
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theory of the complex-variable functions, one can deduce that PV (z) is analytical

(infinitely differentiable) over any region of the complex-z plane that is free of zeros

of the partition function. Therefore, a nonanaliticity of PV (z) at a complex point

z0 appears if and only if in any arbitrarily small region around z0 one finds at

least one root of the partition function (or, in other terms, if and only if there

is an accumulation of the roots of the partition function in the vicinity of z0). If,

moreover, z0 lies on the physically accessible real positive semi-axis, this corresponds

to a phase transition in the system.

Once more, one realizes that such conditions cannot be accomplished in a finite-

size system. Let us then turn to the thermodynamic limit, where one might even-

tually expect a possible accumulation of the roots of the partition function toward

the real positive semi-axis.

As V and therefore M = V/b increase, the location of the roots zi changes, and

in the thermodynamic limit they accumulate in a certain region C of the complex-z

plane, with a local density ρ(z). Of course, in view of its significance, ρ(z) is a

real-valued, non-negatively defined function on C, identically zero for any z outside

C, which is normalized as
∫

R2

ρ(z) dz =

∫

C

ρ(z)dz =
M

V
=

1

b
, (5)

and thus it is integrable over any bounded region of the complex-z plane.d Moreover,

the symmetry property of the roots with respect to the real axis is preserved in the

thermodynamic limit, and leads to the following property of the density of zeros:

ρ(z) = ρ(z∗) (6)

[where (· · ·)∗ denotes complex-conjugation], i.e., C is symmetric with respect to the

real axis. Note also that the region C depends on the temperature T , and, of course,

its characteristics are specific to each system. For all the points z outside the region

C, one can define the thermodynamic limit of the complex extension of the pressure,

P (z) = limV →∞PV (z), a complex-valued quantity expressed as

P (z) = kBT

∫

dz′ρ(z′) ln
(

1 − z

z′

)

, (7)

which is, of course, a multi-valued function. Let us consider its real part (up to a

factor kBT )

ϕ(z) ≡ 1

kBT
Re P (z) =

∫

dz′ρ(z′) ln
∣

∣

∣
1 − z

z′

∣

∣

∣
. (8)

Since ln |z| (with z = x+iy;x, y ∈ R) is the Green’s function of the two-dimensional

Laplacian ∆ = ∂2/∂x2 + ∂2/∂y2, by applying the Laplacian to the above equation,

dAs already mentioned in Sec. 2, we shall consider here only systems with a hard-core interparticle
repulsion at small distances, i.e., with a non-zero single-particle excluded volume b. Most of the
litterature on the subject is limited to this situation; see Ref. 22 for an exception.
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one finds that:

ρ(z) =
1

2π
∆ϕ(z) . (9)

This means that ϕ(z) is the electrostatic potential associated to a distribution

of charges of density ρ(z). This analogy is very useful since it allows the direct

transcription of well-known results from electrostatics. In particular, since ρ(z) is

integrable even on regions containing parts of C, the function ϕ(z) can be extended

through continuity over the entire complex-z plane. The equipotential surfaces are

thus given by ϕ(z) = constant. Still in this analogy with electrostatics, the imagi-

nary part of P (z)/kBT ,

ψ(z) ≡ 1

kBT
ImP (z) (10)

(defined modulo 2π) determines, through the condition ψ(z)=constant, the lines of

force of the electrostatic field generated by the distribution of charges ρ(z), and the

intensity of the field is given as ∇ϕ(z) and is, of course, discontinuous on C, see

point (ii) below for further details. Note also that

ϕ(z) = ϕ(z∗) and ψ(z) = −ψ(z∗) , (11)

which result directly from the symmetry property (6) of the distribution of zeros.

Suppose now that the known partition function of the system indicates that

ϕ(z) has, for example, two distinct analytical expressions ϕ1(z) and ϕ2(z) in two

different regions of the complex-z plane. But since ϕ(z) has to be continuous over

the entire plane, there should be a matching region between these expressions, and,

of course, this region can be nothing else than C. Indeed, since ϕ1,2 are different

functions, there appears the possibility of a nonanaliticity of ϕ (and thus of P (z))

at the matching points. Then the location of C is given by the condition:

ϕ1(z)
∣

∣

∣

C
= ϕ2(z)

∣

∣

∣

C
, i.e., Re P1(z)

∣

∣

∣

C
= Re P2(z)

∣

∣

∣

C
. (12)

If the region C intersects the real positive semi-axis at some point z0, and/or there

is an accumulation of zeros in the vicinity of z0, then we have a phase transition in

the system, and

Re P1(z0) = Re P2(z0) , (13)

the real part of the complex-valued pressure is continuous at the transition point.

Of course, depending on the shape of C, several transition points may appear, for

different values of the fugacity; one can also encounter the phenomenon of multiple

phase coexistence — like, for example, the appearance of triple points through

the coalscence, at some temperature, of two simple (two-phase) transition points.

Moreover, recall that C depends on the temperature, and from here there appears

the possibility of the existence of a critical temperature Tc, such that for any T < Tc

the zeros of the partition function accumulate in the vicinity of the real positive

semi-axis (i.e., there is a phase transition in the system), while for any T > Tc the
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zeros of the partition function are no longer accumulating in the vicinity of the real

positive semi-axis, i.e., a phase transition is no longer possible.

We thus answered the point (A) concerning the formal frame for the description

of the appearance of the phase transitions — at least, for the time being, in the

grand-canonical ensemble.

(B) The characteristics of the transition. In order to answer the second ques-

tion, namely the quantitative connection between the nature of the phase transition

and the distribution of zeros of the partition function, let us suppose for the mo-

ment that C is a smooth curve in the vicinity of the transition point z0. As it can

be seen below, on some concrete prototypical examples of physical systems, this is

rather often the case for the zeros of the grand-canonical partition function in the

complex-fugacity plane — the so-called Yang–Lee zeros.

Following the arguments in Refs. 10, 13–15 and 17–19, let us consider a

parametrization of the curve C in the vicinity of z0, with the parameter s measuring

the anti-clockwise oriented distance from z0 along the curve (s = 0 at z = z0), (see

Fig. 1).

Let λ(s) denote the line density of zeros along C. Then, according to Gauss’

theorem, one has for a point z on the curve

1

2π
[∇ϕ2(z) − ∇ϕ1(z)] · n̂

∣

∣

∣

C
= λ(s) , (14)

where n̂ = n̂(s) is the unit vector normal to C (oriented from region “1” to region

“2”) at that point z. In view of the Cauchy–Riemann properties of the analytical

PSfrag replacements

y = Im z

x = Re z

C t̂

n̂

s

z0

P1(z)

kBT
= ϕ1(z) + iψ1(z)

P2(z)

kBT
= ϕ2(z) + iψ2(z)

Fig. 1. Schematic representation of the location C of the Yang–Lee zeros in the vicinity of a
transition point z0, meant to illustrate the notations in the main text.
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functions P1,2(z), one has

∇ϕ1,2(z) · n̂
∣

∣

∣

C
= ∇ψ1,2(z) · t̂

∣

∣

∣

C
(15)

where

ψ1,2(z) =
1

kBT
ImP1,2(z) (16)

are the imaginary parts of P1,2(z)/kBT (defined modulo 2π), and t̂ = t̂(s) is the

unit vector tangent to C. This leads finally to

λ(s) =
1

2π

d

ds
[ψ2(z) − ψ1(z)]

∣

∣

∣

C
, i.e., λ(s) =

1

2πkBT

d

ds
[ImP2(z) − ImP1(z)]

∣

∣

∣

C

(17)

where d/ds denotes the directional derivative along the curve. In particular, at the

transition point z0, the discontinuity in the directional derivative of the imaginary

part of the complex-valued pressure is determined by the local linear density of

zeros,

1

2πkBT

d

ds
[ImP2(z) − ImP1(z)]

∣

∣

∣

z=z0

= λ(0) . (18)

The relationships (12), (13), (17) and (18) will allow us to establish the nature of

the phase transition, i.e., whether it is discontinuous (or first-order) or continuous

— i.e., second- or higher-order in the classical Ehrenfest classification scheme.

Let us consider the Taylor expansion around z0 of the complex-valued pressure

on both sides of the curve C, i.e.,

1

kBT
P1,2(z) =

1

kBT
P (z0) + a1,2(z − z0) + b1,2(z − z0)

2 + O((z − z0)
3) . (19)

In order for the pressure to be real on the real z axis, all the coefficients of the

development have to be real. From the condition (12), one finds that the equation

for the curve C is given by

(a2 − a1)(x− z0) + (b2 − b1)[(x− z0)
2 − y2] + Re[O(z − z0)

3] = 0 , (20)

where x and y are the real, respectively the imaginary part of z. Several situations

may appear.

(i) First-order phase transition. If a2 6= a1 then the complex-valued pressure has

a discontinuity in its first derivative and the transition is of first-order. If, moreover,

b2 6= b1, then in the vicinity of the transition point z0 the curve C is a hyperbola,

y2 = (x− z0)
2 +

a2 − a1

b2 − b1
(x− z0) (21)

whose tangent in z0 is parallel to the imaginary axis, i.e., C crosses the real axis

smoothly at an angle π/2. Using Eq. (18) we find the density of zeros at z0,

λ(0) =
a2 − a1

2π
, (22)

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
5.

19
:4

26
9-

43
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 1

0/
23

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



November 16, 2005 11:45 WSPC/140-IJMPB 03275

Yang–Lee Formalism for Phase Transitions 4279

i.e., the density of zeros at the transition point of a first-order phase transition is

nonzero.

(ii) Second-order phase transition. If a2 = a1, but b2 6= b1, then the curve C
obeys the equation

y = ±(x− z0) , (23)

i.e., in the vicinity of z0 it consists of two straight lines that make an angle of ±π/4
with the real axis (and π/2 between them) and meet at z0. From Eq. (17) we find

that

λ(s) =
b2 − b1
π

|s| + O(s2) , (24)

i.e., the desity of zeros is decreasing linearly to zero when approaching the transition

point z0 (s = 0).

(iii) Higher-order phase transitions. If the discontinuities appear at higher orders

in the derivatives of the complex-valued pressure, then one can repeat the above

type of reasoning to find the equation of C and the density of zeros in the vicinity

of the transition point z0. In general, if the transition is of n-th order (n > 3), then

the density of zeros is zero at the transition point, λ(s) ∼ |s|n−1, and the curve C
does not cross smoothly the real axis, but approaches it at an angle ±π/2n from

above and below.

Resuming, we managed therefore to respond the two main questions:

(A) The accumulation of zeros of the partition function along the (physically acessi-

ble) real, positive semi-axis of the complexified fugacity z indicates the location

of the phase transition point(s);

(B) The density of zeros near such an accumulation point determines the order of

the transition (according to Ehrenfest’s classification scheme) at that point.

In this section we discussed the zeros Yang–Lee zeros of the grand-canonical

partition function in the complex-fugacity plane. One can, of course, address the

following legitimate question: how can one extend this type of formalism in order

to study phase transitions in other statistical ensembles (e.g., the canonical one).

Indeed, in view of the equivalence of these ensembles in the thermodynamic limit,

one is entitled to expect similar results on the location and characteristics of the

phase transitions whatever the ensemble used in the description of the system.

Before addressing this important problem in Sec. 12 below, let us add a few more

relevant comments on the Yang–Lee zeros.

4. Grand-Canonical Partition Function Zeros and the Equation

of State

We saw from above that knowing the distribution ρ(z) of the zeros of the grand-

canonical partition function in the thermodynamic limit, one can compute the
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complex-valued pressure P (z) through Eq. (7),

P (z) = kBTχ(z) , (25)

with

χ(z) ≡
∫

dz′ρ(z′) ln
(

1 − z

z′

)

, (26)

that is analytical everywhere outside C. Also, the complex-valued particle-number

density n(z) follows from the complex extension of

n(z) = lim
V →∞

∂

∂ ln(z)

1

V
ln ΞV (27)

as:

n(z) = z
dχ(z)

dz
= z

∫

dz′
ρ(z′)

z − z′
, (28)

for all complex z outside C. When z is real and positive (and outside the possible in-

tersections of C with the real positive semi-axis that corresponds to phase-transition

points), Eqs. (25) and (28) [with χ(z) given by Eq. (26) as a functional of ρ(z)]

are parametric expressions of the equation of state of the system. Recall also that

ρ(z) and C, and therefore χ(z) are temperature-dependent, see Sec. 3, and thus the

structure of these parametric equations is actually quite intricate. Of course, one

can, in principle, eliminate z between the two equations and find the explicit form

of P = P (n, T ) (for the different regions of the real-positive semi-axis of z outside

C, i.e., free of transition points).

However, one has to realize that the problem of determining the distribu-

tion of complex zeros ρ(z) is an extremely difficult task, even in the simplest

known-cases like, e.g., a one-dimensional lattice gas with nearest-neighbor attrac-

tive interactions,12 a gas of hard rods,22 a mean-field lattice gas.40,41 It is of interest,

therefore, to address the following problem. Suppose that we are given an certain

equation of state P = P (n, T ); using the parametrization of Eqs. (25) and (28), one

can find a closed nonlinear first-order differential equation for the function χ(z),

which, by integration, leads generically to a functional equation of the form

F(χ, z) = 0 , (29)

(for real positive z). Let us extend it, by definition, to the whole complex-z plane.

Would it then be possible to solve it and, once χ(z) is found, to determine the region

C of accumulation of zeros of the grand-canonical partition function? Supposing that

C is a smooth curve, would it be then possible to find, through Eqs. (26) or (17),

the corresponding density of zeros ρ(z) of the grand-canonical partition function of

the system?

This is currently called the inverse problem (in analogy with the inverse problem

in electrostatics), and it has been addressed in several papers on various specific

systems, see Refs. 20 and 21 (two models of Ising ferromagnets),22 (a Tonks gas

of hard rods and a gas with a weak long-range repulsion),31 (Tonks gas),23,24,27–30
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(the van der Waals gas),25 (a lattice gas with a hard-core repulsion extended over

several lattice sites),32,33 (Takahashi lattice gas),34 (point particles with logarithmic

interactions), and even in an experimental setup, see Ref. 35 (for a two-dimensional

Ising ferromagnet).

The answer to this issue is related to the considerations in the previous section

and, being rather technical, will not be given here in detail; we refer the reader to the

set of four papers by Ikeda, Refs. 36–39, for a rigorous approach of the problem (and

also some illuminating examples, like various systems with circular distributions of

zeros, see Sec. 7 below; the ideal Fermi–Dirac gas; and the ideal Bose-Einstein gas).

Roughly, an equation of type (29) has as solutions one or several complex-valued

functions, which may have one or several Riemann surfaces (i.e., are in general

multi-valued functions), with branching points corresponding to dz/dχ = 0. One

has to try to match these different Riemann sheets, along the curve C, so that several

mathematically and physically necessary conditions are fulfilled by the resulting

patch-function χ(z):

(i) The branching points belong to C;

(ii) The real part of χ(z) (ϕ(z) in the notations of the previous section) has to be

continuous in the whole z plane;

(iii) χ(z) is real and continuous on the real positive semi-axis and has the value

given by Eq. (25);

(iv) The integration constant result from the infinite-dilution (ideal gas) limit,

χ(z) ∼ z for z → 0;

(v) The quantity ρ(z), as defined by Eq. (17), has to be real-valued and non-

negative for all z on C.

The discontinuities in the imaginary part of χ(z) (ψ(z) in the notations of the pre-

vious section) appear thus across the charged contour C originating from matching

the different Riemann sheets of the multi-valued solutions of (29). In the particular

case when the solution of Eq. (17) is a single multi-valued function, the domain C
of the zeros of the partition function reduces to the branching points. One has to

note, however, that for a general functional relation (29) there is no guarantee of

the uniqueness of the domain C, and also that rather often the explicit construction

of C, and thus the calculation of ρ(z) are not possible, except for limiting cases,

e.g., in the vicinity of the branching points.

5. The Lattice Gas and the Ising Model in a Magnetic Field

Before proceeding to the next sections with a discussion of the domain C of accumu-

lation of zeros of the grand-canonical partition function, let us recall a well-known

classical result of equilibrium statistical mechanics, namely that the problem of a

discrete lattice gas (with nearest-neighbor interactions) is mathematically equiv-

alent to the problem of an Ising model (with nearest-neighbor interactions) in

an uniform magnetic field (see e.g. Refs. 4 and 12 for a detailed description). In
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particular, the expression of the grand-canonical partition function of the lattice gas

is identical to the expression of the canonical partition function of the Ising model

in magnetic field (at the same fixed temperature T ). The search of the complex

roots of the grand-canonical partition function of the gas in the complex-fugacity

plane amounts to the search of the complex roots of the canonical partition function

of the Ising model in the plane of the complex variable z = exp(−2H/kBT ) (in the

appropriate units for the field and the temperature), that is related to a complex

magnetic field intensity H .

Therefore, based on this one-to-one correspondence, in the foregoing we will

speak either of a discrete lattice gas, or of an Ising model in a magnetic field.

6. Yang–Lee Zeros and the Transfer Matrix Formalism

For one-dimensional Ising lattice systems with finite-range interactions, in a mag-

netic field H , it is customary to compute the partition function using the transfer-

matrix technique. The canonical partition function for N spins can be written as:

ZN = λN
1 + λN

2 + · · · + λN
k , (30)

where λi, with i = 1, . . . , k, are the k eigenvalues of the k × k transfer ma-

trix of the system. Besides being dependent on the reduced coupling constants

(i.e., the coupling constants divided by kBT ) between the spins, these eigenval-

ues depend on the value of the magnetic field H , or, equivalently, on the fugacity

z = exp(−2H/kBT ), λi = λi(z), i = 1, . . . , k. Let us consider the free energy per

spin, F = −kBT ln ZN/N , and its extension to the plane of the complex fugacity.

In the thermodynamic limit, only the eigenvalue of highest modulus contribute to

the free energy. Suppose now that in two different regions of the complex-z plane

two different eigenvalues, λ1(z), respectively λ2(z) assume the largest modulus.

Since the real part of the free energy (per spin) has to be continuous throughout

the whole z plane — see the discussion in Sec. 3 in the light of the correspondence

between Ising systems and lattice gases, Sec. 5 — it follows that the location C of

the zeros of the partition function in the complex-z plane is given by the condition

of matching of the modulus of these two eigenvalues of the transfer matrix:

|λ1(z)|
∣

∣

∣

C
= |λ2(z)|

∣

∣

∣

C
, (31)

which is the equivalent of Eq. (12) in the present frame. Of course, in view of the

van Hove theorem (Sec. 2) for the systems with short-range interactions that we are

considering here, no phase transition is possible, i.e., C does not have any accumula-

tion point on the real positive semi-axis for such systems. This matching condition

between eigenvalues might be useful for the construction of C, (see e.g. Ref. 45 and

110 for a few examples). A more rigorous discussion of this type of approach for a

wide class of lattice gases can be found in Ref. 48.
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7. The Circle Theorem for the Yang–Lee Zeros

The general frame discussed in Sec. 3 above is applicable to all the systems —

within, of course, the mentioned restrictions that refer, essentially, to the existence

of the thermodynamic limit (see Sec. 2). However, as already mentioned, the shape

of the domain C of the accumulation of zeros of the grand-canonical partition func-

tion in the complex-fugacity plane, besides being temperature-dependent, is specific

to each system, and a priori one might expect it to have a rather intricate structure.

It is therefore a rather amazing result that, for a quite general class of systems, this

region C can be proven rigorously to lie on the unit circle |z| = 1 in the complex-

fugacity plane. This is the celebrated Circle theorem that was first demonstated

by Yang and Lee (see Ref. 12, for a rather restricted class of Ising systems). The

beauty and simplicity of this result attracted a lot of research afterwards, and led to

its generalization to many other situations and models, see below. Note, however,

that no general statement can be made about the density of zeros on the unit circle,

which is characteristic to each system and, of course, temperature-dependent.

7.1. The original Yang–Lee Circle theorem

The system originally considered by Yang and Lee (see Refs. 12, 72 and 26) consists

of an ensemble of N Ising 1/2-spins σi (i = 1, . . . , N):

(i) that are placed on a d-dimensional lattice;

(ii) with pair ferromagnetic interactions between them, of coupling constants Jij >

0 (i 6= j = 1, . . . , N);

(iii) that are subject to a (eventually inhomogeneous) magnetic field.

The corresponding Hamiltoniane

H = −
∑

i<j

Jijσiσj −
∑

i

Hiσi (32)

leads to a canonical partition function ZN = ZN(z1, z2, . . . , zN) that is a multino-

mial in the fugacities

zi = exp(−2Hi/kBT ) (33)

(Hi being the value of the magnetic field acting on the spin σi). In the particular

case of a homogeneous magnetic field Hi = H for all i, the partition function is

simply a polynomial of degree N in the fugacity z = exp(−2H/kBT ). Under the

supplementary hypothesis

(iv) |zi| 6 1 for all i = 1, . . . , N

eOf course, alternatively, one can consider the equivalent lattice gas model, which corresponds to
an uniform magnetic field.
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one can prove the Circle theorem: the zeros of the partition function in the 2N -

dimensional space of complex zi lie all on the unit circle,

ZN = 0 → |z1| = |z2| = · · · = |zN | = 1 , (34)

which amounts to saying that these roots correspond to strictly imaginary (or zero)

values of the magnetic field intensity Hi, i = 1, . . . , N . In the particular case of a

homogeneous magnetic field, all the N roots of ZN = 0 lie on the unit circle |z| = 1

in the complex-z plane, i.e., appear for N strictly imaginary (or zero) values of

H . The theorem remains valid in the thermodynamic limit, when the zeros form

a dense set C on the unit circle, characterized by the linear density λ. Of course,

an immediate consequence of this theorem is the well-known classical result that

a phase transition might appear in such a system, at a fixed finite temperature T ,

only in zero magnetic field.

Note that:

(i) The dimensionality of the lattice does not play any role in the demonstration

of the theorem, which is thus valid in any dimension. Moreover, the size and

the structure of the lattice, its regularity, periodicity, translational symmetry

do not play any role either in the obtention of the result.

(ii) The ferromagnetic interactions are not restricted to first neighbors. However,

they should decrease sufficiently rapidly with the distance in order to ensure

the existence of the appropriate thermodynamic limit (see the discussion in

Sec. 2).

Indeed, the demonstration of this theorem,12 that will not be reproduced here,

rely on some properties of the Hamiltonian that are independent of the dimension

and of the range of the interactions; besides the ferromagnetic character of the

interspin interaction, an essential necessary ingredient is the spin-reversal symmetry

of the system, i.e., the invariance of its Hamiltonian with respect to global inversion

of the spins and of the (inhomogeneous) magnetic field, which leads to the following

symmetry property of the canonic partition function:

ZN(z1, z2, . . . , zN) = z1z2 · · · zNZN (z−1
1 , z−1

2 , . . . , z−1
N ) . (35)

Later on, Asano, in Refs. 53 and 54, introduced a new, more general technique for

the study of the location of the zeros of the grand-canonical partition function.

This method was often used to prove the Circle theorem for various systems (see

below), but it was also extended by Ruelle, (see Refs. 73 and 74), so as to permit

statements about regions other than the unit circle.

7.2. Generalizations of the Circle theorem to other systems

and models

We shall briefly present below some of the systems for which it was shown, using

various methods, that the Circle theorem is valid.

(A) Modified Ising ferromagnets, which include:
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(i) Ising ferromagnets of arbitrary spin, see Refs. 49, 50 and 52. The basic idea for

the extension is that the higher-spin “atom” is a cluster of 1/2-spin “atoms”,

that are coupled together through a suitable ferromagnetic interaction. This

representation leads to an effective, temperature-dependent, 1/2-spin Ising

Hamiltonian and from here to the Circle theorem. Once demonstrated this

result for any finite value of the spins, one can extend it to the classical limit

or infinite-spin limit (see Ref. 59).

(ii) Diluted Ising ferromagnets. Consider a lattice whose sites are either occupied

by a spin 1/2 (with a probability p), or by a non-magnetic atom (with prob-

ability 1 − p); p is thus equal to the concentration of spins on the (infinite)

lattice. As shown in Refs. 60 and 61, for a ferromagnetic coupling between

the spins, and in a homogenous magnetic field H , the zeros of the partition

function correspond to purely imaginary (or zero) values of H . This result can

be extended to higher-spin cases.

(iii) Ising models with many-spin interactions. Ising lattice systems with interac-

tions involving three or more sites — i.e., whose Hamiltonian comprises inter-

action terms of the form −Jij···kσiσj · · ·σk, where i 6= j 6= · · · 6= k correspond

to different lattice sites, and Jij···k is the coupling constant between these sites

— have been used to model a variety of physical situations, like, for example,

some binary alloys,84 lipid bilayers,85 and gauge-field theory models.86 These

systems have rich phase diagrams, and Monte–Carlo results indicate the pres-

ence of phase transitions at nonzero values of the magnetic field for a number

of these systems (see e.g. Refs. 87 and 88). However, in view of their complex-

ity, very few analytically rigorous results are known. In Ref. 55 it is shown that

for a set of many-spin interactions of finite range, under some conditions on

the coupling constants, and also some spin-inversion symmetry conditions, the

Circle theorem holds (at least) up to a certain temperature (that is determined

by the coupling constant and does not depend on the number of spins in the

system). The example of four-spin interactions shows explicitly that the zeros

leave the unit circle at large-enough temperatures. Qualitative arguments sug-

gest that this is the case for other systems with multi-spin interactions, (see

also Ref. 83).

(iv) Ising models on hierarchical lattices. In Ref. 89 a rescaling formalism is used

in order to study the location of the Yang–Lee zeros for 1/2-spin and 1-spin

Ising chains on two- and three-dimensional Sierpinski gaskets, as well as on

3-simplex and 4-simplex lattices. The Circle theorem is shown to hold for

nearest-neighbor ferromagnetic interactions, but is no longer valid at high tem-

peratures when four-spin interactions are included, see also point (iii) above.

References 90 and 91 address the problem of the Yang–Lee zeros of the Ising

nearest-neighbor ferromagnetic model on a Cayley tree. The Julia set of the

renormalization transformation of the model gives the thermodynamic limit of

the partition function zeros distribution. This one lies on the unit circle, and is

multi-fractal in nature, with a temperature-dependent generalized dimension;
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below Tc the Julia set is the unit circle (i.e., it has dimension D = 1), and

above Tc the Julia set is a Cantor set (with a dimension D(T ) < 1 decreas-

ing with the temperature) on the unit circle. When multi-site interactions are

included, these zeros leave the unit circle, (see Ref. 92).

(v) Aperiodic Ising models. References 93–95 discuss various one- and two-

dimensional examples of Ising spins with nearest-neighbor interactions on

aperiodic lattices. The interaction constant can take only two values, Ja,b,

distributed on the lattice according to some generating rule. In 1D case, for

example, the actual distributions of the two coupling constants Ja,b along the

chain is determined by an infinite “word” in the letters “a” and “b” which is ob-

tained as the unique limit of certain two-letter substitution rules (like, e.g., the

Fibonacci or the Thue–Morse rules). If both Ja,b are positive (ferromagnetic

coupling), then although the zeros still lie on the unit circle, their distribution

has a fractal structure (that, of course, disappears when Ja = Jb), as shown

by the integrated density of the zeros along the circle. Thus such systems may

be regarded as intermediate between regular and hierachical models.

(vi) Mean-field Ising model. In Refs. 40–43, the problem of the Yang–Lee zeros for

the Temperley-Husimi model of a lattice gas is addressed, or for the equivalent

mean-field Ising model in a magnetic field, which, of course, is known to exhibit

a first-order phase transition, with a critical temperature Tc. The partition

function zeros lie on the unit circle in the complex-fugacity plane, and one

can compute analytically the corresponding density. A direct comparison with

Mayer’s cluster expansion theory97–99 shows that the non-analiticity point in

Mayer’s series does not coincide with the true transition point as obtained from

the Yang–Lee theory, (see related comments in, e.g. Refs. 11, 20 and 100). See

also Ref. 101 for an approach using the Yang–Lee zeros of a restricted partition

function for the study of the metastable states of long-range (and their mean-

field limit) Ising models.

(B) Heisenberg spin models. The technique of studying the Yang–Lee zeros

that was introduced by Asano in Refs. 53 and 54 was also used by Suzuki and

Fisher in Ref. 55, their studies being devoted to the extension of the Circle theorem

to quantum 1/2-spin systems in a magnetic field. More precisely, they considered

the following fully anisotropic Heisenberg Hamilonian for a system of N spins of

components σx,y,z
i , i = 1, . . . , N , in a magnetic field:

H = −
∑

i<j

(Jx
ijσ

x
i σ

x
j + Jy

ijσ
y
i σ

y
j + Jz

ijσ
z
i σ

z
j ) −

∑

i

(Hx
i σ

x
i +Hy

i σ
y
i +Hz

i σ
z
i ) , (36)

where Jx,y,z
ij are the (anisotropic) coupling constants and Hx,y,z

i are the (non-

uniform) components of the magnetic field in the x, y and z directions. Consider

that Hz
i ≡ Hµi, with µi non-negative constants (for all i = 1, . . . , N), and that the

coupling constants obey the following set of inequalities

Jz
ij > |Jx

ij | and Jz
ij > |Jy

ij | for all 6= j = 1, . . . , N , (37)

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
5.

19
:4

26
9-

43
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 1

0/
23

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



November 16, 2005 11:45 WSPC/140-IJMPB 03275

Yang–Lee Formalism for Phase Transitions 4287

which correspond to the so-called55 ferromagnetic Heisenberg model with dominant

z − z coupling. Then one can prove that the zeros of the partition function ZN =

Tr[exp(−H/KBT )] as a function of H lie all on the imaginary-H axis for all N ,

and do so also in the thermodynamic limit. This result was generalized further in

Ref. 55 for quantum models with spin greater than 1/2 (note that some preliminary

results have already been obtained in Ref. 56), and also to the classical Heisenberg

system of infinite spins (see Ref. 59); see also Ref. 61 for a temptative relaxation of

the corresponding conditions (36) on the coupling constants in the classical limit.

In Ref. 59 it was also shown that the Circle theorem holds for a two-sublattice

antiferromagnet of arbitrary spin, in terms of the staggered magnetic field intensity.

(C) Monomer-dimer models. Consider a lattice of N sites or vertices, connected

through N(N −1)/2 edges; one associates to the edge connecting the vertices i and

j a weight wij , and to a vertex i a weight xi (of course, wij and xi are non-

negative numbers for all i 6= j = 1, . . . , N). A dimer-monomer covering of this

lattice corresponds to (i) placing dimers on the edges such that no two dimers share

a common vertex (i.e., no vertex has more than one dimer); (ii) placing monomers

on all the remaining vertices, i.e., the vertices that are not adjacent to a dimer.

The statistical weight of such a covering is then the product of all the weights wij

of the edges covered by the dimers times the weights xi of all the vertices covered

by a monomer. The partition function ZN = ZN ({wij}, {xi}) of the system is then

the sum of the weights of all the possible coverings. These models correspond to a

huge variety of physical situations, (see e.g. Ref. 64 for an overview).

References 61–65 address the problem of the zeros of the partition function of

the monomer-dimer system. It is shown that, for given non-negative wij , ZN cannot

be zero if Re(xi) > 0 for all i = 1, . . . , N or if Re(xi) < 0 for all i = 1, . . . , N .

In particular, if xi ≡ x for all i = 1, . . . , N , this leads to the conclusion that the

zeros of ZN appear on the imaginary-x axis (or at x = 0), a result that holds

also in the appropriate thermodynamic limit. This corresponds to the absence of

a phase transition in the monomer-dimer system, except, eventually, at x = 0,

which corresponds to a maximum density of dimers. Connections with Ising and

Heisenberg spin models are also discussed.

(D) Ferroelectric models. In Refs. 55, 57 and 58 it was shown that the Slater-

type models for ferroelectricity102 can be mapped onto Ising models with at most

four-spin interactions. Therefore, the Yang–Lee zeros lie on the unit circle at low

temperatures, but leave it at the critical temperature Tc. A modified Slater model,

and an antiferromagnetic model are also discussed from the perspective of the Yang–

Lee theory, and their distributions of zeros on the unit circle, for finite-size lattices,

are investigated numerically.

(E) Quantum fields. References 66–71 show that some Euclidian quantum fields

can be approximated by generalized Ising models on a lattice, with a given proba-

bility distribution of the spins (that may be discrete or continuous, but has to obey
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certain symmetry properties), and with a self-interaction of the spins. In particular,

the Yang–Lee Circle theorem is shown to hold for the considered systems, see the

above-cited references for further details.

For all these systems for which the Circle theorem holds, using the notations

in Sec. 3 one can say that the curve C lies on the unit circle |z| = 1, and can be

parametrized by the trigonometric angle θ. Correspondingly, the density of zeros

λ = λ(θ) = λ(−θ) [in virtue of the symmetry property (6)], and it is nonzero on

two arches of the unit circle defined by θ0 6 |θ| 6 π, where θ0 > 0 is a function of

temperature (see also Sec. 9.2). The normalization condition (5) for the density of

zeros reads simply

2

∫ π

θ0

λ(θ)dθ = b . (38)

The complex pressure (7) becomes

P = kBT

∫ π

θ0

λ(θ) ln(z2 − 2z cos θ + 1)dθ , (39)

and the complex particle-number density (28) is

n = 2z

∫ π

θ0

λ(θ)
z − cos θ

z2 − 2z cos θ + 1
dθ . (40)

Note, however, that the density of zeros λ(θ) is known analytically in very few

cases (e.g., the one-dimensional Ising model with nearest-neighbor interactions, see

Ref. 12; the mean-field Ising model, Refs. 40 and 41), and was computed numerically

in few other cases (see Ref. 21 for such a calculation for the Ising ferromagnets

on a two-dimensional square lattice, and on a three-dimensional diamond lattice,

respectively), and thus the practical use of these relationships is rather restricted.

7.3. Griffiths inequalities

Note also a very important by-product of the Circle theorem, namely the

demonstration of various Griffiths-type inequalities, i.e. inequalities between spin-

correlation functions, (see Refs. 50, 51, 53, 54, 66, 67, 69, 70, 75 and 76). The

simplest to demonstrate are the Griffiths–Kelly-Sherman77–80 (GKS) inequalities.

They were first obtained using the Circle theorem in Refs. 50 and 51 for an Ising

1/2-spin ferromagnet in a magnetic field H > 0, as:

〈σAσB〉 > 0 (the first-type GKS inequality) (41)

〈σAσBσCσD〉 > 〈σAσB〉〈σCσD〉 (the second-type GKS inequality), (42)

where σA,B,C,D are the products of the spins inside the (multi-site) regions

A,B,C,D of the lattice, respectively; 〈· · ·〉 denotes the mean over the statisti-

cal ensemble. These inequalities were generalized, on the basis of Yang–Lee Circle

theorem, to higher-spin systems,50 Heisenberg ferromagnets,53,54 and systems with

arbitrary even spin distributions.67
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The Griffiths–Hurt-Sherman81 (GHS) inequality

〈σAσBσC〉 6 〈σA〉〈σBσC〉 + 〈σC〉〈σAσB〉 + 〈σB〉〈σCσA〉 − 2〈σA〉〈σB〉〈σC〉 (43)

was demonstrated for various systems, using the Circle theorem, in Refs. 66, 69 and

70. It has several interesting implications, the concavity of the average magnetiza-

tion as a function of H ; the monotonicity of the correlation length as a function

of the magnetic field; the well-known result on the absence of phase-transition for

H > 0; some inequalities for the critical exponents; (see e.g., Refs. 76 and 82). More

complicated inequalities on the correlation functions, involving the Circle theorem,

are treated in Refs. 69 and 75.

8. Further Results on the Yang–Lee Zeros Location

As already mentioned, the papers by Asano, Refs. 53 and 54, and later on their

elegant generalization by Ruelle, Refs. 73 and 74, lead to a criterion for the location

of the Yang–Lee zeros in the complex-fugacity plane for a fairly large number of

systems. This criterion, as well as ad-hoc methods adapted for the system under

study (e.g., the transfer-matrix formalism for the one-dimensional lattice systems,

see Sec. 6), and sometimes numerical results allowed us to approach several systems

and to draw some general conclusions. A first remark would be that usually the

distribution of Yang–Lee zeros in the complex-fugacity plane is well behaved, i.e., in

the thermodynamic limit the zeros are distributed densely on an ensemble of smooth

curves.

(A) Ising systems with multi-spin interactions. A rather general result refers

to the fact that the Circle theorem does not hold at high temperatures, (see points

(iii) and (iv) for modified Ising models in the previous section). A rigorous study

of the regions in the complex-magnetic plane that are free of zeros of the partition

function is carried in Ref. 83 for two very general classes of multisite interaction

systems, namely (i) systems having ferromagnetic interactions involving even num-

bers of sites, and (ii) systems with, again, ferromagnetic interactions involving even

numbers of sites and, in addition, either ferromagnetic or antiferromagnetic interac-

tions involving odd numbers of sites. Each site may interact with a finite number of

other sites. As for the case of the Circle theorem, the dimension and the specific type

of lattice do not come into play. It is shown that: (i) For systems of the first type,

there is an interval of the real H axis, (−C(T ), C(T )) (with C(T ) > 0 that depends

on the strength of the ferromagnetic couplings) outside which there is no phase

transition. C(T ) goes to zero as T → 0, and hence the interval shrinks to H = 0.

(ii) For systems of the second type, when the interaction involving odd numbers

of sites is antiferromagnetic, there is an interval on the real H axis (−∞,−C(T ))

in which no phase transition occurs; when the interaction involving odd numbers

of sites is ferromagnetic, there is no phase transition for real H ∈ (C(T ),∞). Here

again C(T ) is a positive parameter, depending on temperature and on the inter-

action constants, that goes to zero in the zero-temperature limit. These general
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results put clear constraints on the region of the plane temperature-magnetic field

where one is entitled to look for a possible phase transition for such systems with

multi-spin interactions.

(B) Ising systems with antiferromagnetic interactions or, equivalently,

lattice gases with repulsive interactions. Various Ising lattice systems with

antiferromagnetic interactions have been considered in Refs. 22 (a Tonks gas of hard

rods and a gas with a weak long-range repulsion),31 (Tonks gas),25 (a lattice gas

with a hard-core repulsion extended over several lattice sites),103 (a hard-core lattice

gas on an M ×∞ square lattice),26,170 (Ising antiferromagnet),59 (a two-sublattice

antiferromagnet),105 (Ising ferromagnet on a bipartite lattice),44,45 (Ising lattices

with various combinations of ferromagnetic and antiferromagnetic couplings),46

(Fisher and Temperley lattice gases),47 (one-dimensional XY model),106 (antifer-

romagnetic Husimi-Temperley model),63 (lattice gases with all the zeros of the

partition function on the real negative semi-axis of the fugacity),104 (various lattice

systems of rigid molecules),107 (various Ising antiferromagnets),109 (numerical re-

sults on finite square-lattice Ising antiferromagnets). Different approaches are used;

those that lie from the very abstract rigorous mathematical ones to approximate

analytical ones in solving the inverse problem (Sec. 4), and to numerical methods.

The generic emerging result is that, due to the presence of the antiferromagnetic

coupling (or, equivalently, of the repulsive part of the lattice gas interparticle in-

teraction), a part of the Yang–Lee zeros lie on the real negative semi-axis of the

fugacity z (for finite systems, as well as in the thermodynamic limit, when even-

tually these zeros occupy densely a whole portion of the negative semi-axis). The

other details of the distribution of the zeros are, of course, specific to the details

of the considered model (i.e., range of interactions, whether the coupling is mixing

ferromagnetic and antiferromagnetic features, etc.). The locus of zeros and even the

density of zeros were sometimes computed analytically.

(C) Degenerated Ising spins. In Ref. 110 the case of a a one-dimensional,

nearest-neighbor interactions, spin-1 Ising system that has a spin degeneracy,

i.e., for which each spin variable S can take either of the values values S = 1, 0,−1

with a certain weight (degeneracy) g(1), g(0), g(−1) is discussed. It is shown that

the corresponding Yang–Lee zeros do not lie, in general, on the unit circle in the

complex-fugacity plane. The conditions under which one recovers the Circle theo-

rem are discussed, (see also Refs. 50, 111 and 112).

(D) Van der Waals gas. Several papers were devoted to this prototypical model

of non-ideal gas that can be seen as the continuum limit of a lattice gas with weak,

long-ranged attractive forces, (see Ref. 25). References 23, 24, 27–30 addressed the

problem of the distribution of Yang–Lee zeros, showing that:

(i) For infinite temperature the zero distribution is located on part of the real

negative semi-axis of the fugacity;

(ii) With decreasing temperature the distribution branches off the real axis, cir-

cumventing the origin symmetrically, on both sides;
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(iii) Below the critical temperature Tc the distribution forms a closed curve around

the origin, with a diameter decreasing exponentially to zero as T → 0;

(iv) An additional tail of the distribution remains on the negative real axis, but

with a density of zeros going linearly to zero as T → 0.

This tail is connected to the repulsive-core singularity of the van der Waals inter-

action potential, (see Ref. 113 for a discussion). The density of zeros was computed

analytically in some limiting cases, e.g., in the vicinity of the branching points.

(E) ±J Ising model for spin glasses. Reference 114 discusses a numerical tech-

nique for obtaining the distribution of Yang–Lee zeros of the disordered symmet-

ric ±J Ising model (i.e., an Ising lattice for which the coupling constant between

two neigbour sites is chosen at random as J or −J), in two and three dimen-

sions. This distribution of zeros, which determines the analytical properties of the

configuration-averaged free energy, is the superposition of the zeros of the partition

function corresponding to each configuration of the coupling constants. The zeros

are not distributed on smooth curves, and it seems that in the thermodynamic limit

they occupy (densely or not, the question is not clarified yet) a whole region of the

complex-z plane. The computation of the corresponding configuration-averaged free

energy allows to approach some problems of this short-range spin glass model —

like the existence of the Griffiths singularity (a non-analytic behaviour in the para-

magnetic phase of a random or diluted Ising ferromagnet, see Ref. 115) and of the

Almeida-Thouless transition line, Ref. 116.

9. Yang–Lee Zeros and the Critical Behaviour

For simplicity, the considerations in this section address the particular case of a

system for which the Circle theorem is valid. However, they can be adapted, with

some modifications, to more general locations of Yang–Lee zeros. For example,

instead of the Yang–Lee edge angle θ0 in Sec. 9.2, one should consider, in general,

the smallest distance between the ensemble C of zeros and the critical point.

9.1. Density of zeros near criticality

In the vicinity of a critical point, the thermodynamic quantities, as well as the

correlation functions, exhibit power-law behaviours associated with a set of critical

exponents. For example, for an Ising model one has:

• For the (zero field) specific heat

c(t) ∼ t−α , for t > 0 (44)

and

c(t) ∼ |t|−α′

, for t < 0 ; (45)
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• For the spontaneous magnetization

m(t) ∼ |t|β , for t < 0 ; (46)

• For the isothermal susceptibility in zero field

χ(t) ∼ t−γ , for t > 0 (47)

and

χ(t) ∼ |t|−γ′

, for t < 0 ; (48)

• For the field dependence of the magnetization at criticality

m(h, t = 0) ∼ hδ ; (49)

• For the correlation length

ξ(t) ∼ t−ν , for t > 0 (50)

and

ξ(t) ∼ |t|−ν′

, for t < 0 ; (51)

• Finally, for the long-distance spin-spin correlation function at criticality:

G2(r, t) ∼
1

r(d+2−η)
, (52)

where t = (T/Tc−1) is the reduced temperature (Tc being the critical temperature).

The nine critical exponents α, α′, β, γ, γ′, δ, ν, ν′ and η are not independent, and

the scaling laws reduce the number of independent exponents to two.117

In the framework of the Yang–Lee theory, all the above quantities can be ex-

pressed in terms of the density of zeros, e.g., λ(θ, t) for an Ising-like system for

which the Circle theorem is valid. In the critical region, λ(θ, t) should take a par-

ticular scaling form in order to reproduce the above behaviours. A large body of

work has been devoted to the study of this scaling form (see Refs. 52, 118–123, and

the main result is that:

λ(θ, t) = |t|βψ(θt−(β+γ)) , (53)

in the region of the unit circle θ0(t) 6 |θ| 6 π where the density of zeros is different

from zero [see Eq. (38) and above it]; ψ(x) is a positively-defined function, that is

finite and nonzero at x = 0±. Thus, the critical exponent β can be extracted from

the scaling behavior of λ(θ, t) in the vicinity of the critical point.

9.2. Yang–Lee edge singularity

Let us consider again a model for which the Circle theorem is valid, as for example

an Ising-like model. For a temperature t > 0, a gap will show up in the density of

zeros λ(θ, t). No zeros are present in an interval [−θ0(t), θ0(t)] or, correspondingly,

in a purely imaginary external field interval [−iH0,+iH0] (with H0 = kBTθ0/2 in
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the appropriate units, see Sec. 5). This gap reduces to zero when the temperature

descends to the critical value and below. Kortman and Griffiths21 were the first

to point out the interest to investigate the behavior of λ(θ, t > 0) for θ close

to the points ±θ0(t), called the Yang–Lee edges. A large literature addressed this

question, (see Refs. 113, 124, 125, 127–130), leading to the following picture. The

edge singularity should be regarded merely as an usual critical point occuring with

a purely imaginary field iH . It turns out that

λ(θ, t > 0) ∼ |θ − θ0(t)|σ , for θ → θ0(t)
+ . (54)

Renormalization group arguments demonstrate that the appropriate model describ-

ing the edge singularity is the so-called φ3 field theory.131 The exponent σ is simply

related to the thermodynamic exponent δ:

σ = δ−1 . (55)

The upper critical dimension (above which mean-field predictions are correct) is

du = 6. Moreover, the above power law behavior is valid for all temperatures T > Tc,

and also for all O(n) models. Indeed, the presence of the magnetic field breaks the

original O(n) symmetry and thus the behavior becomes Ising-like. Note moreover

that the critical theory of the Yang–Lee edge in two dimensions corresponds to a

rather simple realization of conformal symmetry.126

Therefore, the behaviour of the density of zeros near the critical edge provides

a second independent critical exponent δ. The knowledge of β and δ, and of the

scaling laws characterizes completely the critical behaviour of the system.

10. Finite-Size Scaling and Yang–Lee Zeros

As we have seen from above, the density of zeros near the critical edge and at

criticality contains all the information concerning the critical behavior of a given

system. However, an analytical expression for the density of zeros can be obtained

only for some particular simple systems. For more complicated cases, the density

of zeros has to be computed numerically on finite systems. It is thus important to

understand the role played by the finiteness of the systems.

The finite-size scaling theory provides a powerful tool in interpreting finite-size

systems data. The theory was first developped for continuous phase transitions

based on phenomenological arguments.132 A more modern presentation is based on

a renormalisation group approach.133 The key hypothesis is based on the premise

that only two different scales matter, namely: ξ, the correlation lenght in an infinite

system, and L, the characteristic linear extent of the finite-size system. The case of

finite-size effects in first-order phase transition is somehow more subtle as discussed

by Fisher and Berker.134 However, scaling at a first-order transition can be treated

in a similar manner as the one for a second-order transition with the temperature

and magnetic anomalous dimensions, yt and yh, assuming the maximal values yt =

yh = d, where d is the dimension of the system.
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For a finite-size system of size L the singular part of the magnetization has the

form

m(t, h, L) = L−d+yh m(tLyt , hLyh) (56)

where h ≡ 2H/kBT . Then the density of zeros scales as

λ(θ, t, L) = L−d+yhλ(θLyh , tLyt) . (57)

At the critical temperature t = 0 one has

λc(θ, L) = L−d+yhλc(θL
yh) , (58)

which implies for the infinite system

λc(θ) ∼ |θ|1/δ . (59)

For t > 0, the angle of the Yang–Lee edge (see Sec. 9.2) for finite systems,

θ0(t, L), scales as

θ0(t, L) = L−yhθ0(tL
yt) , (60)

leading, for L→ ∞, to

θ0 ∼ tβ+γ . (61)

Finite-size scaling for the density of Yang–Lee zeros λ(θ, t, L) has been discussed

by Alves et al.172 for the three-dimensional Ising model, by Kenna et al.194,196,201 for

the four-dimensional Ising model and for the O(N)φ4 theory at the upper critical

dimension.205 Creswick and Kim135,197 have analyzed the critical properties of the

two-dimensional Ising model by computing exactly the partition function of systems

of sizes 4 6 L 6 10 and by extrapolating the data using a Bulirsch–Stoer (BST)

algorithm.136 Janke and Kenna198,204 have recently developed a novel numerical

technique which allows us to determine both the latent heat in the case of a first-

order transition and the specific heat exponent α in the case of a second-order

transition. The main point is the study the so-called cumulative distribution of

zeros, that is defined as:

ΛL(r, t) =

∫ r

0

λ(s, t, L)ds . (62)

This approach has been successfully applied to the study of 2d and 3d Ising models,

d = 2, q = 10 Potts model (see Sec. 13), and lattice gauge theories.

11. Pirogov–Sinai Theory and Yang–Lee Zeros for First-Order

Phase Transitions

A recent series of papers (see Refs. 137–141) addresses the problem of a more di-

rect connection of the Yang–Lee zeros with the (complex extension of the) free
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energy and the discontinuities of its derivatives, for generalf lattice spin models in

a magnetic field, that present first-order phase transitions. The departure point is

the Pirogov–Sinai formalism for the phase diagram of the system (see Refs. 142

and 143). Its basic hypothesis are the existence of a finite number of ground states

(which are the thermodynamic phases) of the system, and of the availabilty of an

appropriate contour representation, i.e., the fact that the partition function can

be written as the sum over the partial partition functions of each phase. Roughly

speaking, this corresponds to the fact that, for a system with P possible phases

(P = 1, 2, 3, . . .), the probability distribution for the order parameter (the magne-

tization) conjugated to the external field H has P peaks; the partition functions

corresponding to the different phases can be evaluated from the position and width

of these peaks (which depend on the control parameters temperature and magnetic

field H). The total partition function is then expressed as

ZN(z) =
P

∑

l=1

gl exp[−V fl(z)/kBT ] + O(exp(−L/L0)) , (63)

where N is the number of spins; fl(z) is the complex extension of the thermody-

namic free energy per unit volume of phase l, as a function of the complex fugacity

z = exp(−2H/kBT ); gl is the degeneracy of phase l; V = Ld is the volume of the

lattice of linear extension L and dimension d; and L0 is of the order of the correla-

tion length. Let us suppose here, for simplicity, the absence of triple or higher-order

coexistence points (the theory can be extended to include these cases, too), i.e., for

any values of the control parameters (T,H) the probability distribution function

of the order parameter do not have more than two peaks. Then by inspection

of Eq. (63) one realizes that the zeros of the partition function in the complex-z

plane arise, up to order O(exp(−L/L0)), from a destructive interference of pair of

terms of the sum, ql exp(−V fl/kBT ) and qp exp(−V fp/kBT ), l 6= p = 1, . . . ,P .

So, each zero of ZN (z) in the complex-fugacity plane lies in a vicinity of the order

O(exp(−L/L0)) of a solution of the equations corresponding to this condition of

destructive interference:

Re fl(z) − (kBT/V ) ln gl = Re fp(z) − (kBT/V ) ln gp ,

V/kBT [Imfl(z) − Imfp(z)] = π mod 2π , l 6= p = 1, . . . ,P .
(64)

In the thermodynamic limit, the zeros concentrate asymptotically on the phase

coexistence curves Re fl(z) = Re fp(z), and the corresponding local density of zeros

is given by ρ(z) = (2πkBT )−1 d[fl(z) − fk(z)]/dz. Practically, this means that the

zeros of the partition function can indeed be expressed in terms of the complex free

energy and of the discontinuities in its derivatives. References 137 and 139 illustrate

the application of this rather abstract-looking method to three examples, the low

f“General” means here systems with no particular symmetry properties like, e.g., the spin-inversion
symmetry invoked in deriving the Circle theorem.
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temperature Ising and Blume–Capel, and the q-state Potts model in the limit of

large q.

12. Fisher Zeros of the Canonical Partition Function

In a review article written in 1965 (Ref. 4), Fisher suggested the analysis of the

phase trasitions in the frame of the canonical ensemble, through the study of the dis-

tribution of the zeros of the canonical partition function in the plane of the complex

temperature — i.e., what we call today Fisher’s zeros. Indeed, in view of the equiv-

alence of the various statistical ensembles in the thermodynamic limit, one should

be able to equally characterize a phase transition in any of these ensembles. As in

the grand-canonical case, the Fisher zeros will lie off the real positive temperature

semi-axis for a finite system, but may close up on this semi-axis in the thermody-

namic limit; the point Tc where a limiting line of zeros cuts the semi-axis will locate

a critical point. Fisher illustrated this idea in Ref. 4 on the two-dimensional square-

lattice Ising model, with isotropic nearest-neighbor interactions, in the absence of

the external magnetic field, whose partition function is known analytically since

Onsager (see Ref. 144). Fisher found that the zeros of the canonical partition func-

tion lie on an unit circles in the plane of the complex variable v = sinh(2J/kBT ),

where J > 0 is the ferromagnetic coupling constant, and T is the complex temper-

ature. These circles cut the real-v axis in v = ±1; the point v = +1 corresponds

to the ferromagnetic transition, and v = −1 corresponds to the antiferromagnetic

phase transition point (in agreement with the ±J symmetry property of the square

lattice in zero magnetic field).

The concept of Fisher zeros (both in the absence and in the presence of a mag-

netic field), which seems to follow closely that of the Yang–Lee zeros studies, was

rapidly set-up in its general frame, including the relevance of the thermodynamic

limit, the location of the critical point, Refs. 4, 145 and 146, and the characteriza-

tion of the transition, see Refs. 13–19. The (often tacit) underlying assumption of

these abstract studies on the characteristics of the transition is that in the thermo-

dynamic limit the Fisher zeros fall on smooth, complex-conjugate curves, at least

in some vicinity of the critical point. In particular, provided that this is indeed

the case, Itzykson et al. (see Ref. 147), proved two very strong general statements

for Ising systems, namely: (i) These complex-conjugate curves in the absence of

a magnetic field, in the vicinity of the critical point, form an angle with the real

temperature axis that is a universal known function of the critical exponent α (of

the specific heat) and of the ratio of the specific heat amplitudes below and above

the critical point. (ii) The angle (with respect to the real temperature axis) at

which these zeros curves (in the vicinity of the critical point) depart when a real,

weak magnetic field is switched on is an universal function of the critical expo-

nents β (of the spontaneous magnetization) and δ (of the relation between field

and magnetization at the critical temperature).
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However, despite some exceptions (like, e.g., the above-cited Onsager–Ising

model), the above assumption on the location of Fisher zeros is rarely fulfilled

(see e.g. Ref. 148 for a discussion of this point). The rule seems to be that the

Fisher zeros in the thermodynamic limit occupy densely some whole areas in the

complex-temperature plane, delimited by curves on which the density of zeros may

diverge. Nothing like a Circle theorem or an Asano–Ruelle type of argument exists

for Fisher zeros, because the canonical partition function with respect to a variable

of the type v = sinh(2J/kBT ) (where J is a typical interaction constant of the

model, and T is the complex temperature) does not have the polynomial structure

the grand-canonical partition function has with respect to the fugacity z. In fact,

there are three elements that render the study of Fisher zeros more complicated

than that of Yang–Lee zeros:

(i) The first element is that the location of the Fisher zeros is strongly dependent

on the details of the system (dimension, interaction between the components

of the system, etc.). For example, Fisher zeros for the Onsager–Ising model

have completely different location than the Fisher zeros of the corresponding

anisotropic ferromagnet. This general feature is, of course, in relation with the

fact that the critical temperature Tc is a quantity that varies from one system

to another.

(ii) In general, the zeros for a finite system are not necessarily located in the region

of the complex plane occupied densely by the Fisher zeros in the thermody-

namic limit. See, for example, the case of a mean-field Ising ferromagnet, in

Refs. 101, 149–153, where the location of the Fisher zeros in the thermody-

namic limit is interpolated from that corresponding to larger and larger finite

systems.

(iii) The third point is that very often, the location of the Fisher zeros, even in

the thermodynamic limit, is not well behaved, i.e., it does not correspond to

smooth curves in the complex-v plane, but rather to a combination of curves

and densely-covered regions of the plane (like, for example, for the very simple

example of an anisotropic ferromagnet on a square lattice, see e.g. Ref. 148).

These elements explain the scarcity of exact analytical results on the Fisher

zeros (as compared to the Yang–Lee zeros), the predominance of numerical results,

and thus the importance of finite-size scaling arguments in the study of the charac-

teristics of the transition by means of Fisher zeros. Without entering into details,

let us give a few examples of the systems that were studied in the literature:

(A) Ising models with nearest-neighbor ferromagnetic interactions,

including:

(i) Two-dimensional finite m × n isotropic square lattices, in zero magnetic

field,154,155 (see also Ref. 156 for a discussion of the role of boundary condi-

tions). Reference 157 generalizes the result of Fisher4 on the circular location

of the zeros to m×∞ rectangular lattices with (asymmetric) self-dual bound-
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ary conditions, and closed form expression of the density of zeros are obtained

for m = 1, 2.

(ii) The Onsager–Ising model in an external, symmetry-breaking magnetic field of

complex value H/kBT = ±iπ/2, whose exact partition function in the thermo-

dynamic limit was first presented by Lee and Yang in Ref. 12, was approached

from the point of view of the complex-temperature zeros in Refs. 158 and

159. The density of Fisher zeros is discussed in Ref. 160 (also for the cases of

triangular, honeycomb, and Kagomé lattices).

(iii) The corresponding problem in a real nonzero magnetic field was approached

numerically and analytically (with low-temperature series expansions) in

Refs. 159 and 170. It was found that the density of Fisher zeros diverges at

a non-physical critical point, the Fisher edge singularity that can be consid-

ered as the equivalent of the Yang–Lee edge singularity (see Sec. 9), as also

discussed in Ref. 161.

(iv) The loci of the Fisher zeros in the thermodynamic limit of two-dimensional

systems on honeycomb, triangular, diced, and Kagomé lattices, in the absence

of the magnetic field, were described in Ref. 162. Reference 160 discusses the

corresponding density of the Fisher zeros.

(v) Two-dimensional Ising systems on square, triangular, and honeycomb lattices

are investigated both in the isotropic and anisotropic cases, for finite systems,

and in the thermodynamic limit, in zero magnetic field, in Refs. 148, 163–168.

It is concluded that, in general, the Fisher zeros occupy densely the complex-

v plane in the thermodynamic limit, and the corresponding density is also

discussed.

(vi) Fisher zeros for finite three-dimensional isotropic, cubic-lattice Ising ferromag-

nets, in zero magnetic field, as well as estimates (based on finite-size scaling

arguments) of their densities were discussed at various levels, in Refs. 169–172.

(B) Higher-spin Ising model. Ising models of spin S = 1, 3/2, 2, 5/2 and 3 have

been calculated in Ref. 173 for a two-dimensional Ising model on a square lattice,

for various lattice sizes, in zero magnetic field. The temperature-dependence, as

well as the asymmetry in the specific heat amplitude above and below the critical

point are estimated from the Fisher zeros distribution.

(C) Mean-field spin models. The problem of the Fisher zeros for mean-field

1/2-spin Ising models — including the relation with critical exponents, finite-size

scaling aspects, the use of a partial distribution function in order to characterize

the metastable behavior, the relationship with long-range interaction systems —

was approached in Refs. 43, 101, 149–153. The exact locus of the Fisher zeros for

the mean-field spherical model was obtained in Ref. 174. See also Ref. 175 for an

Ising-type mean-field model for a polypeptide with helix-coil transition.

(D) Antiferromagnetic Ising models. References 170 and 176 obtain numeri-

cally the location of the Fisher zeros for a finite Ising antiferromagnet on a square

lattice, for different values of the external magnetic field and different extensions
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of the lattice. It is inferred that in the thermodynamic limit these zeros have an

accumulation point on the real axis, corresponding to the antiferromagnetic critical

point.

(E) Heisenberg ferromagnets. References 177–179 discuss the thermodynamic

functions (such as energy, specific heat, magnetization, and susceptibility) that

have been computed numerically, using Fisher zeros distributions, for finite three-

dimensional Heisenberg models with different anisotropy constant parameters, in-

cluding both ferromagnetic and antiferromagnetic couplings.

(F) Ising models on hierarchical lattices. The location, fractal nature, and

density of Fisher zeros for Ising models on various such lattices are studied in

Refs. 180, 181 (diamond hierarchical lattice),182,92 (Cayley trees),89,183,184 (Sier-

pinski gaskets and 3- and 4-simplex lattices). We also refer the reader to a short,

comprehensive review of Itzykson et al. on this subject.185

(G) Ising models on aperiodic lattices. References 93–96 discuss the Fisher ze-

ros for several such one- and two-dimensional Ising aperiodic lattices, with coupling

constants generated according some predefined algorithms (see also Sec. 8).

(H) ±J Ising spin model. In Refs. 186 and 187 there are presented numerical

results on the corresponding Fisher zeros for two- and three-dimensional lattices

of different sizes. More extended simulations in Ref. 188 seem to indicate a fractal

nature of the distribution of zeros.

(I) Random energy model. The random energy model is one of the simplest,

exactly-solvable, disordered model that contains some physics of the spin glasses (see

Ref. 189). It is equivalent to a spin model with multispin interactions exhibiting

a low-temperature spin glass phase. Its Fisher zeros were studied numerically and

analytically in Refs. 190 and 191, and they were found to occupy densely lines and

extended areas of the complex-temperature plane.

Most of the above-cited references invoke finite-size scaling arguments in order to

infer the properties of the Fisher zeros (location zone, position of the critical point

of the transition, density, etc.) in the thermodynamic limit from those obtained

numerically for finite-size systems. A long list of references concentrate precisely

on the finite-size scaling theory for Fisher zeros (and, sometimes, they also address

the same problem for the Yang–Lee zeros) (see Refs. 192–194, 196–206).

13. Potts Model: What to Complexify?

The Potts model (so named after R. B. Potts who first studied it in his 1951 Ph.D.

thesis at Oxford) is a generalization of the Ising model to more-than-two-component

spins, and, due to its complex behavior, as well as the various experimental realiza-

tions, has been a subject of intense research during the last 30 years (see Ref. 207

for a review). The q-state Potts model consists of q-components spins, i.e., spins
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that can point in the q symmetric directions of a hyperthetraedron in (q − 1) di-

mensions, described by the unit vectors sα, α = 0, . . . , q− 1; these spins are placed

on a lattice, and the corresponding Hamiltonian H of the system in the presence of

a magnetic field H is expressed as:

H = −ε
∑

〈ij〉

δ(si, sj) −H
∑

i

δ(si, s
Q) . (65)

Here si is the direction of the i-th spin as discussed above; ε is the coupling constant

(which is ferromagnetic if ε > 0, and antiferromagnetic if ε < 0); 〈ij〉 indicates

nearest-neighbor pairs; δ is the Kronecker delta; and sQ is a fixed direction amongst

the q possible ones (one says that the field H is coupled to the spin-state Q). The

model can be modified to include multi-site interactions.

Using its representation in terms of a graph with colored edges, Potts model

can be generalized to arbitrary, non-integer values of q. It is connected with other

interesting models of statistical mechanics. Potts model with q = 4 is known as

Ashkin–Teller model;208 the case q = 2 corresponds to the usual Ising model; q = 1

model is in correspondence with the percolation process; q = 1/2 can be related to

a dilute spin glass model; finally, the q = 0 limit relates to the Kirchhoff resistor

network problem.

The nature of the order-disorder phase transition in Potts model depends —

besides on the ferromanetic or antiferromagnetic nature of the model — both on

the dimension d and on the value of q. For example, for the ferromagnetic model

in the absence of a magnetic field, for d = 2 there is a second-order phase transi-

tion when q = 2, 3, 4, while for q > 4 the transition is first-order. There exists a

dimension-dependent critical value of q, qc(d), above which the transition is mean-

field like — either of the first order if q > max(2, qc) or continuous if qc 6 q 6 2.

The few exactly-known points are qc(2) = 4 (Ashkin–Teller), qc(4) = 2 (Ising),

qc(6) = 1 (percolation). Besides the q = 2 (Ising) case, the q = 3 and q = 4

models have a rather well-studied phase diagram, which proved to be dimension-

dependent.

The location and characteristics of the phase transition(s) — that are known

analytically only in few cases — can be studied, essentially numerically, in the Yang–

Lee formalism. The canonical partition function, in the general case, is a function of

three control parameters: the magnetic field intensityH , the temperature T , and the

parameter q of the model. One can therefore consider the complex extension of the

partition function and the corresponding zeros either with respect to the complex

magnetic field (Yang–Lee zeros), or the complex temperature (Fisher zeros), or,

moreover, with respect to the complex q — the so-called Potts zeros.

13.1. Yang–Lee zeros

A first category of studies was done on the zeros of the partition function in the

plane of the complex magnetic field, at fixed temperature and real value of the

parameter q of the Potts model, for various dimensions d and types of lattices.
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The one-dimensional lattice was studied in the references cited below using a

transfer-matrix technique. It was shown211 that for 1 < q < 2 the zeros lie inside

the unit circle in the complex fugacity plane, while for q > 2 they lie outside the

unit circle for finite temperature; q = 2 corresponds to the Circle theorem for the

Ising system. The situation q < 1 is somehow pathological,210,213 since for all the

temperatures the zeros lie (in part or completely, depending on T ) on the real axis,

and accumulate around a certain point of the real axis. This would mean that one

obtains a second-order phase transition at finite temperature, and in the presence

of a real magnetic field; however, the eigenvalues of the transfer matrix — which

give the correlation length — are not real. q = 1 is a particular limiting case. The

discussion of a tricritical point and its connection with a special type of Yang–

Lee edge singularity is given in Ref. 209 for q = 3 Potts model. Reference 212

demonstrates a connection between the locus of the Yang–Lee zeros and the Ju-

lia set of the logistic map associated with the renormalization transformation of

the lattice (and idea already present in the study of Ising models on hierachical

lattices, see above). Finally, Ref. 214 presents a recursive method (adapted from

the theory of dynamical systems) for the computation of the partition function

zeros.

The two- and three-dimensional models on regular lattices are discussed in

Refs. 216, 217 and 211, and they are shown211 to have the same type of behav-

ior with respect to q as the one-dimensional lattices. Yang–Lee zeros on recursive

Bethe lattices are studied in Ref. 218 for noninteger values of q.

13.2. Fisher zeros

As already mentioned in Sec. 12, the Fisher zeros are much more sensitive than the

Yang–Lee zeros to the details of the interactions (type of lattice, dimensionnality),

and also to finite-size effects (like boundary conditions), and this explains the large

number of (essentially numerical) papers devoted to the study of various specific

models.

For the one-dimensional lattices with arbitrary q it was shown in Ref. 210 that

the zeros in the complex field plane can be related, through a kind of duality

transformation, to the zeros in the complex temperature plane. Potts models on

square lattices are discussed, e.g., in Refs. 108, 219 and 220, in the absence of a

magnetic field and for various values of q. In the region where Re[exp(ε/kBT )] < 1,

Fisher zeros lie on the circle | exp(ε/kBT ) − 1| =
√
q, while outside this region the

zeros are no longer ocuppying this circle and lead to the existence of (nonphysical)

points at which the magnetization and susceptibilities diverge — the Fisher edges.

The problem of the Fisher edges is also discussed in Refs. 161, 214, 221–223, both

in the absence and presence of an external magnetic field.

Finally, a large body of literature addresses these problems on various other

lattices — strips of square lattices,224,225 honeycomb, triangular, and Kagomé

lattices,226–228 and recursive Bethe lattices.215,218
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13.3. Potts zeros

As already mentioned, Potts model can be extended to arbitrary, continuous values

of q (through the so-called Kasteleyn–Fortuin229 representation). Thus the canon-

ical partition function becomes a function of the parameter q, and this gives the

motivation for the analysis of its zeros in the plane of complex q — the Potts zeros.

The physical relevance of such an approach may be somewhat unclear at first sight.

However, in Ref. 222 it is shown that one can find a similarity between the scaling

property of complex-q zeros and the den Nijs230 expression for the thermal critical

exponent; in Ref. 223 it is shown that a Circle theorem holds for a certain range of

intensity of the applied magnetic field, while for other ranges the Potts zeros lie on

the positive real axis (without necessarily being accumulation, i.e., phase-transition

points). A Potts edge exists, analogous to the Yang–Lee and Fisher edges. Several

types of lattices are considered in Refs. 214, 224, 225 and 228. Finally, 1D long-range

interaction and the mean-field cases are approached in Ref. 231, with a discussion

of the phase transition point and of finite-size effects.

While most of the above-cited references address the case of the ferromagnetic

Potts model, there is a non-negligible amount of work dedicated to the antiferro-

magnetic case (see Refs. 108, 213, 222–224 and 228). In particular, the canonical

partition function in the T → 0 limit reduces to chromatic polynomials in q, that

have a relevance in the theory of graphs.232

PART II: NONEQUILIBRIUM STEADY-STATE PHASE

TRANSITIONS

14. Generalities

The study of nonequilibrium systems reveals its importance once one realizes that

equilibrium in nature is merely an exception rather than the rule, and that most of

the qualitative, structural changes (like, for example, pattern formation) that one

encounters in various systems take place under nonequilibrium conditions.

From a macroscopic point of view, roughly speaking, a nonequilibrium system

is the set of fluxes of various characteristic quantities (e.g. number of particles,

energy, etc.) inside the system and between the system and its surroundings. Let

us try to give a more precise, quantitative meaning of the notion of nonequilibrium

system from a microscopic point of view, in the frame of a stochastic description of

the system in the corresponding configuration space. Of course, as for equilibrium

systems, this probabilistic description is imposed by the huge number of microscopic

degrees of freedom, and by the practical necessity of describing the system in terms

of a few relevant measurable quantities.

A configuration ω of the system represents a set of relevant mesoscopic variables,

corresponding to the degree of coarse-graining of the adopted description. The

ensemble of the accessible configurations, according to the constraints imposed on

the system, form the corresponding configuration space. The system is jumping
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between the configurations according to some prescribed stochastic transition rules.

The state of the system at a time t is given by the probability distribution P (ω, t)

associated to the set of possible configurations {ω}. Suppose now that the level of

coarse-graining is such that the evolution of the system is Markovian (this is the

only type of systems that we shall be dealing with in the foregoing). The evolution

of the probability distribution function can be described by a master equation with

a set of transition rates between the configurations, {W(ω → ω′)}:g

dP (ω, t)

dt
=

∑

ω′ 6=ω

[W(ω′ → ω)P (ω′, t) −W(ω → ω′)P (ω, t)] . (66)

Let us consider the long-time behavior of the system. The dynamics can be

such that no stationary state is reached (e.g., the system may exhibit a limit-cycle

or a chaotic-like behaviour). On the contrary, suppose that the system reaches

a stationary state, i.e., the probability distribution of the possible configurations

becomes time-independent, Ps(ω). The stationarity condition in the configuration

space is that the total flow of probability into configuration ω is balanced by the

corresponding outgoing flow,
∑

ω′ 6=ω

[W(ω′ → ω)Ps(ω
′) −W(ω → ω′)Ps(ω)] = 0 for all ω. (67)

One realizes that an equilibrium state is a very particular case of stationary

state. Besides the independence on time of the characteristic quantities of the sys-

tem, there is no macroscopic exchange between the system and its surroundings,

i.e., no flow runs through the system and its borders. From a stochastic point of

view, this corresponds to the detailed-balance condition in the configuration space,

W(ω′ → ω)Ps(ω
′) = W(ω → ω′)Ps(ω) for all ω, ω′, ω 6= ω′ , (68)

i.e., the balance of probability flow between any pair of configurations.

On the contrary, a nonequilibrium stationary state corresponds to probability

flow loops in the configuration space, i.e., to the breaking of detailed balance for

certain configurations ω, ω′,

W(ω′ → ω)Ps(ω
′) 6= W(ω → ω′)Ps(ω) . (69)

These probability flow loops lead to the observed flows of macroscopic quantities

through the system and its borders. In particular, note that in order to maintain

a system in a nonequilibrium state continuous exchanges with its surroundings are

necessary, i.e., the system is necessarily opened.

One should realize that for such stochastic models the physics is embedded in

the transition rates that are chosen on “reasonable” backgrounds according to the

nonequilibrium phenomena one wishes to describe. It seems thus that one has a

gOne can consider the more general case when these transition rates are time-dependent but, for
simplicity, here we shall limit ourselves to the case of constant transition rates.
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high degree of freedom in the choice of the transition rates that lead to a nonequi-

librium stationary states although it has been argued recently233–235 (on the basis

of Jaynes’ MaxEnt principle extended to nonequilibrium situations) that there are

rather severe restrictions on this choice.

To sum up, breaking of detailed balance is the general characteristic of stochastic

systems in a nonequilibrium steady-state.

15. A Partition Function for Nonequilibrium Stationary States

Phase transitions in nonequilibrium steady states are sometimes accompanied, as

in the equilibrium case, by a breaking of ergodicity of the system, i.e., by the fact

that the asymptotic stationary state of the system is not uniquely-defined, but

depends on its initial configuration. This means that Eq. (67), for certain values of

the transition rates (depending on the control parameters of the system), admits

more than one solutions for the stationary probability distribution Ps(ω), and,

correspondingly, the stationary properties of the system (e.g., the mean values of

the characteristic parameters and of their stationary flows throughout the system)

differ from one phase to another.

The problem we address now is whether there exists any possibility to define

a partition function for the nonequilibrium systems, that allows for the character-

ization of a nonequilibrium phase transition between stationary states in a way

that is analogous to that described in Part I for the equilibrium cases. The answer,

in a rather general frame, was given in Ref. 10, and we present here the relevant

arguments, (see also Refs. 8, 236, 237 and 239).

For simplicity, define the transition matrix238 [W (ω, ω′)], whose off-diagonal

terms are equal to the transition rates W (ω, ω′) = W(ω′ → ω) and the diagonal

terms are W (ω, ω) = −∑

ω′ W(ω → ω′), so that the evolution equation (66) for

the probability density reads

dP (ω, t)

dt
=

∑

ω′

W (ω, ω′)P (ω′, t) , (70)

and it preserves the normalization condition
∑

ω P (ω, t) = 1. The stationarity con-

dition (67) reads
∑

ω′

W (ω, ω′)Ps(ω
′) = 0 , for all ω . (71)

Suppose now that the control parameters of the system are such that there is

a unique steady state. Then, according to the Perron–Frobenius theorem, there

exists a single eigenvalue of the transition matrix that is equal to zero, and the

corresponding eigenvector gives the stationary-state probabilities of the various

configurations Ps(ω). All the other eigenvalues {λi} of the transition matrix have

negative real parts, Re λi > 0, and each of them corresponds to an eigenvector of

the transition matrix that relaxes exponentially to zero within a time-scale of the

order 1/|Re λi|.

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
5.

19
:4

26
9-

43
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 1

0/
23

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



November 16, 2005 11:45 WSPC/140-IJMPB 03275

Yang–Lee Formalism for Phase Transitions 4305

Because of the zero eigenvalue of the transition matrix, the linear set of equations

(71) is underdetermined, and therefore one can obtain from it only the relative

statistical weights fs(ω) of the various configurations. However, one can define the

normalization factor

Z =
∑

ω

fs(ω) , (72)

such that

Ps(ω) =
1

Z
fs(ω) . (73)

This normalization factor is related to the nonzero eigenvalues of the transition

matrix, more precisely (up to a multiplicative factor),h

Z =
∏

λi 6=0

(−λi) . (74)

This is the key relationship that allows to propose Z as a candidate for a nonequi-

librium steady-state partition function that can give informations on the appearance

of a phase transition in the system.

Indeed, suppose that one varies the control parameters (and thus the transition

rates, as well as the corresponding eigenvalues of the transition matrix) so that the

system is driven toward a nonequilibrium phase transition. A new stationary state

appears in the system, and, correspondingly, at a phase transition one is expecting

the appearance of a diverging time scale related to this new slow-mode that sets in.

This means that one of the eigenvalues λi that is associated to this mode goes to

zero as one approaches the phase transition point and thus, by virtue of Eq. (74),

so does the normalization factor Z.

It seems therefore meaningful to try to locate the nonequilibrium phase transi-

tion points through the analysis of the zeros of the normalization factor Z. However,

the legitimacy of this approach has to be checked on several known exactly-solvable

models before trying to use it for further predictions. Several classes of nonequilib-

rium systems were discussed in the litterature using this approach, and we briefly

review them here, following for the most the original work of Blythe and Evans.10

hIn order to obtain this result, note that the characteristic polynomial of the transition matrix
reads (up to a multiplicative factor)

det(λI − W ) =

[

det(W ) + λ
∑

ω

fs(ω) + O(λ2)

]

.

Given that det(W ) = 0, and Z =
∑

ω
fs(ω), one has:

Z = lim
λ→0

det(λI − W )

λ
= lim

λ→0

1

λ

∏

allλi

(λ − λi) =
∏

λi 6=0

(−λi) .
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Recall at this point that Z is defined up to a multiplicative factor,i that depends

on the method adopted to solve Eqs. (71); this factor (which is common to all

the stationary states weights fs) is generally a polynomial in the transition rates

W(ω → ω′), and therefore may introduce additional zeros to Z. However, one

expects that these zeros are not physically relevant, and this can be checked on the

models that are discussed below.

16. Driven Diffusive Systems

Most of the studies on the applicability of Yang–Lee theory to nonequilibrium

phase transitions refer to simple models of systems with diffusion and drift, mostly

because they were intensively studied in the last years and many results are known

for their stationary states and phase diagrams.

16.1. Stochastic single-species models

Such models belong to the class of the so-called Asymmetric Simple Exclusion

Process (ASEP). These are interacting-particle systems, with a single species of

particles without internal degrees of freedom, and with hard-core two-body inter-

actions between nearest-neighbor sites on a one-dimensional lattice. This hard-core

interaction with excluded volume is expressed by the condition that each lattice site

may be occupied by at most one particle. Therefore, this class of models may be

described by a set of occupation numbers {n1, n2, . . . , nL}, where nk = 0, 1 is the

number of particles on site k of a lattice of L sites. The particles may jump at ran-

dom, according to some prescribed stochastic rules, by one lattice site, with a bias in

the right/left transition probabilities. The system is maintained in a nonequilibrium

stationary state, with a constant particle flow along it, by continuous injection and

extraction of particles at its two borders. The specificity of each model is embedded

in the prescribed stochastic dynamics, i.e., in the probabilities for the changes of the

configuration of a pair of neighboring sites k and k + 1, and also in the continuous

or discrete (parallel or sequential) character of the dynamics (see e.g. Refs. 240 and

241 for an overview).

The totally asymmetric exclusion process (TASEP) with open boundaries is

perhaps the simplest exactly solvable model with a nontrivial stationary behavior

that includes both a first-order and continuous phase transitions, and, in view of

its prototypical character, we will describe it here in some detail (see also Refs. 10

and 242).

In its continuos-time variant, in an infinitesimal time interval dt, one can have

one of the following transitions: a particle may hop to the right with probabil-

ity dt (i.e., with transition rate equal to unity), provided the receiving site is

iNote that such a spurious multiplicative factor may appear also in equilibrium systems,
e.g., through a uniform shift of the energy scale.
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empty; or a particle is injected at the left border (leftmost lattice site) with prob-

ability αdt (provided the left border is empty); or a particle at the right bor-

der is removed from the system with probability βdt (provided the right border

contains a particle). Obviously, the injection and extraction rates, α and β, are

the control parameters that determine the stationary state of the system, which

can be characterized through the density profile, i.e., the set of mean occupation

numbers of the lattice site, 〈nk〉, k = 1, . . . , L. The stationary flow of particles

J = J(α, β) exhibits non-analiticities in the thermodynamic limit of an infinite

lattice L → ∞, as one varies α and β, and these non-analiticities correspond

to phase transitions in the system. The phase diagram consists of three regions:

(i) A high-density phase with a density profile that decays exponentially toward

the right boundary. In this phase the current J = β(1 − β) is controlled by the

rate at which the particles are removed from the system, β < min(α, 1/2). (ii) A

low density phase, with a density profile that has an exponential decay towards

the left boundary. The current J = α(1 − α) is again controlled by the smallest of

the two rates, α < min(β, 1/2). At the first-order transition line α = β < 1/2,

the current exhibits a discontinuity in its first derivative. The system presents

a shock separating regions of high and low densities, and this is an example of

phase coexistence at a nonequilibrium first-order phase transition. (iii) The third

phase, for α, β > 1/2, is called the maximum current phase, since the current

assumes throughout the constant value J = 1/4, which is the largest possible

current for any combination of α and β. The density profile decays as a power-

law from both boundaries, and therefore the transitions from either phase (i)

or phase (ii) are accompanied by diverging lengthscales. Moreover, J has a dis-

continuity in its second derivative, and this corresponds to a second-order phase

transition.

The normalization factor for the TASEP is

ZL(α, β) =

L
∑

`=1

`(2L− 1 − `)!

L!(L− `)!

(1/β)`+1 − (1/α)`+1

1/β − 1/α
, (75)

and the current J = ZL−1/ZL. In the thermodynamic limit lnZL ≈ −L ln J ,

i.e., ln J plays the role of a free energy density for the nonequilibrium partition

function ZL. From here it is routine to apply the Yang–Lee procedure to ZL. For

example, keeping β as a parameter, one finds that the zeros of ZL in the plane

of the complex variable α lie on a smooth curve, and accumulate at the phase

transition point αc on the real positive semiaxis when L is increased towards the

thermodynamic limit. Depending on the value of β, one has: (i) If β < 1/2, the curve

of zeros passes smoothly, with a nonzero density of zeros, through the transition

point αc = β, corresponding to a first-order phase transition (see Sec. 3); (ii) If

β > 1/2, the density of zeros decays to zero as one approaches the transition point
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αc = 1/2, and the zero-lines approach the transition point at angles π/4 with the

real axis (thus meeting at a right angle), indicating therefore a second-order phase

transition.

Therefore, the example of TASEP seems to indicate that it is legitimate to

study the zeros of the normalization factor Z, in the plane of one complexified

control parameter and in the thermodynamic limit, in order to get the location of

a nonequilibrium phase transition point. Moreover, the distribution of these zeros

offers informations on the characteristics of the transition — exactly as in the

equilibrium case.

The same conclusions hold for the time-continuous partially asymmetric exclu-

sion process (PASEP), for which the particles have a nonzero probability to jump to

the left, corresponding to a transition rate q. The PASEP thus has a supplementary

control parameter q, and one can follow the change in the locus of the partition

function zeros in the complex-α plane (at fixed value of β) with changing q. Also,

one could look for the zeros of Z in terms of complex q (at fixed values of α and β).

In particular, at q = 1 (when there is no bias between right and left transitions),

one transits to a regime of zero-current in the thermodynamic limit, and this phase

transition should manifest as an accumulation of the complex-q zeros in the vicin-

ity of q = 1, a scenario that has still to be verified (see Ref. 268 for some more

comments on this phase transition).

Two types of discrete-time variants of TASEP were discussed recently in the

frame of Yang–Lee formalism for phase transitions, namely:

(i) The parallel-update TASEPj (see Ref. 247). At each time step particles are

introduced with a probability α at the left border (if this first site is empty) and

are extracted with probability β at the right border (if this last site is occupied);

moreover, the particles in the bulk can jump to the right with probability

p (if the right space is empty), or remain still with probability 1 − p. This

update is applied to all particles simultaneously. Here again one can compute

exactly the normalization factor Z = Z(α, β, p), and look for its zeros in the

complex-α plane at fixed β and p. The phase diagram is similar to that of the

continuous-time TASEP; there are three phases, separated, respectively, by two

continuous-transition lines at α or β = 1−√
1 − p, and a first-order transition

line at α = β < 1 −√
1 − p. Thus, the zeros of Z in the complex-β plane also

behave similarly. One can also look at zeros of Z in the complex-p plane (at

fixed values of α and β); their locus is a cardioid, with the transition point

appearing as a cusp on the real positive semiaxis.

(ii) The sublattice-parallel update TASEP with the supplementary constraint of

fixed average density of particles in the system, ρ = M/L (where M is the

jThis is a special case of the famous Nagel–Schreckenberg model for traffic flow [K. Nagel and M.
Schreckenberg, J. Phys. I. France 2, 2221 (1992)], in which the TASEP phase transitions can be
considered as jamming transitions.
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total number of particles on the lattice of length L) was studied in Ref. 246.

In this model, at the first-time step, besides the injection and extraction of the

particles at the borders with probabilities α and β, respectively, all the particles

on odd sites jump to the right with probability one (if the site to the right is

empty); at the next step, all the particles on even sites jump to the right with

probability one (again, if the receiving site is empty). Then one repeats this

two-stage process. The phase diagram of this model in the thermodynamic limit

contains three phases, namely a high-density phase and a low-density phase (as

for the continuous-time TASEP), and a shock phase, characterized by existence

of shocks in the particle-density profile. This shock phase has second-order

transition borders with the high and low density phases, and this is confirmed

by the behavior of the zeros of Z in the complex-α plane, for various fixed

values of β and ρ.

The problem of finite-size scaling and universality for several variants of discrete-

time TASEP was addressed recently in Ref. 248. In the thermodynamic limit,

in general (i.e., whatever the adopted update rule), both first and second order

boundary-induced transitions between the steady-states are encountered, and one

derives finite-size scaling expressions for the current J , for the mean local parti-

cle density, as well as for the zeros of the normalization factor Z in the complex

plane of the injection α extraction β rate of particles at the borders. In particular,

simulations suggest that the smallest distance between the locus of these zeros and

the critical point αc/βc has a power-law behavior ∼ L−1/ν , where ν (as in the

equilibrium systems) is the critical exponent of the bulk correlation length for the

nonequilibrium phase transition.

16.2. Two-species models

Actually, there are two slightly different variants of the same model that were

studied, from the point of view of the Yang–Lee approach, in Refs. 249 and 250. As

described in Ref. 249, the model consists of two types of particles, A and B, of fixed

numbersNA and NB , that diffuse in opposite directions on a one-dimensional L-site

lattice with periodic boundary conditions. Specifically, particles of type A jump to

the right and particles of type B jump to the left, both with unit transition rates,

provided that the destination site is empty. Also, if on neighbor sites, the A and B

particles exchange places, A+B → B+A with transition rate q, and B+A→ A+B

with unit transition rate. The bias parameter q is thus the control parameter of

the system (at fixed particle densities ρA,B = NA,B/L), and as long as q 6= 1

the system can reach a nonequilibrium stationary state with a stationary nonzero

flow of particles throughout the system. Arndt249 studied the phase diagram in the

particular case of equal particle densities ρA = ρB ≡ ρ = M/L in terms of the Yang–

Lee formalism. Since the normalization factorZL(q, ρ) was not known analytically

at that moment, Arndt went to the numerical study of a grand-canonical partition
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function

ΞL(z, q) =

Mmax=L/2
∑

M=0

zMZL(q,M/L) (76)

in the plane of the complex fugacity z. From these studies of the zeros on finite-size

systems (with L up to 100), he inferred the existence, in the thermodynamic limit,

of a first-order phase transition at some point qc(ρ) > 1, between a mixed phase

(corresponding to a condensate made of both A and B particles; a block of empty

sites, with a few residual A or B particles, occupies the rest of the system) and

a disordered phase (with uniform density profiles of both species and no spatial

condensation).

However, it was shown later (see Refs. 10, 251 and 252), through an exact

calculation of the grand-canonical partition function in the thermodynamic limit,

that no phase transition, rigorously speaking, appears in the system. When one

varies the control parameters, there appears, instead, a very abrupt increase in the

correlation length to an anomalously large value — of the orderO(1070) sites, which,

however, if finite. Although very spectacular, this phenomenon does not seem to be

extremely rare, since it can be argued (see e.g. Ref. 252) that it is generated when

the dynamics of the model is such that small domains tend to be suppressed in the

steady-state distribution.

Thus, the extrapolation done by Arndt from numerical results on finite-size

systems toward the thermodynamic limit is unreliable. One should therefore be

aware of the possible appearance of such extremely large correlation lengths in the

nonequilibrium systems, correlations that may lead to a false impression of the

existence of a phase transition when investigating (numerically) systems with sizes

less or comparable to the correlation length.

Note also10 that studying the zeros of this grand-canonical partition function in

the complex fugacity plane amounts, from a physical point of view, at placing the

lattice in equilibrium with a reservoir of particles, and thus (despite the claim in

the title of Ref. 249) at studying an equilibrium system.

Reference 250 reconsidered the same model in the exactly-solvable case NB = 1,

i.e., of a single impurity present in the system. Using a matrix-product formalism,

one can compute the corresponding normalization factor ZL(q, ρ) at fixed density

ρ of the A particles. Studying the behaviour of ZL(q, ρ) in the thermodynamic

limit, one deduces the existence of two stationary phases of the system, namely,

(i) a jammed phase for q < 2ρ, when the impurity provokes a macroscopic shock

(error-function like) in the density profile of A particles; (ii) and a power-law phase

for q > 2ρ, when the impurity has a short-range effect on the system, such that

the density profile of A-s has an exponential behaviour, with a correlation length

∼ | ln(qc/q)|−1 that diverges when q approaches the critical value qc = 2ρ. This

result is confirmed by the study of the location and distribution of zeros of ZL(q, ρ)

in the complex-q plane (at fixed value of ρ), that predicts correctly the second-order

phase transition point between the two phases, as well as its characteristics.
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17. Simple Reaction-Diffusion Models

These stochastic models are characterized by the fact that, contrary to the driven-

diffusive systems discussed above, the number of particles is not conserved by

the dynamics, i.e., there are some reactions inside the system. One such model,

which results through a simple modification of the continuous-time ASEP, is the

coagulation-decoagulation model with open boundaries (see Ref. 243). It consists of

particles that diffuse, coagulate (two neighbor particles merge into a single one), and

decoagulate (one particle splits into two neighbor particles) preferentially, e.g., in

the leftward direction. More precisely, in the simplified model in Ref. 244, they

(i) diffuse to the left and right with rates q and q−1 respectively; (ii) coagulate

at the left A + A → A + 0 with rate q and at the right A + A → 0 + A with

rate q−1; (iii) decoagulate to the left 0 + A → A + A with rate γq and at the

right A + 0 → A + A with rate γq−1. Here, q > 1 in order to assure the leftward

preference of the processes. Besides this, there is an injection and an extraction of

particles solely at the left border, with rates α and β. This model, for which the

normalization factor Z can be computed exactly when α = (q−1 − q+β)γ, exhibits

a first-order phase transition between a low-density and a high-density phase. The

roots of Z in the complex-q plane are studied (for fixed β and γ), and Yang–Lee

theory is shown to hold, describing correctly both the location and the nature of

the phase transition.

A variant of this model with reflecting boundary conditions, instead of the

open boundaries, was studied in Ref. 244. The model in this case has two control

parameters, q and γ, at a fixed particle-density ρ. The system has two second-

order phase transition points, at qc = 1/
√

1 − ρ and q′c = 1/qc =
√

1 − ρ. The

reason of the existence of these two transition points is simply the invariance of

Z under the transformation q → q−1. Note that γ plays no role in the location of

the phase transition points. Again the Yang–Lee formalism predicts correctly these

results.

Reference 245 offered recently a unified frame, based on the matrix-product for-

malism, for the study of the nonequilibrium steady-state phase transitions of three

families of one-dimensional nonequilibrium models with opened boundaries. Besides

the TASEP and a generalization of the above-described coagulation-decoagulation

model, it also discusses the asymmetric Kawasaki–Glauber process (AKGP). The

latter corresponds to a (totally) asymmetric diffusion of the particles (Kawasaki

spin-exchange dynamics), combined to death to the left and right A + 0 → 0 + 0,

0+A→ 0+0, and to branching to the left and right A+0 → A+A, 0+A→ A+A.

These two last processes represent a variant of the spin-flip Glauber dynamics.

Moreover, a steady-state current is maintained through the injection and extrac-

tion of particles at the borders. For special values of the corresponding transition

rates, one can estimate the normalization factor Z, and study its Yang–Lee zeros

(however, the paper does not concentrate further on this neither for the AKGP, nor

for TASEP, but only for the extended coagulation-decoagulation model).
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18. Directed Percolation

An important type of nonequilibrium phase transitions is represented by the

absorbing-state phase transitions, which take place when a system, during its evo-

lution, reaches a configuration (a so-called absorbing state) in which it remains

trapped forever. Phenomena of this type are present in a wide variety of phys-

ical, chemical, biological systems (see Refs. 253–255 for recent reviews). It has

been conjectured recently that a large group of such models fall into the directed-

percolation (DP) universality class (see Refs. 256 and 257). A simple example of

such a model is a reaction-diffusion system on a one-dimensional lattice, with a

competition between the reproduction of particles, i.e., a (symmetric) decoagula-

tion, A+0 → A+A or 0+A→ A+A, and the death of particles, i.e., a spontaneous

decay A → 0. This competition is controlled by some external parameter p; if its

value is below a certain threshold p < pc, the system reaches an absorbing state

(empty lattice) with certainty; otherwise the system remains active forever in the

thermodynamic limit of an infinite-lattice. The corresponding phase transition is a

continuous one.

In order to study the applicability of the Yang–Lee theory to this class of

nonequilibrium phase transition, it is natural to turn to the original directed per-

colation model (see Refs. 10, 259–261). In order to fix the ideas, let us consider

the two-dimensional case — although the process can be defined on general d-

dimensional lattices. The system consists of a finite square lattice with L rows that

has one site, the apex O, on the first row, two sites on the second row, etc., up to

a total of L(L + 1)/2 sites. Bonds between the sites are opened with probability

p, and closed with probability 1− p. At the initial moment, a particle is placed on

the apex; at each time step this particle jumps on a site of the next lower level,

provided the corresponding bond is opened. The sites connected by a continuous

percolation path (i.e., by a succession of opened bonds) are said to belong to the

same percolation cluster. One is interested by the percolation (or survival) proba-

bility PL(p) that at least one site on the level L is connected to the apex through

a percolation path; PL(p) is obtained by considering all the possible bond config-

urations. The order parameter, defined for an infinite lattice L → ∞, is P∞(p),

which is the probability of having an infinite cluster (i.e., a cluster that goes from

the apex all the way down the lattice) for a given bond probability p. If p < pc,

then P∞(p) is zero, i.e., there are no infinite percolation clusters in the system (that

means that one can always, i.e., with probability one, find a row, sufficiently far

from the origin, that is not connected to the apex through any percolation path).

For p > pc, however, P∞(p) becomes nonzero, and in the vicinity of the critical

point it has a power-like behavior,

P∞(p) ∼ (p− pc)
β , (77)

with an universal exponent β. In addition, the DP process is characterized by

a transversal correlation length ξ⊥ perpendicular to the percolation flow, and a
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longitudinal correlation lenght ξ‖ along the percolation flow, that diverge both

when p approaches its critical value pc,

ξ⊥ ∼ |p− pc|−ν⊥ , ξ‖ ∼ |p− pc|−ν|| . (78)

A continuous transition takes place at pc. Although DP can be defined and sim-

ulated easily, no analytical solution exists for it (neither for any of the models

pertaining to the DP universality class) in dimension d lower than the critical

dimension dc = 6. Therefore, one has to use numerical estimates of the critical ex-

ponents. Currently, the best estimates258 in d = 2 are β = 0.27649, ν⊥ = 1.096854,

and ν‖ = 1.733847; the percolation threshold depends both on the spatial dimen-

sion and the type of array, and for d = 2 on a square lattice the best estimation of

it is pc = 0.6447001.

Attempts to describe this phase transition in the Yang–Lee formalism were

done in Refs. 259–261, by considering the zeros of PL(p) in the plane of complex

p, for dimensions L 6 15, and looking for their accumulation points when one

increases L, i.e., when one goes towards the thermodynamic limit. These zeros do

not lie on a single smooth curve (as it was the case for the other nonequilibrium

systems discussed above), but on a sequence of curves that tend to intersect at the

critical point. Also, the results in Refs. 259–261 suggest a fractal structure of the

distribution of these zeros (but this aspect deserves further investigation). From

these numerical results, the authors infer the values of pc, and (using finite-size

scaling arguments) also the longitudinal exponent ν‖.

It should be noted, however, that the partition function PL(p) has some prop-

erties that render it qualitatively different from the other nonequilibrium partition

functions considered above. A first remark259,262 is that the survival probability

PL(p) can be represented formally as the partition function of a system of Ising

spins, with two- and three-spin plaquette interactions, on a pyramid-shaped lat-

tice. However, some of these three-spin interactions have an infinite energy, and

thus the usefulness of such a mapping is questionable. Also, one encounters some

problems with the definition of a thermodynamic limit and of an extensive free en-

ergy of the system, since, on one hand, PL(p) does not grow exponentially with the

size of the system, and on the other hand limL→∞ PL(p) = 0 for 0 6 p < pc, and it

is not clear how to define a free energy density in this case. This illustrates some of

the difficulties related to the extension of equilibrium concepts to nonequilibrium

situations.

19. Self-Organized Criticality

Two recent studies,263,264 addressed the problem of the applicability of the Yang–

Lee formalism to self-organized criticality (SOC). Roughly speaking, a system that

exhibits SOC is a nonequilibrium system (subject to external stationary nonequi-

librium constraints) characterized by the fact that, in the thermodynamic limit,

it reaches a stationary state with scale invariance and power-law statistics. One
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should underline that this nonequilibrium state is reminiscent of equilibrium criti-

cal states. However, contrary to these ones, this stationary critical state is reached

solely through the internal dynamics of the system in response to the external con-

straints, without the fine-tuning of the control parameters that is required for the

equilibrium criticality. There is a huge body of literature devoted to this topic (see

Ref. 265 for a pedagogical overview of the field).

The papers of Cessac et al. then raise the legitimate question whether this spon-

taneous criticality manifests itself in the properties of the distributions of complex

zeros of a properly defined partition function for the stationary state, i.e., if these

zeros have an accumulation point when the size of the system is increased to infinity,

without any manipulation of the parameters of the system.

The dynamics of SOC systems occurs in avalanche-like events; one can define a

set of observables (size, duration, etc.) characterizing these avalanches. In a finite

system of size L such an observable V can take a finite set of values, up to a

maximum finite value NL, V = 0, 1, . . . , NL, according to a stationary probability

distribution PL(V = n). Let us consider the generating function of this distribution

(the grand-canonical partition function),

ΞL(z) =

NL
∑

i=1

znPL(n) , (79)

that is a polynomial of degree NL in the fugacity z. If the system is SOC, the zeros

of this polynomial in the complex-z plane should have an accumulation point on

the real positive semi-axis in the thermodynamic limit L→ ∞ for any parameters

of the system. This reasoning was verified in the above-cited references for various

finite-size scaling forms of PL(n) encountered in the literature on SOC: the zeros

pinch the real axis at z = 1 as the system size goes to infinity. A scaling theory for

the Yang–Lee zeros is proposed in this setting, that shows, under specific conditions,

a violation of the scaling usually observed in equilibrium critical phenomena.

Note, however, that the remark we made in Sec. 16.2 with respect to Ref. 249

applies here, too, namely that considering the generating function ΞL(z) amounts

actually at analysing an equilibrium problem in a grand-canonical statistical

ensemble.

20. Connection with Equilibrium Systems with Long-Range

Interactions

The examples in the above sections show a surprising analogy between the equilib-

rium and the noneqilibrium steady-state phase transitions, as far as the behaviour

of the zeros of the respective partition function in the plane of the complex con-

trol parameter is concerned. The question that arises is then whether or not this

analogy can be pushed further, e.g., if one can find a kind of (general rule for a)

correspondence between nonequilibrium steady-state and an equilibrium systems.

As discussed in Sec. 14, a nonequilibrium system is characterized by a breaking
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of detailed balance in the configuration space, which corresponds to the appearance

of macroscopic flows throughout the system. This generates effective long-range in-

teractions and correlations in the system, as well as the emergence of an effective

criticality in nonequilibrium steady-states, and, in this logic, of universal distribu-

tion functions for macroscopic quantities, of the corresponding classes of universal-

ity, critical exponents, etc. (see Refs. 8, 255, 266 and 267 for a discussion of these

fundamental issues).

Therefore, if one is searching for a kind of correspondence between nonequilib-

rium steady-states and equilibrium systems, the latter ones have to have long-range

interaction Hamiltonians. The history of searching for these effective Hamiltonians

(and related problems like, e.g., definitions of an effective nonequilibrium temper-

ature) is long and tortuous and will not be discussed here. In particular, trying to

write down an explicit expression of this Hamiltonian does not seem to be a very

fruitful approach.

Here we will briefly present a few recent results in this direction (see Refs. 247,

268–270). These studies refer to ASEP-like systems, but in our opinion, in view of

their generality, these ideas carry an important potential for further applications.

The adopted strategy relies on two key-elements as discussed below.

(A) The formal definition of “particle numbers” and associated “fugaci-

ties”. Let us consider a Markovian system as described in Secs. 14 and 15, and the

corresponding steady-state normalization factor Zn({W(ω → ω′)}) (here n desig-

nates the number of configurations ω accessible to the system; it is also explicitly

indicated that the normalization factor is a function of the transition rates). A first

point discussed in Ref. 268 is that the normalization factor is a polynomial in the

transition rates W(ω → ω′), with positive coefficients, of degree n − 1, i.e., it has

the form of a generating function. By the Cauchy–Schwartz inequality it follows

that its negative logarithm (that we would like to assimilate with a free energy of

the system),

Fn = − ln(Zn) , (80)

is a convex function in all its arguments W(ω → ω′). One is then tempted, by

analogy with equilibrium situations, to identify formally the transition rates with

“fugacities”, and to consider the corresponding “particle numbers”

Nω,ω′ = −[W(ω → ω′)]
∂Zn

∂[W(ω → ω′)]
. (81)

These are well-behaved thermodynamic quantities, in the sense that they are pos-

itive and increasing functions of the fugacities for any size n of the system. They

are, however, linearly-dependent, and some of them may even coincide (because

some of the transition rates may be zero or may be equal between them). In the

thermodynamic limit of large n

Nω,ω′ = V (n)ρω,ω′ , (82)
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where V (n) is the “volume” (as defined by the leading asymptotic behaviour of the

normalization factor) and ρω,ω′ are the “densities”.

One has now all the formal ingredients to discuss a nonequilibrium steady-state

phase transition by analogy with the equilibrium situations. For example, a first-

order phase transition would correspond to a discontinuity of the fugacity as a

function of the density. It is not clear, however, in general, that all the known char-

acteristics of the phase transitions (e.g. diverging correlation length for continuous

phase transitions) are recovered within this formalism.

There is one more very important point to be made, and which represents a

major difference between nonequilibrium systems and equilibrium systems with

short-range interactions. It is the fact that the “particle numbers” defined above

are not necessarily extensive quantities. This implies that in the space of the pa-

rameters of the system (which are the transition rates), besides the regions where

the “particle densities” are well behaved and finite, there may appear regions where

ρω,ω′ may diverge (and one has to change then the definition of V (n)). The frontiers

between these regions then correspond to phase transitions that do not have a corre-

spondent in the short-ranged interactions equilibrium systems. Note, however, that

phase transitions of this type are know in equilibrium systems with long-range (or

nonlocal) interactions,268 a remark that goes in the sense of the general statements

made in the beginning of this paragraph.

(B) The correspondence with equilibrium systems. Once this formal frame

is set-up, comes the most delicate part, which is to find a way (possibly a systematic

one) to assign a physical meaning to the normalization factor, “particle densities”,

etc. in a properly-defined equilibrium statistical problem. The general solution pro-

posed in Ref. 268, and illustrated on concrete examples in Refs. 247, 268–270 comes

from the combinatorial graph theory, and consists in relating explicitly the normal-

ization of a stationary state to the combinatorial problem of counting weighted

spanning trees on graphs; the weights of the configurations depend on parameters

which correspond to the transition rates of the nonequilibrium stochastic process.

This implies directly an interpretation of the normalization factor as a statisti-

cal mechanics partition sum. Of course, establishing the right correspondence is a

difficult task, and no general recipe can be given for it.

A first heuristic application of this approach is given in Ref. 271, where a

one-dimensional, stochastic, adsorption-desorption nonequilibrium model for in-

terface growth (the raise-and-peel model) was put in correspondence with a two-

dimensional ice model with domain-wall boundary conditions (an equilibrium prob-

lem with nonlocal interactions). Brak and Essam269 showed that the matrix rep-

resentation of the stationary-state algebra of TASEP can be interpreted combina-

torially as various weighted lattice paths. The normalization factor of TASEP is

identical to the equilibrium configuration sum of a polymer chain having a two-

parameter interaction with a surface (the so-called one-transit walk). As shown in

Ref. 268, the TASEP current and density are simply related to the equilibrium
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densities of the latter model; in particular, the second-order phase transitions of

the TASEP (see Sec. 16.1) are related to a special type of surface phase transition

encountered in polymer physics. Later on Blythe et al.247 found that the normal-

ization factor of the discrete-time parallel-update TASEP can be expressed as one

of several equivalent variants of two-dimensional lattice constrained-path problems.

Finally, in Ref. 270 it was shown that the grand-canonical normalization factor of

the TASEP (that corresponds to the immersion of the lattice in a reservoir of par-

ticles, with fixed fugacity z) can be computed in a closed analytical form, and thus

it allows a direct derivation of the asymptotics of the canonical normalization for

the various phases, and the immediate correspondence with the one-transit walk

mentioned above.

21. Conclusions and Perspectives

In order to explain the origin of singularities of the thermodynamic potentials in

some first-order equilibrium phase transitions, Lee and Yang proposed to examine

the behaviour of the zeros of the partition function. Such an idea turned out to

have far reaching consequences. Indeed, subsequent generalizations of this approach

showed that from the analysis of zeros of the partition function one can extract a lot

of information about phase transitions in many different systems. When combined

with finite-size scaling arguments, this method may be used to calculate the location

of the transition point and even critical exponents. An important point is the fact

that in this approach we directly refer to the properties of the partition function,

which is the most basic quantity of equilibrium statistical mechanics. Thus, one can

apply mathematically rigorous techniques to obtain a number of interesting results

concerning, e.g., the very existence and the location of phase transitions in various

systems.

Recent large interest in the Yang–Lee approach is related, however, to its further

extension to nonequilibrium phase transitions. Several examples show that accom-

plishing such an ambitious task may be feasible in some nonequilibrium systems.

But the entire approach is much more problematic than in equilibrium situations.

It is not entirely clear what the analogue of the partition function in nonequilib-

rium situations might be. For the directed percolation, coalescence of zeros was

observed for the percolation probability — that is actually the order parameter

of the system. For self-organized criticality this effect appears in some generating

functions. Perhaps, the most promising are the results obtained for TASEP mod-

els. In this case the normalization factor of a steady-state probability distribution

seems to play the role of the partition function. In some cases one can even establish

much closer relations with equilibrium systems. But it is not known yet whether

such an approach can be applied to other classes of nonequilibrium systems. For

example, it would be interesting to test this method on systems for which the transi-

tion rates are not constant, but state-dependent, like, e.g., the zero-range processes

(ZRP).
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It seems therefore that, after more than 50 years of generalizations and exten-

sions, the full potential of the Yang–Lee approach is yet to be uncovered. Important

developments in its application to the study of nonequilibrium phase transitions are

in progress.
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88. R. Heringa, H. W. J. Blöte and A. Hoogland, Phase transitions in self-dual Ising
models with multispin interactions and a field, Phys. Rev. Lett. 63, 1546 (1989).
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