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I. INTRODUCTION

The two-dimensional Ising model for a system of
interacting spins (or for the ordering of an AH alloy)
on a square lattice is one of the very few nontrivial
many-body problems that is exactly soluble and shows
a phase transition. Although the exact solution in the
absence of an external magnetic field was first given
almost twenty years ago in a famous paper by Onsager'
using the theory of I ie algebras, the Qow of papers on
both approximate and exact methods has remained
strong to this day. 2 One reason for this has been the
interest in testing approximate methods on an exactly
soluble problem. A second reason, no doubt, has been
the considerable formidability of the Onsager method.
The simplification achieved by Bruria Kaufman' using
the theory of spinor representations has diminished,
but not removed, the reputation of the Onsager ap-
proach for incomprehensibility, while the subsequent
application of this method by Yang4 to the calculation
of the spontaneous magnetization has, if anything,
helped to restore this reputation.

The principal alternative line to these algebraic
methods has been to reduce the problem to one of
counting polygons on a lattice —the so-called com-
binatorial method. 5 The 6rst important steps in this
direction were achieved by Kac and Ward' and by
Potts and Ward, r although a rigorous combinatorial
solution has only recently been given by Hurst and

*Present address: Belfer Graduate School of Science, Yeshiva
University, New York, New York.

' L. Onsager, Phys. Rev. 05, 117 (1944).' For reviews, see G. F. Newels and E. W. Montroll, Rev. Mod.
Phys. 25, 353 (1953);and C. Domb, Phil. Mag. Suppl. 9, 151
(1960).' B. Kaufman, Phys. Rev. '76, 1232 (1949); B. Kaufman and
L. Onsager, Phys. Rev. '76, 1244 (1949). See also Y. Nambu,
Progr. Theoret. Phys. (Kyoto) 5, 1 (1950); K. Husimi and L,
Syozi, Progr. Theoret. Phys. (Kyoto) 5, 177 (1950); and L Syozi
Progr. Theoret. Phys. (Kyoto) 5, 341 (1950).

e C. N. Yang, Phys. Rev. 85, 808 (1952).' B.L. van der Waerden, Z. Physik 118, 473 (1941).' M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952). See
also S. Sherman, J.Math, Phys. 1,202 (1960);and P. N. Burgoyne,
J. Math. Phys. 4, 1320 (1963) who have supplied prooh necessary
to make the approach of Kac and Ward rigorous.

r R. B. Potts and J. C. Ward, Progr. Theoret. Phys. (Kyoto)
13, 38 (1955).

Green' and Kasteleyn, ' the spontaneous magnetization
being calculated by Montroll, Potts, and Ward. "The
combinatorial method, despite its reliance on certain
ingenious topological tricks and on relatively un-
familiar entities call PfaKans, certainly seems simple
in contrast to the earlier algebraic methods and may
have seemed destined to displace the former as the
classical method of solution of this famous problem.

The present paper tries to restore the balance by
presenting the algebraic approach in a way that is
both very simple and intimately connected with the
problem of a soluble many-fermion system. Except
for one or two crucial steps, the approach is straight-
forward and requires no more than a knowledge of the
elementary properties of spin —,

' and the second quan-
tization formalism for fermions. Certain similarities
to the method of linear canonical transformations em-

ployed by Bogolubov" and Valatin" in the theory
of superconductivity is obvious but familiarity with
these methods is not necessary to understand the
present approach. It becomes apparent that the two-
dimensional Ising model, rather than being entirely
different from the trivially soluble many-body prob-
lems, reduces in some ways to one of them, being just
the diagonization of a quadratic form.

In Sec. II the transfer matrix formalism, which is
the heart of the algebraic approach, is rederived in the
conventional way and also in a way that to us seems
more natural. In Sec. III the transfer matrix is di-
agonalized for a lattice wrapped on a torus, using the
formalism of second quantization for fermions. In
Sec. IV, the two-spin correlation function in an infinite
lattice is investigated and the different approaches of
previous authors are reconciled. In Sec. V, various
de6nitions of the spontaneous magnetization are con-
trasted and one of these is used to derive previous
results. The rigorous steps heretofore omitted in the

e C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960).
See also A. M. Dykhne and Yu. B. Rumer, Usp. Fiz. Nauk 75,
101 (1961) t English transl. : Soviet Phys. —Usp. 4, 698 (1962)g.

e P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).
'o E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math, Phys.

4i 308 (1963)~

u N. N. Bogolubov, Nuovo Cimento '7, 794 (1958)."J. G. Valatin, Nuovo Cimento '7, 843 (1958).
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calculation of the spontaneous magnetization are all
supplied.

The paper ends with a skeleton outline of the various
steps required in the demonstration. The reader may
6nd it advantageous at this time to examine this
outline, given in Sec. VI, and also to return to it from
time to time while following the detailed development
of Secs. II—V. He should also avail himself of at least
one of the Refs. 1 and 2 for collateral reading, discus-
sion of the specific heat curve, etc.

II. FORMULATION OF PROBLEM

A. Introduction

We consider a set of spin —,"s arranged on a square
lattice of M columns and E rows, interacting only with
nearest neighbors and with a magnetic field O. (We,
ultimately, let M and N tend to infinity together, i.e.,
with M/N a fixed ratio, and denote this limit by
limM, ~ .) Let the Hamiltonian be

Also of interest, in calculating the spontaneous
magnetization, is a two-spin correlation function defined

by

X exp [—P~(a*u o *&sr)]. (2.3)

Averages of other functions of the spins can be defined
in a similar way.

The problem under consideration is a special case of
the more general Ising problem in any number of
dimensions defined by the Hamiltonian

BC= ——',QJ(R,—R;)oa.on.—@+on..

If the O.R variables were continuous, rather than con-
fined to the two values &1, then even this Hamil-
tonian and the corresponding free energy would be
trivially soluble by simply introducing rurining wave
variables

o.,= (NM)~Q exp (iq R;)~n,

+(Oily ' ' '
y NM) g QOmm Jlg&nm&n+1, m

—Jsganm&n, m+r (2.i)

(nns) refers to the site in the nth row and nsth column,
J& and J2 are, respectively, the bond strengths within
the columns and within the rows, and we have set the
Bohr magneton equal to unity. Each 0-„ is a classical
variable taking on the values &1; or equivalently, the
a„are operators having eigenvalues &1 (e.g. , o „=
2S „,where S „ is the x component of the nnzth

spin operator). Because the interaction strengths of
the horizontal and vertical bonds in the lattice are not
assumed the same, one might call BC the Hamiltonian
for a "rectangular" Ising lattice. For boundary condi-
tions, we can assume either that the lattice is wrapped
on a torus, so that o,~+~=o.~~, a~+~,~=a-~~, and the
sums extend to E and M, or we can assume that the
lattice has free ends, in which case the sums extend
only to iV—1 and M—1. Each boundary condition
has its advantages and disadvantages, as we shall see.

The free energy F per spin of the system is obtained
from the partition function either by

exp ( PFNM) =Z—

Z ' '' Z exp L P~(o'u ''', o'Nsr)]
O ~g=+1 t7 N M=+1

(2.2)

if the 0's are considered as classical variables, or by

exp( PFNM, =Z—= t—r,*„. . tr,*~~

X exp [—P&(o'rr, ' ', o'*xsr)] (2 2')

if the 0's are considered as twice the x components of
spin operators.

in terms of which the Hamiltonian is immediately
diagonalized to

X= Qe,o*—uo~ @o. s(N—M) &

with

e,= (2NM)-'g J(R;—R;) exp [iq (R;—R,)].
Unfortunately this running-wave transformation is not
available for the actual Ising problem because the con-
straint O.R,= &1 leads to extremely complex conditions
on the transformed variables, 0-~. The spherical model,
in which this constraint is replaced by the much weaker
constraint go R'= NM, is solvable by introducing
running waves, but it is neither an exact solution to
the Ising problem nor even a reliable guide. As we see,
running waves cue be introduced into the Ising problem
to take advantage of the translational degeneracy, but
only after some subtle algebraic preparations which
are only possible with nearest neighbor interactions in
one or two dimensions. This, then, is the reason for
restricting the Hamiltonian to the special form of
(2.i).

B. Conventional Derivation of the Transfer Matrix

The fundamental observation on which the algebraic
approach is based is that the partition function is the
trace of the Xth power of a certain matrix, which we
call the transfer matrix. In this section we recall the
conventional derivation of this result, '3 which has the
advantage of algebraic simplicity. In the next section

"See the reviewer of Newell and Montroll, Ref. 2. This and
related methods vrere originally discovered by E. W. Montroll,
J. Chem. Phys. 9, 706 (1941);H. A. Kramers and G. H. Wannier,
Phys. Rev. 60, 252 (1941); E. N. Lassettre and J. P. Howe, J.
Chem. Phys. 9, 747 (1941); and R. Kubo, Busseiron Kenkyu 1,
1943.
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o;=+1 1 0 o ~

we give an alternate derivation which, although not
so simple in its details, is perhaps more natural and
straightforward (in the sense that it is formulated in
the language of density matrices and reduced density
matrices familiar from the many-body problem).

Consider first a one-dimensional cyclic lattice, so
that

Z= g exp (Etio.„o„+t) exp (HZo ), (2.4)
erg t ~ ~ ~ iO'N

where
Et=PJt'and H=PQ. (2.5)

To bring out the fact that the n1ultiple sum is a matrix
prod. uct, we rewrite (2.4):
Z= Q Lexp (Eto.t'a;) j Lexp (Hos) 5.„,j.

0'10'] ~ ~ oo' NO' NI /

X )exp (E&ox'o&) lt exp (Ho&) 8„„.$. (2.6)

If one defines the two 2&&2, matrices

(Vt)„,,= exp (Eto,o;)
ol

As S~, the free energy per spin is

F= —kT log h.g, (2.11).

the contribution of AP being negligible. Thus firid&ig
the free eriergy reduces to determining the largest eigen
value of the trarisfer matrix

The matrices Vt, Vs, and V, being 2X2 matrices,
can be written in terms of the four Pauli matrices,
which we call 1, ~, ~" and ~' {we use ~'s rather than
6's to avoid confusion with the 0- variables already
introduced):

Vt=e &1+e x&~~=e &(1+e ~&~*), (2.12a)

Vs= 1 cosh H+~* sinh H. (2.12b)

It is convenient for the generalization to two dimen-
sions to express Vt and Vs as exponentials of the Pauli
matrices. For this purpose recall the property of the
~', (i=x, y, s), that because (~')'= 1,

If A.» and A2 are the larger and smaller eigenvalues
of V, respectively, then

Z= A,~+AP= AtN(1+ (As/A )Nj (2.10)

tretci

Vi=
Kl

e
—xg

I gKg

o&=+1
(2.7a)

exp (a~') =1 cosh a+e' sinh a= (cosh u) (1+~' tanh a)

(2.13)
and

or
(Vs) ...,.= exp (Ho, ) 5...,

(Tj=+1 I 0j= 1
I

for any number a. Then V2 becomes immediately

Vs ——exp (EI~*).

To simplify Vt with (2.13), we define Et* by"

(2.14)

(eH

e H—0'j= +1
(2.7b) whereupon

then Z is obviously the trace of a matrix product:

tanh Ey =8

Vt ——(2 sinh 2Et)"' exp (Et*~*).

(2.15a)

(2.16)

Z= tr VtVs ~ VtVs ——tr (VtVs)~.
YVe have used the sin1ple identities

(2 8)

From the invariance of the trace under cyclic permuta-
tions of factors, Z can also be written as

or as
Z= tr (V;*V,Vs&)~—= tr V~

Z= tr (V,~V,V*)= tr V'~,

(2.9)

(2 9')

' The transfer matrix, formulated first in general terms by
MontrolP' and also at the same time by Lasettre and Howe, '3 by
Kramers and Wannier, '3 and perhaps others, is a powerful op-
erational technique for describing the propagation down an
arbitrary line of physical elements, It can be useful even when
there is no translational invariance, e.g. , the one-dimensional
chain of vibrating atoms with random masses analyzed by
Schmidt. "The one-dimensional Ising model with random bond
strengths can also be solved, although the two-dimensional
Ising model with some kind of randomness in the bonds has not
yet been solved.

"H. Schmidt, Phys, Rcv, 105, 425 (1957).

which have the advantage that V and V' are symmetric.
We call V (or V') the transfer matrix. '4

tanh Et= e ~&* and sinh 2Et sinh 2Et*—= 1 (2.15b)

Because the two sums in the exponent commute and
represent different physical mechanisms, it is customary
to replace Vs in (2.8) or (2.9) by VsVs, where

Vs ——exp (E,Q~*„~*„+,) and Vs= exp {Hg~' ).
(2.16)

"E'1* should not be confused with "complex conjugate of E1",
vrhich is real of course.

implied by (2.15a).
The generalization to the two-dimensional problen1

follows immediately. Instead of sun1ming over the two
orientations of each spin, we must sum over the 2~
configurations of each row. The matrix V2 is still
diagonal and can be written

V,= exp (Ksg~* ~'~t+Itg~' ).
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The matrix V1 is similarly generalized from the one-
dimensional case:

V1= (2 sinh 2E1)~1' exp (Et*ps ). (2.17)

Now the matrices ~' and ~' are 2~X2~ matrices
defined as direct products'

I

I

I (0 I)
n

L

p (go) RESERVOIR

(0,2) (0,3)...
I

(O,M) I

(I,M)

c' =lx ~ ~ ~ xlx~'xlx ~ ~ ~ xl (2.18a)

and

~~ =1x ~ ~ ~ xl xe*xl x ~ ~ ~ xl (2.18b)

Z= trf(VsVs)~V1(VsVs)lf = tr V". (2.19) (N, I) (N, 2) (NP)...

This is the conventional formulation in terms of the
transfer matrix. Although very direct, it introduces
the matrices ~' and ~* as an artificial device, distinct
from the operators 0-'„, a „.

C. Alternate Derivation of the Transfer Matrix

Because the c matrices are isomorphic to the 0.

operators of a single row, it is possible to derive the
transfer matrix formalism without introducing the ~'s

at all. In this section we present such a derivation,
which is in some ways more natural than that of the
preceding section, although the results are the same.

Consider a lattice of Ã rows and M columns, rot on a
torus (although perhaps on a cylinder, so that each
row is cyclic). If 1V is large, it is physically reasonable
to expect that the probability of a given configuration
of the last row, when one averages over all configura-
tions of the other E—1 rows, should be asymptotically
independent of E. This suggests trying to find a re-
cursion relation between the probability distribution of
configurations of the final row in lattices of S and
X+1 rows.

To derive such a recursion relation we consider the
density operator for 1V+1 rows,

PN(~Op ~1) ' ' ') ~N)

= exp Lg(S&'.„+X„o&+X"')jps(Zs), (2.20)

FIG. 1. Two-dimensional Ising lattice of X+1 rows and M
columns, in which zeroth row is connected to a special reservoir.

and Z„ is a shorthand symbol for (o*„1, ~ ~ ~, a*„sr).
We assume that the x components, rather than the
more conventional s components, of the spins interact
with each other and with the magnetic field, to simplify
some of the algebra. The density operator for the zeroth
row, ps(Zs), is as yet arbitrary and allows us to see the
effect of the conditions at one edge of the lattice on the
bulk. properties. The model described by (2.20) is
shown pictorially in Fig. 1.

The reduced derssity oPeraior for the last row is

PN(ZN) —= trz, , z, , . .. ,z —PN (Zo ~1 ' ' ~N) ~ (2 22)

This operator can be expressed in terms of the reduced-
density operator for the last row in an S row system
by the obvious recursion relation

PN(ZN) = exp (XN+XN&'1) trz„,

X exp (XN ")pN 1(ZN 1). (2.23)

The trace on the right can be considerably simplified
if we observe that, because (o' )'"= 1 and (o' )'~'=
o~, one can think of pN 1(ZN 1) as being expanded in
a canonical form:

where
Se„=ago.„„,

m

Xn =~~1~0 n—i,m& nm)

Xn &~2~& nmo n,m+1) (2.21)

PN 1(+N—1) 11 +—go mrs Nu
ml

+ Q a''1„, ,a „,o-'„,+.~, (2.24)
mlgm2

where we have designated a*+ &, by o. , etc. There are

"If one has two vector spaces with sets of basis vectors denoted,
respectively, by I n) and I a) and operators S and A de6ned,
respectively, in these vector spaces, then the direct product
Sx A is de6ned in the vector space with basis vectors denoted
by I aa) by the matrix elements

&Pi1 ISx A
I
~o&= 0 IS I ~&&l I

A
I

o&.

Thus the operator S can be considered in the larger space as the
direct product 'SX1, etc , where 1 is t.he unit operator in the
space of the I

u)'s. The generalization to direct products of more
than two operators is obvious.

coeKcients in the series (2.24), corresponding to the
2~ configurations of the (E 1)st row. Conside—r the
contribution to the trace in (2.23) of a typical term in

PN 1(&N 1):

trzezp (XN&")o. , ~ ~ ~ o „„
= tr lI exp (Eta* 'o* )o*,~ ~ ~ o*, (2.25)
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where we also designate 0 N by 0- '. Now o-', etc. If we define IC&* as before by

tr, „exp (Eio* 'a' ) =2 cosh (Eio' ') =2 cosh EI
(2.26a) we have

tanh Eg ——e—2 &' (2.15b)

aiid

tr, ~ exp(E'Io' 'o )o* =2 sinh (E'Ia* ') (2.26b)

=20.* ' sinh E~.

pN(ZN)
~
0)= (2 cosh EI)~ exp (XN+XN'")

&& exp (—2EI*Zo.+ o. )pN I(ZN) ~
0). (2.35)

Thus

trz exp(XN&I&a*, ~ ~ o* )
= (2 cosh Ei)~(tanh EI)"o*,' ~ ~ . o.* „' (2.27)

and, if pN I(o'I, ~ ~ ., o Is) is considered to be written
in its canonical form, then

trzN, exp(XN") pN I(a*N I,I, ~ ~ ~, a*N I,m)

= (2 cosh EI) pN I(a*NI tanh EI, ~ ~ ~, a*N~ tanh EI).
(2.28)

%e now try to find an operator 8 having the property
that

(2 cosh E'I) pN I(o'NI tanh EI, ~ ~, o Nis ta'nh Ei)
= &pN I(a*¹," y

a'—NM) y (2.29)

Let us now consider tr pN(ZN) in the representation
in which all spins are in the &s directions. %e notice
that any product of one or more distinct 0 's has no
diagonal matrix elements in this representation. Thus
only the zeroth-order term in the canonical expansion
of pN(ZN) contributes to the trace, and its contribution
is the same for all 2~ states; i.e.,

tr pN(ZN) =2~(0
~

pN(ZN)
~
0), (2.36)

justifying our remark that knowledge of pN(ZN) ~
0)

would be sufFicient.
Finally we consider possible choices for po, each one

of which defines a slightly different physical problem.
The simplest choice, in which the zeroth row is in a
thermal reservoir at infinite temperature is (if we
normalize po) the constant

because we would then have the simple recursion
relation

pN(ZN) = exp (~N+X N) ~pN 1(ZN). (2—.30)

If 8 exists it must clearly have the form

(2 cosh E,)M (tanh EI)&,

In 'this case

with

ps=(2) .

Z= (0 i (VsvsVI)" ( 0)

Vi= (2 cosh Ei)~ exp (—2EI*Zo+ o- )
= (2 sinh 2EI) ~~s exp L

—2EI*Z(o+ o. —sI) j,

(2.37)

(2.38)

where K is an operator that counts the number of o. 's

in any term of the canonical expansion. In particular,
for the zeroth-order term, we would require that X 1=0
or K=O, which does not meet the requirements for
other terms of the expansion. Thus there exists no
operator 8 in the algebra of the o*'s that makes (2.29)
an operator ideiitity. It is possible, however, to satisfy
(2.29) when both sides are applied to a particular
state. It is especially convenient (and sufhcient to
obtain tr pN(zN), as we shall see) to take as that state
the state with all spins down, which we call the "vac-
uum" and denote by ~

0):
o

—
N„~ 0)=0, all m. (2.31)

Then
N- I 0)—'N-

I 0» (2.32)

so that the operator X, which must count the number
of distinct 0*'s present in a product, is just the operator
that counts the number of up spins,

X=ga+N a-N . (2.33)

Vs= exp (E2Zo o* +I),

Vs= exp (HZa* ).
Another possible choice is

pa= V2Vg.

(2.39)

(2.40)

If we let E~E—1, this choice gives an E)&M lattice
with no connections to an external reservoir —the
classical Ising problem with free edges —which, there-
fore, has the partition function

z= (0
~
(v, v, v, )N-I(v, v, ) ~

0)
= (o

~
(v, v, v,)"v-',

~
o) (2.41)

= (2 cosh EI)™(0
~

(Vs vsvi)N
~
0).

In either case the 0-'s are the operators associated with
the spins of the last row, in contrast to the c matrices
of the previous section. To obtain the V's of the last
section, we must make the canonical transformation

In this way, from (2.28) we obtain the recursion relation

pN(ZN) ~
0)= exp (KN+XNi'&) (2 cosh EI)

X(tanhEI) " '
pN I(ZN) t 0), (2.34)

where here, and henceforth, we denote 0-'~ simply by

0 z ~ 0 x

and then identify the 0- operators with the corresponding
~ matrices.

It is again convenient to deal with a symmetric
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operator, "so we write (2.38) as

Z= (0 i
(VsVs)

—lV (VsVs)& i 0),
where

(2.42)

V= (VsVs)'Vt(VsVs)'*. (2.43)

As X—+~, only the largest eigenvalue of V survives,
and factors like (0

~
(VsVs) ~

~

4', ) have a negligible
effect on the free energy per spin, i.e., the slight differ-
ences between (2.42) and (2.19) due to the different
boundary conditions at the first and last rows are
negligible. For convenience we henceforth work with
the cyclic analog to (2.42):

Z= tr V~. (2.44)

It should be remarked that spin correlation functions
such as (2.4) can be expressed in the transfer matrix
formalism quite simply. For example, by similar meth-
ods, one easily obtains for the two-spin correlation
function

( 'a„.~a*„„)=tr (a*„V~'-"a*~V~—~"' "&)/tr V". (2.45)

III. EIGENVALUES AND EIGENVECTORS OF THE
TRANSFER MATRIX

A. Introduction of Ferrnion Operators

The operators Vl, V2, and Vs involve linear and
quadratic forms of the spin raising and lowering
operators, which obey the mixed set of commutation-
anticommutation rules

go+, o+ )=0, mWn

(a+-)'= (a=)'= o. (3 1)

The part-boson, part-fermion nature of these rules is a
principal source of diS.culty, because no simple linear
transformation among the a+'s and 0- 's, such as would
be required to diagonalize a quadratic form, leaves
these rules invariant. It is nevertheless well-known
how to change such operators to ones obeying a com-
plete set of anticommutation rules. %e introduce
annihilation and creation operators by the trans-
formation"

The C's and C~'s are readily seen to be fermion opera-
tors. Then

C~~C~=0+~0 ~,

so that the inverse transformation is simply

(3.3)

o =fexp(zi+C;tC, ) ]C„;

o+~= /exp(vari +C;tC;) )C t. (3.4)

{T+mo. ~1=C ~C~1,

0+ 0+~1=C tC +1~,

Nt{T m+1 CmCm+1y

so that if each row is assumed to have free ends,

m—1

(3.6)

Vs= exp LEsg(C —C ) (C +r +C y])]. (3.7)

The operator V3 is not left in any simple form by the
transformation to fermion operators, and it is this
feature which has prevented the solution of the Ising
problem in a magnetic field. Also, if interactions are
between other than nearest neighbors, V2 involves
higher-order terms than quadratic. For these reasons,
we are conPned to nearest neighbor interactions and, for
the rest of this sestion, to sero external magnetic field

If cyclic boundary conditions are imposed, the bond
between the last and first spins introduces complica-
tions in Vs, because instead of (3.6) we have

Despite its apparently complicated nonlinear struc-
ture, this transformation is useful because quadratic
forms involving products of operators on the same site,
such as occur in Vl, or of operators on adjacent sites,
such as occur in V2, remain quadratic in the new opera-
tors. Thus, because of (3.3), V& is just

Vr= (2 sinh 2E~) ~t' exp L
—2Er*g(C~tC~ —~s) ).

(3.5)
Also, for m&M, one finds

m—1

C =I exp(z.iso+,o-;)go —„;

C„t=)exp(z-iso+, o-;) ja+ .
1

(3.2)

a+pro t= —(—)&CsrtCg&CsrtCt

a+sra+r = —(—)&CsrtCrtQCsrtCrt

a sra-r ——(—)&CsrCrW —CmCg, (3 8)

"Recall that the operator V, which is identical with Montroll
and Newell's I', is only one possible symmetrization of the
transfer matrix. Another, V'= Vi&(V~Vs) Vi&, was used by Yang
to derive the spontaneous magnetization. The operator V' is
diagonalizable with less algebraic manipulation, but the operator
V simplifies expressions for the spontaneous magnetization and
the two-spin correlation function. Hence we use the latter. This is
discussed further at the end of Sec. IV.

"This method was known at least as early as 1928 i'See P.
Jordan and E. Wigner, Z. Physik 47, 631 {1928)j and has been
rediscovered many times since. It has been used to change spin
operators into fermions t E. Lich, T. Schultz, and D. Mattis, Ann.
Phys. 16, 407 (1961)g, to change electrons into bosons with a
"hard core" PE. Lich and D. Mattis, Phys. Rev. 125, 164 (1962);
Appendix), and to change hard core bosons into fermions LT.
Schultz, J. Math. Phys. 4, 666 {1963)g.

so that

M—1

Vs ——exp ItsLQ (C„t—C„) (C„+~"+C~r)

—(—)&(C~t—Csr) (Crt+Cr) j. (3.9)

Here X is again the total number operator,

X= g~+ a== QC "C .
1 1

(3.10)

The difhculties created by this more complicated
form for V2 are not insuperable. To see this we observe
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Vq+= exp { Eqg(C '—C ) (C~I'+C~I) $ (3 1«)

CSI+I= —Ci and Csr+It= —Cit', (3.12a)

acting on the odd states, V2 is equivalent to the operator

Vq
——exp tESQ(C t—C ) (C~it+C~.I)j (3.11b)

CII+I= Ci and CII+If = Cit. (3.12b)

Thus we are led to seek the eigenvalues and eigen-
vectors of the operators

V+= (2 sinh 2EI)~"exp f;'Kqg(C„t C-„)—
X (C~it+C~I) $ exp L

—2EI Q(C„tC„—-,') g

X exp { SESS'(C C ) (C~I +C„pi)), (3.13)

the & referring to the anticyclic and cyclic de6nitions
of C~+~, C~+~, respectively. It is understood that the
eigenvectors (and eigenvalues) of V consist of those
eigenvectors of V+ having even numbers of fermions
and those eigenvectors of V having odd numbers of
fermions. The "odd" eigerIvectors of V+ arid the "eveN"

eigertvectors of V areirrdesarIt artd must be discarded.
It should be emphasized that this apparent complica-

tion arises solely because of the cyclic boundary condi-
tions; with free ends, there is only one operator V to
consider. This implies several advantages for the free-
end boundary condition, but the price paid through
the loss of translational invariance tends to offset these.
In this section, we consider only the case that the rows
are cyclic.

Our problem then is to diagonalize the product of
three exponentials of quadratic forms in fermion
operators. This is somewhat, but not impossibly, more
complicated than the diagonalization of a single quad-
ratic form. As one might expect, there exists a general
linear transformation to a new set of fermion operators
of the type

pq=ggq Cm+hqmC t, (3.14)

that because all terms in V& and V2 involve bilinear
products of fermion operators, the evenness or oddness
of X is conserved:

{ (—)~, Vij={.(—)~ VS3=0 (311)
%'e can consider separately eigenstates of V in which
only even numbers of fermions are present, and other
states in which only odd numbers are present. Acting
on the even states, V2 is equivalent to the operator

in terms o$ which V appears in the simplest form one
could hope to obtain

V= exp ( —Zqq(qtpq+ constant). (3.15)

with
V,= (Vqq)'Viq(Vqq)

and

Uiq= exp P 2KI+(gqtgq+g qtg q 1)j—
Vqq= exp {2ESL(cosg) (g,tg,+g, tg ,).(3.19a)

(3.19b)

+(sin g) ( fqg q+g q 'gq )$I. (3.19c)
For q=0,

Vo= exp {
—2(EI*—Kq) (gotgo —

q) $, (3.20)

and for g=z,

V = exp L
—2(EI*+Eq) (g tg ——,')$. (3.21)

Because the operators V, and Vq involve bilinear
products of operators that anticommute, they them-
selves commute and can be diagonalized simultaneously
and independently, an enormous simplification. The
operators Vp and V are obviously diagonal in the oc-
cupation number representation. For more general
values of q, the problem reduces to the diagonalization
of Vq between the four vectors 4 p~ C'qp 4—q~ 4 qq The
notation is self-explanatory, and the sign of 4 « is
determined by C qq=g, tgqtcp.

The problem is simply to determine the transformation
matrices gq and hq, the one-fermion "energies" ~q,
and the unknown constant. There are several ways to
proceed; we follow one that in our view consists of just
a few simple and natural steps.

Because of the translational symmetry in the expo-
nents of (3.5) and (3.13), the first step is obviously
to go to running wave operators by the linear canonical
transformation

—M ',c i+I—qg—siqmg (3.16)

The factor exp (—iqr/4) is introduced for future con-
venience to ensure real coeKcients in all terms of V+
when expressed in terms of the gq's. The anticyclic
condition (3.12a) requires that

q=I= ~~/M, ~3~/M, -, W(M —1)~/M, (3.17a)

while the cyclic condition (3.12b) requires that

q=h=0, &2qr/M, ~4qr/M, ~ ~, ~ (M—2)&/M, qr.

(3.17b)

We have assumed for convenience that M is even.
Direct substitution of (3.16) into (3.13) yields V+

in the form

V+= (2 sinh 2E )~1' Q 'V, (3.18)
0&q&m

where the g's are either all I's or all k's. For gQO or +,
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The second step is to observe that the vectors C,
and C, are eigenvectors of V„being simultaneously
eigenvectors of the operators pe, and y q~gqt with
eigenvalue zero, and eigenvectors of the operator
rlqtr1q+r1 stre q with eigenvalue unity. Thus for qWO
or m,

(3.22)Vqeq= exp (2Es cos q) C,

and similarly for C q.

The third step is to diagonalize V between the vectors
4 «and Co. It is easy to compute the matrix elements
of V&, and V2, between these vectors. V&q is already
diagonal:

t
exp (—2EI*) 0

(3 23)
exp (2EI*))

Tp cpmpute the matrix elements of (Vs,) & we introduce
the pair annihilation and creation operators

The two eigenvalues are obtained by elementary
algebra:

exp (2Es cos q) {-,'(Aq+B, ) ~r (-,'(A, —B ))s+C qyI

= exp (2Es cos q) e+«, (3.28)

where e, is the positive root of

cosh ~q= cosh 2E2 cosh 2E&*

%o= cos Pq@o+ sill Pq@

sill pq@o+ cos gq4 (3.30)

where pq is defined modulp qr by

—sinh 2E, slnh 2E'I* cos q. (3.29)

The eigenvectors belonging, respectively, to the upper
and lower signs in (3.28) are also obtained by ele-
mentary algebra:

b q= rjqr1 q
-and b+q= r1 qtq1qt (3.24) tan @q=Cq/(e« Aq—) (3.31)

which~ ln the space of 4' qq ancl. 4'p~ obey the simple
rules of spin-lowering and raising operators. Then, ie
this space, fl and b+ are represented by Pauli spin tan 2' =2Cq/(Bq A,), — (3.32a)

Simple manipulation gives a more convenient definition

matrices so that which defines pq modulo qr/2. The solutions of (3.32)
2f,+ y b, +.1 (3 25a) that also solve (3.31) satisfy the additional requirement

Sgll 2fq= Sgll q. (3.32b)

The paired nature of the quadratic forms in (3.19)
and the structure of the four eigenvectors are extremely
reminiscent of the pair-Hamiltonian and the energy
states introduced by Bardeen, Cooper, and Schrieffer~
in the theory of superconductivity, particularly in
Anderson's formulation2' in which electron-pair opera-
tors were in fact formally replaced by spin operators
Lanalogous to our b+q of Eq. (3.24) j, in the subspace
where pairs were not "broken up. " We can simplify
the results for Vq in precisely the same way that
Bogolubov" and Valatin" simpli6ed the BCS theory,
if we introduce the transformation

(3.25b)
so that

(Vsq)&= exp (Esp(6 q+1) «s q+&*q»n qjI
= exp (Es cos q) exp (Esb*q')

= exp (Es cps q) (cosh Eq+b'q' »nh E2)

= exp (Es cos q)

/
cpsh Eq+ sin Es cos q slllll Eq sill q )

xi (3.26)
(sinh Es sin q cosh Es sinh Eq cos q)—

whele $* '= $' cos q+fl*q sin q and has the important
prpperty that (&'q')q=1. Combining (3.23) and (3.26),
we obtain the matrix of V, between the vector
and Co in the form

$q= cos Qqq1q+slll Q I)

(A, C, t
V,= exp (2Es«sq)~

&C, B)'
4+o= 5-qq'o= o, @q—=+q= 4'+o,where

sC qq
$—q= COS Qq'g q Sin $ r1 &. —(3.33)

Then it is readily verified that the four eigenvectors
(3 27) are defined by

A,= exp (—2EI*) (cosh Eq+ sinh Es cos q)
'

+ exp (2EI*)(sinh Es sin q)
q

Bq= exP (—2EI*) (sinh Es sin q)
s

+ exp (2EI*)(cosh Eq —sinh Eq cos q)'

Cq= (2 sinh Essinq)'
X (cosh 2EI* cosh Eq sinh 2EI* sinh Es cos q) . —

C'-q—=+-q= t-q'+o, C'-qq= k-q'tq'q'o. (3.34)

In terms of the p-operators, V, becomes

osq) exp L eq(4 to+a—qt$ q
—1)g.

(3.33)
» J. Bardeen, L. Cooper, and J. SchrieGer, Phys. Rev. 108,

1175 (1957).
» P. W. Anderson, Phys. Rev, 112, 1900 (1958).
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)50=0

p =0
and eo

——2 (Eg*—E2) (3.36a)

and e = 2 (Eg*+Em), (3.36b)

The special cases q=0 and q=m can also be written in
this notation if @re define

whether e&=o is, respectively, positive or negative (i.e.,
whether T) T, or T&T,). The largest eigenvalue of
V in both cases is

A. p (or, respectively, A &=0) = (2 sinh 2E&)~~'

&«xp HZ I
"lj (3 42)

and
&q+ &min+ 0) q/0

op= &11m eq+g0 fol T+( T,.
qmp

(3.39)

Here T, is defined by E~*=E2, or equivalently, by
Eq. (2.15b),

sinh (2J~/kT, ) sinh (2J,/kT, ) =1, (3.40)

the famous relation for the transition temperature,
first derived for the square lattice by Kramers and
annier" prior to Onsager's exact soIution.

The partition function, from which one immediately
obtains all the well-known thermodynamic properties
of the two-dimensional Ising model, is just the Eth
power of the largest eigenvalue of V, in analogy with
the one-dimensional case." The fact that the other
eigenvalues have negligible effect when A, M~ ~ is
shown in the argument leading to Eq. (5.21) of Sec.
VB. Let us then inquire into the maximum eigenvalue
and the corresponding "maximum eigenvector. "

The maximum eigenvalue of V+ is for the b-particle
vacuum, 0+p, and is

4+0= (2 sinh 2E~) u~' exp L-', ge~j.
l

(3.41)

The eigenvector 4+0, having an even number of $~-

particles, is allowable and is therefore an eigenvector
of V. All other eigenvalues of V+ are less than A.+p by
factors like exp (—e;„) or smaller.

The maximum eigenvalue of V is either for the $I,-

particle vacuum, 4 p, or for the eigenvector with the
k=0 particle present, 4 ~~——)~=ot%' 0, depending on

" If the. largest eigenvalue is twofold degenerate, as it is for
T&7;, the partition function is increased by a factor of two,
making a negligible change in the free-energy per spin.

Vo V =exp $2E2(cos 0+cos v.)j
&«xp p «(—50'6 2)—~—(4'5 k)—j (3 3&)

Vfe thus obtain the extremely simple form for V+:

V+= (2 sinh 2E )u" exp t
—ge, ($,tP, —x2) j, (3.38)

all q

where we have used the fact that 2E2+ cos q= 0.
It is to be noted that a state with an even (odd)

number of $-particles involves only even (odd) num-

bers of q-particles. Thus the allowable eigenstates of V+

must have even numbers of $ particles; of-V, odd numbers

of $ particles. -We denote the eigenstates of V+ and V

by 4+ and% whenever it is useful to distinguish them.
It is also important to observe that for T&2„

and again all other eigenvalues of V are less by factors
of exp (—e;,) or smaller.

Above T, the maximum eigenvector 0' p, containing
an even number of $1,-particles, is not allowable, so
the maximum eigenvalue of V is just A+p and is non-
degenerate. Below T„ the maximum eigenvector + I,=p,
containing an odd number of )q-particles, is also allow-
able. The two maximum eigenvalues of V, A+p and
A ~ p contain sums that are both approximations to

6qdg~
2~ —.' '

the integral of a periodic analytic function. The errors
in the approximations are both exponentially small'
for large 3E, as Onsager originally remarked, because
all correction terms in the Euler —MacLaurin expansion
vanish. Thus the largest eigenvalues of V+ and V are
exponentially degenerate in the limit M—+~. We call
them simply Ap.

M
&o= (2 sinh 2E~) ~~' exp — e,dq ~. (3.43)

4~

The effect on the free energy per spin of this de-
generacy is A= In 2, i.e., negligible, so that one obtains

P= kT ln (2 sin—h 2Eg)'*+— e, dq . (3.44)

The degeneracy nevertheless plays an important role
in the long-range order, as was erst shown by Ashkin
and Lamb, '4 and as we see in Sec. V.

We need. not repeat how (3.44) can be written in a
form that brings out the similarity between E& and E2,
how it leads to a logarithmic singularity in the specific
heat, etc. , subjects which are discussed by Onsager,
Bomb, Newell and Montroll, and Huang. 25

IV. SPIN —SPIN CORRELATION FUNCTION

We consider now the evaIuation of the correlation
function between two spins in the same row:

0' nm& nm'

lim tr o' 0' exp (—PRO) /tr exp (—PXv) . (4.1)
M,N~~

Expressed in the transfer matrix formalism, this is

(a*„„o'„„)=lim (tr a.*„o.* V~/tr V~). (4.2)

2' See remark of Domb, Ref. 2, p. 194.
24 J. Ashkin and W. E. Lamb, Phys. Rev. 64, 159 (1943).» K. Huang, Statistical Mechanics (John Wiley @ Sons, Inc.,

New York, London, 1963), pp. 369 ff.
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If we expand in the eigenvectors of V belonging to the
eigenvalues A, we have

= lim I (Q(e. I
o* o'„ Ie.)AP)/QA "j. (4.3)

It is shown in Sec. VB that only the eigenvector(s)
belonging to the largest eigenvalue of V contribute in
the numerator and denominator when we take the
limit M, S—&~. Thus, for T&T„when M—+00,

The q's range over either the set of /'s or the set of k's,
whichever is more convenient. Then'6

(4+p I
C* C*'

I ++p) = (4'+p
I

C",C" '
I
4'+p )=0,

i~j (4.10)
and

(0+p I
icp, c*,

I
@+p)

= —M 'g exp I il(s —j)j exp (—i2&&). (4.11)

If one de6nes

(o*„„o„.)= lim K(++p I
o'-a

I ~p)sr a"= (4+p
I
iC",C' i I%+p) (4.12)

+ (+-s=p
I
o' o* ~

I ~s=p)~).

The two expectation values depend on M through the
eigenvectors. %e now consider the first of these in
detail, and then show that the two are equal.

The evaluation is made easy if we write the product
0-* 0- ~ in terms of fermion operators. From the original
transformation (3.4) we have

then the sum over all pairings is

&~p I
a'-o'- I+'p)=Z( —) "a-,~-" a--i,~(--»

P

~m, m +m, m+1 ' ' '
~771,ms —1

(4.13)

o* o*„=C*(exp (srig C;tC;)]C*„

m' —1
= (iC" ) Lexp (xi' C;tC;)$C*, (4.5a) ~ms—l,ms —1

where

C,=C; +C,

Observing that

and iC~;= C;~—C;. (4.5b)

i.e., the correlation function between two spins m' —m
sites apart in the same row is a determinant of order
m' —ns. For the cyclic problem we are considering, we
see that

a'i=as-'= M tZexpf il(j —i) jex—pL —s(2yi+f) j,
(—) ' '= (CJ'+Cs) (Cs Cs) =C*s(fC"s') —(46)

we obtain the product of 2(sN' —sss) fermion operators

„.=(sC )(C* )(sc ) ~ ~ ~ (C'

&& (&C" '-i) (C ) (4 &)

C =M l e ' ~' ge" (cosp, $,—sing, $,t) (4.8)

with

(4.9)

To evaluate the "vacuum" expectation value of this
product, we use %ick's theorem, which states that we
must associate the operators in pairs (with the oper-
ators of each pair written in the original order), replace
each pair by its contraction (in this case, vacuum ex-
pectation value), multiply the product of these con-
tractions by (—)"Lwhere ( —) s' is the signature of the

permutation necessary to bring paired operators next
to each other from the original ordering), and sum
these products over all pairings. The three kinds of
contractions that occur are readily evaluated if we
combine the transformation (3.16) and the inverse
of (3.33):

(4.14)

so that the determinant in (4.13) is a Toeplitz determi-
nant (the ijth element depends only on i—j) and its
asymptotic behavior can be calculated by a theorem
of Szego" as generalized and applied by Montroll,
Potts, and Ward (MPW)." In fact, the determinant
(4.13) with the definition (4.14) is identical with
theirs, so we do not need to repeat its evaluation.

To see the identity of a;; defined by (4.14) and
MPWs a„, we need an explicit expression for
exp ( i2$,). F—rom (3.32a) one obtains

exp (—i4y))
e"' 2ctnh 2—E,*ctnh Ese"+ctnh' Es

e "'—2 ctnh 2Ei* ctnh Ese *'+ctnh' Es '

~e This situation is identical to,shat @re found for the "XY
model" of quantum mechanical spins in one dimension, where it
is discussed in more detail. See E.Lieb, D. Mattis, and T. Schultz,
Ann. Phys. 16, 407 (1961),especially pp. 417 ff.I See V. Grenander and G. Szego, Toeplitz Forms and their
A ppbcations (University of California Press, Berkeley, Cali-
fornia, 1958). For a proof that is extendable to non-Hernutian
kernels, as is the case here, see M. Kac, I'robabiLity and Related
7'opus sss Ehysscol Sciences (Interscience Publishers, Inc. , New
York, 1959).
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which can be written in factored form as

(e"—xg) (e"-x2)
exp (—i4y() =

(e "—xt) (e "—x2)
'

with
xg ——ctnh Eg* ctnh E2) 1

(4.15)

xo= (ctnh E2/ctnh E t) &&1 for T&&T,. (4.16)

The appropriate square root of (4.15) consistent with
the requirement (3.32b) is

exp (—i2&,)

methods, "or indirectly by using the results proved in
Sec. VA.

It is interesting to recall that Kaufman and Onsager,
using similar algebraic methods, nevertheless derived
the two-spin correlation function as the sum of two
determinants rather than as a single determinant, and
that Montroll, Potts, and Ward proved the equivalence
of the two results only with considerable effort. The
reason for the two possible forms, and their identity,
can be seen immediately within the algebraic formalism.
The Kaufman and Onsager result, rather than the
single determinant, is obtained if one works with the
transfer matrix V',

(1—x,-'e") (1—x,e ")
(1—xt 'e ")(1—x2e")

(1 x —leal) (1 x —lea)

(1 xt '—e ")(1—x2 'e ")

for T(T„(4.17a)

for T+ Tcp

(4.1'lb)

V'= V'gVI Vg', (4.21)

which differs from V only in the way it is symmetrized.
Then a similar diagonalization procedure can be
followed, leading to a canonical transformation analo-
gous to (4.8) but with an angle p,

' rather than P„
defined by

where the phase angles of all four factors on the right
are taken to be in (—ram. , ~ra.).

If we identify

2&)+i=5*(l), (4.18)

(1—tanh'E )'(1—tanh'E )' 1

(4.20
16 tanh' Eg tanh' E2

A remarkable property of this correlation function is
that it is symmetric in Jt and Jm, the two spin correla--
tion function along a row and along a column are asyrnp-
totically equal even in an anisotropic lattice.

Above the critical temperature, the asymptotic
value can be shown to be zero directly by similar

'o In S* (t) for T(T„a term equal to m has been omitted by
MP%, but this does not affect the conclusion. Also, to make the
agreement manifest, we must interchange I&I and E2, EI* and
E2, etc.

then iri the limit 3II—+~, the elements a, ; and the
determinant (4.18) agree exactly with those obtained
by Montroll, Potts, and Ward. "

The analysis of (4 I,=o
I
o'~a*~

I
4 I, o) proceeds in

exactly the same way, with all contractions being
defined as expectation values in the state 0 I,=o, rather
than in 0+0. The k=o term in the sum corresponding
to (4.14) changes sign, but in the limit M~~, this
has no eGect on a;;. Therefore

(~~=o I
*- » I

+ ~=o)= (++o
I

*-o*-
I ++o), (4.19)

as asserted earlier.
Below the critical temperature, the asymptotic

value of the determinant (4.13) is evaluated by MPW
using Szego's theorem. It turns out to be

hm llm (o ~~0 ~m; )or~
~t~~m W,&~~

sgn 2@g = sgn q. (4.22b)

Instead of (4.2) the correlation function takes the form

(a*„„o*„.)= lim
tr Vt *o'„a'„.

Vg

iV'~

tr V~M

so that one must consider the expectation value

(~"
I (V —:.*.V ) (V —:--V:) I~"')

= (4+o'
I (o cosh ICt~+io"sinh Er*).

&& (o'~ cosh Et*+io "~ sinh Et*)
I
@+o')sr, (4.24)

and a corresponding one for%' I,=o', which can be shown
to be the same when M~~. 4+0' is obviously the eigen-
vector of V' corresponding to 4+o for V, etc.

Of the four terms of the product in (4.24), only the
terms involving 0- o- and 0-J a" ~ have nonzero ex-
pectation values Lt1te other two terms, when simplified
using)Wick's theorem, always involve a factor of the
«rm (~o'

I
C"&*;

I
~o') or (++o'

I
C"'C"

I
~o'), i4j,

which vanish as in Eq. (4.10)j, so we obtain

(o'„o' )= cosh2 Er*(e+o
I
o' o' '

I
~o')~

+sinh'Et'(e+o'
I

(io" ) (ioo ) I%+o')~ „. (4.25)

The two expectation values on the right lead to the
two determinants of Kaufman and Onsager.

~9 Dr. Montroll and Dr. Potts have kindly informed us that
their use of the Szego —Kac theorem in this case is not correct as it
appears in MPW, but that it can be corrected.

tan 2go

slnh 2E2 sin g

sinh 2E~* cosh 2E2—cosh 2EI* sinh 2E2-cos q
'

(4.22a)
with 'the'requirement .
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V. SPONTANEOUS MAGNETIZATION'

A. General Remarks

'In contrast to the free energy, the spontaneous
magnetization of the Ising model on a square lattice,
correctly defined, has never been solved with complete
mathematical rigor. Starting from the only sensible
definition of the spontaneous magnetization, the
methods of Yang, and of Montroll, Potts, and Ward are
each forced to make an assumption that has not been
rigorously justified. The assumptions appear to be
quite different; however, from the similarities between
the diS.culties encountered in trying to justify them,
and the identity of the results obtained, one might
conclude that they are closely related. In this section
we discuss these assumptions; in the following two
sections we discuss the MPW and Yang approaches,
respectively, in more detail.

Ordinarily in statistical mechanics, the kind of
mathematical questions we wish to examine are com-

pletely ignored. But in the Ising model, which is exactly
soluble in certain respects, it is rewarding to be more
careful, and to see precisely what one must assume
even here.

For a finite lattice in a magnetic field @ (in the x
direction), the free energy per site and the magnetiza-
tion (magnetic moment per site) are defined by

F~N(@) =
—(1/PM1V) ln tr exp (—PXp) exp (P@ga. „) (5.1)

1 tr go „„exp (—PXp) exp (P@Zo;;)
M1V tr exp (—PXp) exp (P@Zo;,)

rtFMir/~@p (5 2)

where K0 is the Hamiltonian in the absence of a field,
and again we have set the Bohr magneton equal to
unity. The spontaneous magnetization is in some sense
the limit of the magnetization when Q—4+, but con-
siderable care must be taken with the limit. Thus, it is
clear that the spontaneous magnetization is not ob-
tained from

lim K~ir(@)i

which vanishes for all finite M and S, as can be seen
by expanding each term of (5.2) in powers of @. For
finite M and 1V, Fprir(Q) is analytic for all real @ and
is quadratic in @ for sufficiently small @.

The correct definition of the spontaneous magnetiza-
tion requires that limpr, ir be taken before lim@ p+.
That is, the spontaneous magnetization is defined by

K,= lim lim Ksriii(@),
@~0+M,N~cxs

(5.3)

tohich

definition

me take as fundamental Physically, this.
definition corresponds to the experimental situation,

in which @ is allowed to become small on a macro-
scopic scale and K, is the extrapolation of the K(@)
curve. The values of @ determining the extrapolated
value are all much greater than M ' or iV ' (in units
of k T/tiii, h,), so that one must pass to the limit M, E~

before letting @ tend to zero. Mathematically,
although the sequence of functions FprN(@) are all-

quadratic in @,for small @, the limit function

P(@)= lim F~ir(@)
M, N~cxs

(5 4)

may vary as
~ @ ~

for small Sg, and just such a behavior
would lead &to spontaneous magnetization. Unfortu-
nately, no one has succeeded in calculating the function
F (g) ) for g) WO.

As we shall see in Sec. VC, Yang calculated a quantity
Kx, e defined by a different limiting process:

Kx, ,= ~
lim lim Keir(@) ).
~0+ M,N~co

g=ntM

(5.5)

The limiting density is defined as

p(K)= hm pmzr(K)
M,N~rx

(5 7)

p~z(K) is even in K by symmetry. Also, because it is
the probability density of a macroscopic quantity,
one expects it to peak sharply at points we shall call
+Kp and which we subsequently identify with &K,.pp

Ifl Above the critical temperature, of course, there is only one
sharp peak around geo=a.

It has not been possible to show the equivalence of
Eq. (5.5) with the spontaneous magnetization as given
by the fundamental definition. We have, however, been
able to show that if one takes the limit o.—+~ instead
of n~0, in Eq. (5.5), then the resulting expression is
the spontaneous magnetization. Unfortunately, the
expression limps, ip Kepi(n/M) has only been com-
puted for u very small.

The important reason why Yang's de6.nition appears
to agree with the fundamental one is that the quadratic
dependence of F~&(@) persists as @ increases only so
long as O= 0 (1/M1V); for larger @, F harv (O) appears
to be linear in Q, and presumably the slope is the same
for Q = 0 (1/M) and for @= 0 (1).

In order to verify this quadratic behavior for @=
O(1/ME) and to obtain a third possible definition for
spontaneous magnetization on which both the calcula-
tions of Yang and of MPW can be based, it is useful to
consider the probability density that the magnetization
have the value K in the absence of a magnetic field:

Ppr&(K)dK= g exP (—PXp)/ g exP (—PXp),
S(K) all states

(5.6)
where S(K) is the set of all states for which

K& (MX)-'go...&K+dK.
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The magnetization in a field Q is then If PMN(R) is so strongly peaked, it is more convenient
to calculate R, from

KMN(@) =
exp ME d

PMN(K) exp (Pg RMtv) dR

RpMN(R) sinh (p@KMN) dR

pMN(R) cosh (pg)RMÃ) dR

(5 8)

R.'= (R')= »m 2 K'pMN(K) dR, (5.13)
M,N~~ p

which can be considered as a third defnition of the spon
tmseous magnetization. Although the MPW calculation
has been, and the Yang calculation can be, based on
this definition, it has not been possible to show rigor-
ously that it is equivalent to (5.3), i.e., that PMN(R)
is suKciently peaked.

I.et us turn to a more detailed consideration of (5.13),
deriving both the MPW method and the Yang method.

R(@)= (Pg M&) R'p(R) dK
p

=t @M~&K )/&I R I);

Kp(K) dR

(5.9)

corresponding to the quadratic dependence of FMN(e)
on @.We note that in this linear region of the magneti-
zation curve, the susceptibility is proportional to the
size of the lattice.

For @ of macroscopic size, the hyperbolic functions
in (5.8) differ negligibly from 2 exp (Pg)KM%) so
that we can write

KMN(@)

RpMN(K) exp Lpg (R—Kp) M&7 dK

pMN(K) p Lpg (K—Rp) McV7 dR

(5.10)

Now, only for an extremely sharply peaked PMN(K),
an example of which might be the form

The quadratic behavior for extremely small @ follows
if PMN(R) satisfies the very weak condition that it
be negligible for K)Rpx (constant of order unity).
Then, if 0(@«(PRpMN) '=O(1/ME), we can ex-
pand the hyperbolic functions in (5.8) obtaining

B. Syontaneous Magnetization and Long-Range
Order

Definition (5.13) for R„when written explicitly, is

lim &I (ME) —'Qo.~„„7')
M, N~rx

lim (MtV) ' Q &o*„.„o*„„)MN, (5.14)

where ( ~ ~ . )MN denotes a thermal average in zero field
for an 3I)&E lattice. For the cyclic problem, the
thermal average of (5.14) depends only on n' —n and
m' —m, so we can write

lim (MX) 'Q (o.*„„o*„„)MN. (5.15)
min/

This is the starting point of Montroll, Potts, and Ward.
Their use of (5.15) has rested on the observation that
the terms in the sum g „ for ns' —nt and n' n less—
than some large value do not survive the multiplication
by (MtV) ' and the limit M, iV~~. One has therefore
to consider the long-range order (o „o„~)MN for
M, E—+~ and n' —e, m' —m large.

Actually, there are at least two kinds of long-range
order: the "short long-range order" defined by

f(n) = lim lim (a.*„+,,~+„o.*„~)MN (5.16)
r,s~~ M, N~rxi

s/r=tana

and calculated for n=0 in the previous section, and the
"long long-range order" defined by

pMN (R) exp L A (R—Rp) '7

+exp L
—A (K+Kp)'7, with A = O(ME), (5.11)

g(tip &) lim &o n~vN, m+pMo nm)MN& 0&@,v&1.

KpMN(K) dK.
M,N~cxp p

(5.12)

"It should be remarked that an ansatz like (5.11) is mech
stronger than the more usual requirement ((ss—(sp))') =
0(1/ilIE) or even analogous requirements on any higher moments
up to moments of order Jtt/IN.

will the effect of the exponentials in Eq. (5.10) for small
but macroscopic @ be small. "Then, we would obtain

K.= tim lim KMN(8) =
&I R I)

@M+ M, N~cci

(5.17)

Previously it has first been assumed that (5.15) can be
written in terms of the short long-range order, when in
fact it is the long long-range order that ultimately
enters in (5.15). It has second been found necessary to
assume that f(n) is independent of n, because only
for n=0 (or n= sipr) has f(n) been easy to calculate.
The first assumption has been made without any
justification. The second is suggested (but hardly
proved) by the fact that the explicit calculation (as we
have observed) gives f(0) f(-,'rr), even for the ani-
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Thus"

g(~ v)=—g

A~) =—g

all p&0, v&0,

all n.

(5.18a)

(5.18b)

sotropic case J~/ J2. We now prove these two assump-
tions by showing that

0(e ~) for large M; such differences are consistently
neglected). For T) T, there is no degeneracy so all
proofs are similar but simpler.

The denominator of (5.20) can be accurately bounded
because e,&e; &0 for all q~0:

2ANp&tr VN&2hNp[1+exp ( &—p; )P '&2ANp

0 0
dp dv g(p, v) =f(0), (5.19) )&exp [(M—1) exp (—Xp; )$.

the basic formula usually assumed.
For fixed M and iV, we consider g~N(p, v), which in

the transfer matrix formalism becomes

For large M and S, then, with negligible error,

tr VN=2ANp (5.21)

g~N(~ v)
—tr (~v: VvN~v V(1—v)N) /tr VN (5.20)

We assume T& T„so that the two largest eigenvalues
of V are degenerate (more precisely, they differ by

i.e., the sole contribution when S and 3f are large
comes from the two maximum eigenvalues of V.

If we expand the numerator of (5.20) in the eigen-
vectors of V we have

(1—v)N g vN

g~N(p, v) = pZ&+- I
~*-+.~ I+p&&+p I

~- I+-&-
a,P ~o Ap

(5.22)

We have suppressed the subscript 3f on all matrix elements and eigenvalues. Let us separate explicitly terms in

which one or both eigenvectors belong to the maximum eigenvalue:

g~N (I, v) =
p [&++p I

~* +,~ I
+ 1,=p & (+ p=p I

~'.
I
e+p &+ c.c,]

+p Z &+'p
I *-+.~ I

+ p & &+ p I
~*-

I
+'p

&I
—

I
+Z &+ ~=p I -+.~ I

+"p & &+"p I
~*-

I
+ p=p &I

—
I

pv-'() p) =k 143 pv-'p ~pl

) (1—v)N ) (1—v)N

+l 2 &+= I -+"1 I++p&&+'p
I

*- I+=& —
I

+2&+'-
I

'-+,~ I+-p= &&+-p=p I;I+'-&I —
I

Wp=p) ~pl

/g )(1—v)N g )vN

+ p Z &+- I ~'~.~ I +p&&+p I
~'-

I +-&I —I

crap, (Jc=p) ( ~pi ~pJ
P~o (&=o)

We have explicitly recognized the fact that operators
like 0 ~„~and 0- only connect states of odd numbers
of fermions with states of even numbers.

We now wish to show that, when 3I, Ã~~, g~N (p, , v)
is approximated with arbitrary accuracy by the first
bracket on the right. It may be remarked that this
first bracket can be simplified because

&+ p=p I ~
I
++p) = (+-p=p

I
~* i,~ I

+"p
&

by translational invariance, so the two terms within the
bracket are the same.

Using Schwarz's inequality, the first term in the
second bracket is bounded in absolute value by

exp (—»&p--) [ g I
&++p

I
~*~.~ I

~ p) I'g'
P~(a=p)

&&[ 2 I 8-pl *.I+'o&I'3:. (5.24)
p~(1 =o)

'~ Strictly speaking (5.15) is &P=lim~, ~ (3f&) 'Z~g~~(p, p)
with x and y ranging over a quasicontinuous mesh. The replace-
ment of the Riemann sum of the function g~N (p,,~) by the Riemann
integral of the limit function g (p,,v) can be justi6ed because of the
exponentially rapid convergence of the g~N (p, ,v) to g (p,v) .

If we include the term with P= (k=0) in the sums and
use the fact that (o* )'=1, etc. this is in turn bounded

by exp (—vcVp;„). Similar arguments hold for the
other term in the second bracket and both terms in
the third bracket. The fourth bracket is similarly
bounded, in absolute value, by 2~ exp (—Sp; ).Thus

I g~N(~, v) —
I

&++p
I
~'-

I + ~=p &~ I'I &exp (—v&p--)

+exp [—(1—v)cVp; j+2~ exp (—Xp;„). (5.25)

And so, taking the limit S, M—+~,

g(p, v)—= lim
I

&4+p I
a' IO-),=p&pI I'—=g, v)0.

M, N~cc

(5.26)

A similar argument with the transfer matrix going
from column to column shows that g (p, , v) is a constant,
but restricted only by the requirement p&0. Thus
(5.26) holds on both the p and v axes as well as in

the quadrant p, &0, v&0 and

I R. I
= l11n

I &~p I
(r' I+ p p))(r I. (5 =2&)
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It is this form of (5.15), essentially, from which Yang
computed the spontaneous magnetization.

Having proved that the long long-range order is a
constant, independent of direction of separation of the
two sites, we now observe that this is also true for the
short long-range order and in fact the two are the same.
We have only to point out that in deriving (5.26) we
required only that vS—+~, i.e., that e' —n—+~, and
not that v remain fixed. Thus f(n) =—g for all n, and we
have a second equivalent form for the spontaneous
magnetization obtained from the short long-range
order in a row, the form used by MPW:

9)t,= I lim lim (o*„~* &or~)l
m~—marco M,N~

(1—tallh' Ei) '(1—tanh' Es) ' '"'
1—

16 tanh' Eg tanh' E . (5.28)

We remark that for T) T, there is only one eigen-
vector of maximum eigenvalue. There is therefore no
term corresponding to the first bracket in (5.23); and
so, g(x, y)~f(a)—=0, and K,=O.

V(H) = Vs*'VVp', (5.29)

C. Yang's Approach to Spontaneous Magnetization

We now consider Yang's derivation of the spontane-
ous magnetization to make explicit the implicit assump-
tion that Sp=O(1/M). Yang observed that if the
spontaneous magnetization is to be nonvanishing, the
partition function and therefore the largest eigenvalue
of the transfer matrix must have a first-order contribu-
tion from Sp or II. Let us then Grst derive the expansion
of the transfer matrix to this order. Recalling that Yq
and V3 commute, we can write

where by V we mean the transfer matrix in the absence
of a magnetic Geld. Expanding Y3&, ,

Us'*= 1+-,'-»go + ~ ~ (5.30)

we obtain a formal expansion for V(H):

V(H) = V+-,'HI +a, .VI+ ~ . (5.31)

We can already see that because go.* is an operator
whose eigenvalues are of order M, the second term is
of order HM times the first term. For H larger than
O(1/M) it would be essential to include terms of all
orders and hope that the correction to the eigenvalue
of V could in some sense be exponentiated (as is almost
always the case in many-body theory), i.e., we would
expect A.p(H) to be of the form

hp(H) =Ap exp (bi I H
I
+bs»'+ ~ )

where bi, b2, etc. are constants of order M. Since we
must content ourselves with the expansion (5.31), we
assume that H=e/cV and that cz ultimately tends to
zero. At best only bi is then obtained.

We now observe that the diagonal matrix elements
of the term in (5.31) that is linear in H, for the eigen-
vectors of V, all vanish. Thus for T) T„when the
largest eigenvector is nondegenerate, there is no
modification of Ao or the free energy to Grst order in
H' and so K,=O. Below the transition temperature,
when the largest eigenvectors are exponentially de-
generate, in the limit M—+~, there is a first-order
eQect obtained by diagonalizing V(H) between the
two maximum eigenvectors. The matrix of V(H), in
this limit is

Ap

V(H)=l
(& H(+"

I Z *-
I
+-.=o&*

Ap»(@+p
I go'„Ie—,

p&)

Ao

(5.32)

and the maximum eigenvalue
C belonging to the vector 2~(%'+p+4 i=p) g is

~.(»)=~.(1+ IH II (~" I
Z-.- I~-.=.& I)

=~«xp (I H II (~p I
Z~'- I ~~=p& I),

from which one derives essentially Yang's expression" for the spontaneous magnetization,

(5.33)

~.= »m
I (+ o I

~ 'Qp'
I
+ ~=o&sr I.

(5.34)

"Yang's expression actually reduces to

&oexp (( F1
] (

(+p'
f
Zo'

f @o p')
l cosh 2'*),

where Co' and VI, o' are vectors defined for the transfer matrix V'= VI&VIVI& rather than for V= V2&VIV2& as presented here.
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For cyclic boundary conditions in the rows, the matrix
element (4+o

~

o.* (O' I o) is strictly independent of
are so that (5.34) reduces to

(5.34')

agreeing with (5.27) o4

It is an easy matter to express o. r= Ctt+Ct in terms
of the $~'s and $P's or in terms of the $q's and /st's.
The difhculty in evaluating (0 p

~

0' t
~
4 r=p) is that

4'+o is the Fermi vacuum for the $~ particles, while
4' s=o is obtained from the Fermi vacuum for the $s
particles. The two vacuum states 0+0 and Mg are not
simply related. This difhculty can be circumvented if
one introduces free-end boundary conditions. There is
then only one Fermi vacuum, and the second-degenerate
state is a simple single-excitation state from that
vacuum. Now, however, the translational degeneracy
is lost and one must consider the matrix element of
0', nz&)1, not just of 0- &.

oo The condition that H =ojM, a~0, which is required for the
exponentiation of (5.33a) to obtain (5.33b), seems unnecessarily
restrictive. One wonders if higher terms in the series (5.33a)
confirm the exponential form (5.33b). For example, to calculate
the H' term in Ao(H), we observe that the H' term in the formal
expansion (5.3l) is

xxHo Z (o' Vo~~.+o {a' (r*; V}).
tfsesl

The Ho term in the expansion of Jto(H) has two contributions,
the diagonal contribution of this second-order term from the
eigenvector 2 &(4'+o+f o o), and the second-order perturbation
theoretic contribution from xoH{xo~~, V}.Straightforward calcu-
lation gives, to order H'

&o(H) =&ol I+IH I&g+ol&~*~ lg' o o&

+oH'(g'+ol & ~* ~* ~ le+o)
ffsml

+HoX'1ta(3. o
—&a) 'I (2 f(g'+o++ o o) I

&~'~
I g )I'0

where we have used the facts that (4'+ol o' I+ o o) is real and
that (4'+ol Zo' n to. IN+o)= Q o ol Zo' o' IR o o). In the last
term, the set of {4' } includes all allowable eigenvectors of V but
the two maximum ones.

We observe first that, because of (5.26), the first three terms are,
to within corrections terms of order II'M, precisely what one would
obtain if Ao(H) had the form exp (I H

I (++ol &&V~ If o-o)). For
the last term, because h. &Ao, one can obtain the upper bound

(Ao/a, —I)-~Ho{ (e+ol (~o*~)o le+o& —
I &e+o lo'~l +-o o& I'}

=0 (Ho3II) .

Thus the asymptotic equality (5.26) is sufficient to verify the
exponential form of ho (H) up to second order in H when M—& ~.
More detailed analysis shows that this holds for terms of higher
order in H until terms of order H0(~). This is precisely analogous
to the problem of proving the sufhcient sharpness of p~~(gg)
through analysis of its very high moments.

VI. SUMMARY

In this paper we have tried to reduce the algebraic
solution of the Ising model on a square lattice to a
sequence of simple steps, so that the whole solution,
originally considered so complex and obscure, would
be transparent and not require knowledge of special
algebraic techniques. It might be useful in conclusion
to summarize these steps.

First we introduced the transfer matrix, which relates
the density operator of the last row in an E-row lattice
to that for an (X—1)-row lattice and expressed this
matrix in terms of the spin operators for the last row.
This step is not limited to the two-dimensional problem
(for three dimensions, the "last row" becomes the last
plane).

Second, we transformed the spin operators in that
row to fermion annihilation and creation operators.
Such a transformation is always possible when the
spins can be numbered in some order, although the
transformed operators are convenient when only
nearest neighbors in the ordering interact (thus limiting
the method to two dimensions) and when the operators
of interest are all bilinear in spin raising and lower
operators (thus limiting the method to vanishing
magnetic field) .

Third, we introduced running-wave fermion opera-
tors, made possible by cyclic boundary conditions. The
transfer operator is then a product of commuting
operators each of which involves simple quadratic
forms of the paired type, similar to what occurs in the
BCS theory of superconductivity.

Fourth, we diagonalized the transfer matrix by a
Bogolubov —Valatin transformation. The complications
introduced by using periodic boundary conditions were
not fundamental and only required more careful
bookkeeping.

Fifth, we used Wick's theorem to show that the
correlation function between two spins in the same row
is a determinant, and we showed the relation to the
results previously obtained in the literature.

Finally, we have analyzed the problem of spontane-
ous magnetization, pointing out the discrepancies
between the correct definition of spontaneous mag-
netization and those previously used. In the course of
this analysis we have shown rigorously that what we
have called the long and short long-range orders are
equal and independent of direction.
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