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1. Introduction

The purpose of this paper is to discuss recent work on the renormalization group and its
applications to critical phenomena and field theory. These ideas are illustrated using the other
recent idea of defining critical phenomena and field theory in a space of dimension 4 —€ (space-
time dimension 4 —¢ for field theory) and expanding in powers of €. The emphasis is on critical
phenomena; basic ideas will be stressed rather than special results. The presentation is incomplete;
this review is not a substitute for current literature. The first section is general and philosophical.
Most of the subsequent sections are more pragmatic, being concerned with specific problems and
calculations.

Associated with this section there is a list of recent references on the renormalization group
and the € expansion.

For a precise list of topics discussed in this paper, see the contents.

1.1. The renormalization group and coherence problems in physics

In this section a philosophical discussion of the renormalization group will be given. (One
should reread this introduction after studying the rest of the paper.) Toward the end of the first
section we begin the review of critical phenomena.

The renormalization group is a method for dealing with some of the most difficult problems
of physics. These problems include relativistic quantum field theory, critical phenomena, the
Kondo effect [e.g. 1—7] and others. These problems are all characterized by involving a large
number of degrees of freedom, in an essential way.

Most of the problems one deals with in physics involve a very large number of degrees of
freedom. For example, a crystal, liquid, or gas in macroscopic quantities involves more than 1023
electrons, and each coordinate of each electron is a degree of freedom.

In contrast, most theoretical methods work only when one has only one independent variable,
i.e. only one degree of freedom. For example, consider the Schrodinger equation for a wave
function Y (x, y, z) for one electron. It is infinitely easier to calculate { if one can separate
variables in the Schrodinger equation (e.g., write ¢ = ¥, (¥)¥,(0)y3(¢) in spherical polar
coordinates). It is obviously hopeless to compute a wave function for 10?3 electrons without
extraordinary simplifications, justified or otherwise.

Under normal circumstances the 1023 or so degrees of freedom can be reduced enormously.
The intensive or extensive character of observables (energy is extensive, density is intensive)
allows one to reconstruct the properties of a macroscopic system given only a microscopic sample
of it. Thus a liquid of only 1000 atoms, say, would probably have approximately the same energy
per unit volume and density as the same liquid (at the same temperature and pressure) with 1023
atoms.

How far can one reduce the size of a gas, say, without qualitatively changing its properties?
The minimum size one can reach without change is called the correlation length. The correlation
length § depends on the state of the system. For a gas £ depends on pressure and temperature. In
favorable circumstances £ is only one or two atomic spacings. When £ is this small there exist a
variety of methods for calculating properties of the system: virial expansions, perturbation
expansions, Hartree-Fock methods, etc. These methods involve a variety of approximations; but
they have one feature in common. They all assume that the properties of matter in bulk can be
related to the properties of small clusters of atoms. They involve further assumptions because
even a cluster of only three atoms involves too many degrees of freedom to be soluble without
considerable simplification.
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In special cases the correlation length is much larger than the atomic spacing. The critical point
marking the onset of a phase transition is a prime example. Liquid-gas transitions, ferromagnetic
transitions, order-disorder transitions in alloys, etc., all exhibit critical points for special values of
the thermodynamic variables. (The liquid-gas critical point occurs for critical values T, and P, of
temperature and pressure.) Precisely at the critical point, § is infinite; near the critical point £ is
large.

There are a class of problems, including critical phenomena, which are characterized by having
very many degrees of freedom in a region the size of a correlation length. “Very many’ means
not just 3 or 4, but hundreds or millions if not an infinite number. Other problems of this type
besides critical phenomena are the Kondo problem (a magnetic impurity in a metal), the binding
of large molecules, and the entire subject of relativistic quantum field theory. In the case of a
quantum field, say p(x), the field ¢ at each point x is a separate degree of freedom, so any region
of finite size contains an infinite number of degrees of freedom. The correlation length of a
quantum field is usually the Compton wavelength of the lowest mass particle. In the case of
quantum electrodynamics it is the electron Compton wavelength (107! cm) rather than the
photon Compton wavelength (o) which acts as the correlation length in practice. One can
relatively easily relate quantum electrodynamics in a box of size >107!! ¢m to quantum electro-
dynamics in all space. Boxes of size € 107!! cm cause gross distortions of the interactions of
electrons and photons.

The problems listed above are all noted for their intransigence. The binding of molecules is
hardly better understood today than it was in 1932. There has been fitful progress in critical
phenomena over the last 70 years. There has been sensational progress in calculating quantum
electrodynamics, but very little progress in understanding it; and strong interactions are neither
calculable nor understood. The Kondo problem has only recently been studied, and may be closer
to solution [2, 3, 7].

Studies of renormalization in quantum field theory and critical phenomena in statistical
mechanics both suggest that the behavior of systems with many degrees of freedom within a
correlation length is qualitatively different from those with only a few degrees of freedom in a
correlation length. The systems we are interested in are usually defined by means of a
Hamiltonian, and one would normally have expected that the behavior of the system is deter-
mined mainly by the type of interactions present in the Hamiltonian and the strengths of the
corresponding coupling constants. This is certainly the case when £ is small. However, in the
problems discussed here, where many degrees of freedom are behaving cooperatively, it appears
that the behavior of the system is determined primarily by the fact that there is cooperative
behavior, plus the nature of the degrees of freedom themselves. The interaction Hamiltonian
plays only a secondary role. Thus, in critical phenomena there has developed the notion of
universality, i.e. that all interaction Hamiltonians show the same critical behavior. The idea of
universality originates in the “law of corresponding states”, which is the hypothesis that all fluids
and gases have the same equation of state apart from a renormalization of length and energy scales.
For a comparatively recent reference on this law see Guggenheim [8]. Recently the idea of
universality has been formulated more generally to relate critical behavior in different systems
with arbitrary interactions. See for example Kadanoff {9]. Universality will be discussed further
below and in section 12.

The renormalization group approach has two objectives. The first is the practical one of
simplifying the task of solving systems with many degrees of freedom contained within a correla-
tion length. The basic idea is the same as in hydrodynamics. In hydrodynamics one introduces
new variables such as the density p(x) which represents an average over the original microscopic
degrees of freedom. All microscopic fluctuations are eliminated in the hydrodynamic equations;
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p(x) is supposed to show only macroscopic fluctuations. What this means in effect is that the
hydrodynamic degrees of freedom are the values of p(x) at macroscopically separated points.
Thus, there are far fewer hydrodynamic degrees of freedom per unit volume than original micro-
scopic degrees of freedom per unit volume.

The renormalization group approach is similar to the hydrodynamic approach in that again the
original microscopic degrees of freedom are replaced by a smaller set of effective degrees of
freedom. This is done in steps; in each step the linear density of degrees of freedom is reduced by
a factor 2.

Reducing the “density of degrees of freedom” can be realized in several ways. Suppose the
original system was a system of spins with spacing Ly. The new effective degrees of freedom might
be spins with spacing 2L,. Alternatively the new degrees of freedom might be a magnetization
density M(x) depending on a continuous variable x (just as hydrodynamics replaces discrete atoms
by a density p(x)). Then to limit the degrees of freedom one imposes the restriction that M(x)
only contains fluctuations with wavelengths greater than 2L,. These ideas will be formulated
more precisely in later sections of this review. (The factor of 2 is arbitrary. In particular, it is
often useful to change the density of degrees of freedom only infinitesimally instead of by a
factor 2. See later sections.)

This reduction in the degrees of freedom is carried out repeatedly. To start with, the spacing
of degrees of freedom is Ly ; after 1 step the spacing is 2L, after 2 steps the spacing is 4L, etc.
One proceeds with further steps until the separation of effective degrees of freedom is of order
the correlation length £. In each step one has to construct an effective interaction for the effective
degrees of freedom, just as in hydrodynamics one has to construct the hydrodynamic equations
for p(x). The simplification of the renormalization group lies in the hope that these effective
interactions ¥, #,, etc. are local interactions, i.e. the interactions should couple directly only
nearby degrees of freedom. This of course assumes that the initial interaction was local, but this
is true for the problems of interest here. Thus we assume that the range of interaction in the
initial interaction is of order L, even when &£ > L. The hope is that the range of interaction in
H, is of order 2L, the range of interaction in ¥, is of order 4L, etc. The alternative is that the
range of interaction is £ even for #(;, which would be disastrous for the renormalization group
approach. This disaster is avoided in the examples that have been worked out so far, but may be a
problem in other cases.

If it is true that the range of interaction in #(, is only of order 2L, then one can imagine
(again by analogy to hydrodynamics) that the coupling constants in J(, can be determined by
studying the behaviour of the system confined to a region of size (of order) 2L, ; i.e. one does
not have to discuss regions of size £. Thus one no longer has a huge number of degrees of freedom
to worry about. To determine the coupling constants in #, requires a larger region of size 4L,.
However, the idea here is to determine J(, starting from ¥, whose degrees of freedom are spaced
by 2L,, instead of the original interaction #(, with spacing L,. Then one still has a limited
number of degrees of freedom to consider. In the same way one constructs /5 from #(,, #,4 from
¥ 5, etc., until one obtains the 3, for which 2"L, ~ £. At this stage one has only a few degrees of
freedom per correlation length and the problem can hopefully be solved by other methods. In
general, when calculating #(; one has to consider a region of size 2’L0, but one starts from ;.
whose degrees of freedom have spacing 2/~ 1L0 . Thus for any / one can consider a region contain-
ing only a few effective degrees of freedom.

Unfortunately, the general renormalization group techniques do not reduce the problem to
1 degree of freedom. One can easily imagine that one needs to consider 60 or more effective
degrees of freedom when determining J; from ;- ;. Suppose for example that the effective
degrees of freedom in #(;-, are discrete spins, and that one has to discuss a three-dimensional
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cube of width 4 spins: this cube will contain 64 spins. This is not very practical. One must
simplify the calculation further so that ¥(; can be computed from ¥(;_, using only one degree of
freedom. The practical applications of the renormalization group described in later lectures
involve either special circumstances (the case d = 4 — € with small €) or crude approximations
(the “approximate recursion formula™) such that only one degree of freedom is needed for the
calculation of ¥(;. (See, however, the supplemental list of references.)

The second aim of the renormalization group approach is to explain how the qualitative features
of cooperative behavior arise. In the renormalization group framework, these qualitative features
result from the iterative character of the renormalization group. Namely, there is a transformation
7 which converts ¥, to ¥, ¥, to ¥(,, etc. The transformation is the same whether one is con-
structing €, from ¥, or ¥, from ¥(,; in each case one is thinning the degrees of freedom by a
factor 2. The only difference is in the lengthscale (L, versus 2L,) which is easily transformed
away. So one has a transformation 7 which is to be applied repeatedly:

T(Ho) =y, T(4,) = ¥y, T(3(,) =33 etc. (L.1)

This transformation is to be iterated »n times where 2" L, is of order £&. When § is large, the number
of iterations is large. .

When one has a transformation 7 which is iterated many times, the simplest result we can
obtain is that the sequence J; approaches a fixed point of 7, namely an interaction (* satisfying

ACHC%) = 3%, (1.2)

This is what will happen in the examples discussed later in this review.

A fixed point of a transformation is a property of the transformation 7 itself. That is, to find
possible fixed point Hamiltonians #* one must solve the fixed point equation (1.2). These
equations make no reference to the choice of initial Hamiltonian 3(,.

The possible types of cooperative behavior, in the renormalization group picture, are deter-
mined by the possible fixed points H* of 7. Suppose for example that there are three fixed points
%, 3§, and HE. Then one would have three possible forms of cooperative behavior. If a particu-
lar system has an initial interaction #,, one has to construct the sequence ¥ ,, ¥(,, etc. in order to
find out which of 3%, 5§, or ¢ gives the limit of the sequence. If % is the limit of the
sequence, then the cooperative behavior resulting from ¥, will be the cooperative behavior
determined by #(}. In this example the set of all possible initial interactions o would divide into
three subsets (called “domains”), one for each fixed point. Universality would now hold separately
for each domain. See section 12 for further discussion.

This is how one derives a form of universality in the renormalization group picture. It is not so
bold as previous formulations [9]. Experience with soluble examples of the renormalization group
transformation for critical phenomena shows that it generally has a number of fixed points, so one
has to define domains of initial Hamiltonians associated with each fixed point, and only within a
given domain is the critical behavior independent of the initial interaction.

There is no a priori requirement that the sequence #; approach a fixed point for! — <. In
principle the sequence for large / could show limit cycle, ergodic or turbulent behavior; in such.
cases it would be difficult to do much calculation. See [10] for an illustration of ergodic and
turbulent behavior. But even if the sequence #(; does not approach a fixed point, it is unlikely
that ¥, for large » is a smooth function of the parameters in #,. The trouble is that small changes
in the parameters in ¥, tend to be amplified or deamplified by the transformation 7, and when 7
is iterated many times these amplification or deamplification factors become very large (one
would guess of ordery/7 from random walk arguments). Thus if 14 is a coupling constant in ¥(,
one would expect large ranges of 4y which are deamplified (¥C,, depends very little on ug)
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separated by small ranges of u, which are amplified (¥(,, changes very rapidly with u,). In the case
that all sequences approach fixed points, the ranges of u, for which amplification occurs are those
values of u, for which #(, is near the boundary between two domains, while deamplification
occurs when ¥, is well inside a particular domain.

In summary, the basic ideas of the renormalization group are, first, to generate a sequence of
effective local interactions J(;. That is, if the spacing of degrees of freedom in ¥; is a; then the
interactions should have range a; not £; and by choosing a;,, = 2a; one should be able to construct
¥y, from H; considering regions of size about a;,, rather than §. Secondly, the existence of a
transformation 7 which is iterated repeatedly to construct #; from #(, suggests that the nature of
#(; for large [ will be largely or wholly determined by 7 itself rather than ¥(,, thereby leading to at
least a limited form of universality.

To conclude this introduction we outline briefly the history of the renormalization group
method. This discussion is not complete and probably not very accurate. Landau [11] proposed
a hydrodynamic approach to critical phenomena in the late 1930’s. His specific theory gave the
same results as earlier mean field theory, which is experimentally false. However, the renormaliza-
tion group approach is best seen as a more sophisticated realization of Landau’s ideas.

The specific ideas of the renormalization group approach appeared in two papers of the early
1950’s, in connection with quantum field theory. A formulation of the renormalization group
transformation 7 was given by Stueckelberg and Petermann [12]}. Gell-Mann and Low [13],in a
remarkable paper, discussed the idea of a fixed point of the transformation and some of its
implications: they showed that a unique value of the bare charge e, in quantum electrodynamics
would correspond to all (sufficiently small) values of the renormalized charge e. This is the
amplification effect discussed earlier. In the limit of infinite cutoff (i.e. in the limit of infinitesimal
spacing of the original degrees of freedom) 7 is iterated an infinite number of times. Thus one can
infinite amplification, e.g. a continuous range of values of e corresponding to one value of e,. The
recipes for renormalization group calculations were reviewed in Bogoliubov and Shirkov [14].

The early work on the renormalization group had two defects. It had no calculable experimental
consequences, so no one had to take it seriously. Secondly, the intuitive ideas were encased in a
thick shell of formalism; it has required many years to peel off the shell.

In the 1960’s an extraordinary paper by Kadanoff [15] on critical phenomena contained an
intuitive discussion of the idea of thinning the degrees of freedom. Kadanoff assumed that one
could discuss blocks of spins in a ferromagnet as if they were single effective spins with very
simple interactions. Kadanoff showed that this assumption implied a set of “scaling laws” relating
critical exponents which had been postulated earlier by Widom and others (see [ 16] for
references). Kadanoff did not have a shred of justification for his assumption; the importance of
his work was that it provided a simple but ideal picture of what an effective degree of freedom
would be and how it would interact. This picture is surely unrealizable in practice. What one
does is try to come as close as one can to this picture. One tries to define effective degrees of
freedom which are roughly describable as block spins, and interactions which have a simple form
(not necessarily Ising-like), at least approximately. In summary, Kadanoff has defined a much
more profitable goal to work towards than the elaborate formalisms of the earlier work.

The differential equations of the renormalization group resurfaced in the Kondo problem in the
work of Anderson et al. and others [2—7]. Anderson [4] was the first to derive these equations
explicitly using the idea of reducing the number of degrees of freedom. The previous field theoretic
work had a much less transparent justification.

Until recently all formulations of the renormalization group involved a transformation 7 acting
on a very restricted space of interactions. Gell-Mann and Low considered the standard electro-
dynamic interaction with the charge e, as the only free parameter. Kadanoff allowed only
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nearest neighbor Ising-type interactions. A heavy price is paid for this restriction: one can only
define 7 when the solution of the problem is known. For example, Gell-Mann and Low define 7
in terms of the exact electron propagator, which is not known until electrodynamics is solved.
Thus there is only a limited possibility of using the renormalization group to help in solving the
theory. A study of the fixed source model of the nucleon, in simplified form, showed that this
problem disappears if one isiwilling to let #; contain all possible interactions, not just one or two
[17]. It is then relatively easy to construct examples of the transformation 7 without solving the
theory (see later lectures). Now one pays a different price: one cannot keep track of all possible
interactions at once because there are too many of them. So one has to have only a few dominant
interactions if the renormalization group approach is to be practical. There can be many more
interactions with small coupling constants, as long as these can be handled by perturbation
methods. This was precisely the situation in the fixed source model. It is also true in the examples
discussed later in this review, but it is not at all certain to be true in general.

Current work on the renormalization group will be summarized below.

There have been other ideas for dealing with problems such as critical phenomena. We mention
specifically the Migdal-Polyakov bootstrap approach to critical phenomena and field theory
[18--26] and the Johnson-Baker-Willey formulation of electrodynamics [27—-29] because these
ideas are sometimes confused with the renormalization group approach. There is no transformation
like 7 in either the Migdal-Polyakov or Johnson-Baker-Willey theories; these authors make no
attempt to thin the degrees of freedom. So their ideas cannot be classified as renormalization
group methods. In place of consciously reducing the number of degrees of freedom, these authors
substitute a prayer that an infinite sum of graphs can be replaced by a calculable subset. See
below for further comments.

Another recent development is the Callan-Symanzik equations [30, 31]. Closely related to the
original Gell-Mann—Low formulation of the renormalization group, these equations are proving to
be valuable tools for analyzing the short distance behavior of Feynman graphs [e.g. 32]. At
present the Callan-Symanzik equations are too formal to be practical outside of perturbation
theory. They will remain so unless some intuition can be added the way Kadanoff added an
intuitive picture to the renormalization group approach.

1.2. Current references

Current literature on the renormalization group will now be classified, briefly. See also the
supplemental list at the end of this review. First, papers on critical phenomena will be listed. The
approximate renormalization group recursion formula is derived in [33]. Numerical solutions
of the recursion formula for the Ising case are in [33]. Grover, Kadanoff, and Wegner solved the
Heisenberg case numerically [34]. Grover solved the X—Y model numerically [35]. Baker [36]
and Dyson [37] have described ‘“‘hierarchical” models for which the recursion formula is exact.
Golner [38] has proposed a form of the recursion formula which gives a non-zero value of 1 (n
is defined in section 2). Golner [39] has solved the recursion formula for an example with three-
fold symmetry. The € expansion about 4 dimensions was developed by Fisher and Wilson [40].
A calculation of the scaling properties of all perturbations about the critical point, within the
€ expansion, is given by Wegner [41]; Fisher and Pfeuty [42] investigate slightly anisotropic
Heisenberg models. The recursion formula has been applied to tricritical points (such as
3He—*He mixtures) by Riedel and Wegner [43]. The methods of ref. [33] have been applied to
the problem of phase separation by Langer and Bar-on [44].

The Feynman graph method for calculating critical exponents in powers of € (section 8) was
developed in [45]. It was applied to the “‘excluded volume’ problem by De Gennes [46].
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Nickel [47] has calculated the exponent v to order €. The € expansion for the equation of state
near the critical point has been obtained by Brézin, Wallace and Wilson [48], [49]. The charged
and neutral Bose gas is discussed by Ma [50]. Exponents in the presence of long range forces are
computed by Suzuki [51, 52] and Fisher, Ma, and Nickel {53].

The Gell-Mann—Low formulation of the renormalization group was used by Larkin and
Khmel’nitskii [54] to discuss the logarithmic behavior of critical phenomena in four dimensions
(e = 0) and uniaxial ferroelectrics in three dimensions. De Pasquale, Di Castro and Jona-Lasinio
[55—57] and Migdal [58] have discussed qualitative implications for critical phenomena of the
Gell-Mann—Low formulation. Di Castro [59] has used the Gell-Mann—Low theory to confirm
some results of [45]. Wegner [60] has given an extensive discussion of all kinds of perturbations
about the critical point with emphasis on corrections to the scaling laws, using the modern
formulation (see also section 12). Several questions have been discussed by Hubbard [61]; the
problem of liquids is discussed by Hubbard and Schofield [62]. The Gaussian model with long
range forces is discussed by Niemeijer and Van Leeuwen [63].

The work of Dyson [37]}, Larkin and Khmel’nitskii {54] and Di Castro and Jona-Lasinio
[55—57] preceded the work described in this report. For a good survey of critical phenomena
just prior to the new developments, see the entire volume of ref. [56]. The new work is
summarized briefly in [64].

Many of the references listed above report specific applications of the renormalization group
approach which are omitted from this review.

There is another (earlier, but incomplete) paper (set of lecture notes) on the renormalization
group [65]. They concern the ideas of the modem renormalization group approach with less
emphasis on calculation than the present report.

The close mathematical analogy between critical phenomena and quantum field theory has
been emphasized by Gribov and Migdal [66, 67] and Polyakov [68—70] in terms of Feynman
diagrams; Moore [71] compares the Feynman path integral to the partition function; Suri [72]
makes the connection using the transfer matrix formalism of statistical mechanics (see
section 10).

For a review of work on the renormalization group in quantum field theory using the
Gell-Mann—Low formulation see [73]. For a field theoretic formulation of the approximate
recursion formula, see [ 74]. See likewise Golner [75].

The idea of a noninteger dimension d and an expansion about d = 4 is a useful theoretical device
without physical significance: the physics is only in integer dimension d. Nonintegral dimensions
will be introduced by analytic continuation in renormalization group equations (section 4) or
Feynman graphs (section 8). The idea of nonintegral dimensions in statistical mechanics is not
new: see [76] for example. More recently, Widom has studied 1 + € dimensions [77]. Noninteger
d has been used recently in field theory to regularize Feynman graphs [78—80] ; a thorough
discussion is given in ‘t Hooft and Veltman [78]. Quantum field theory for noninteger d is
discussed in [81] where the € expansion is used to compute anomalous dimensions (see also
section 9).

Another expansion technique in both critical phenomena and field theory is the 1/N expansion
where N is the number of internal components of a spin (critical phenomena) or the number of
internal components of a quantum field. Stanley [82] discovered that the limit N = oo for a spin
system reduces to the soluble spherical model of Berlin and Kac [83]. This was discussed further
by Kac and Thomson [84]. Techniques for expanding exponents in 1/N were discovered by Abe
[85] and Wilson [81]. They have been exploited by Abe and Hikami [86], [87], Suzuki [51},
[52], Ma [50], [88], Fisheret al. [53], and Ferrell and Scalapino [89]. Brézin and Wallace [90]
and Suzuki [52] have computed the equation of state using this expansion. The expansion is
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probably not very useful for N = 1 to 3, the cases of most physical interest. This is because the €
expansion (valid for any N) has denominators of the form N + 8 (see section 8) suggesting the
1/N expansion is valid only for N > 8. However it is instructive to study models with large NV as
models in their own right. The application of the 1/N expansion to field theories in less than four
space-time dimension is discussed in [81].

There is a special situation where the problem of a large number of degrees of freedom within
a correlation length is trivial, namely free field theories (quantum field theory) or the Gaussian
model in statistical mechanics (see section 3). These theories are trivial because the interaction
can be diagonalized in momentum space. There exist a variety of graphical methods for treating
small perturbations about these trivial theories. The € expansion makes it possible to do successful
calculations in critical phenomena by perturbation methods. There are now a bewildering variety
of methods for setting up the € expansion: besides the methods discussed in this paper, De Castro
[59] has used the old Gell-Mann—Low methods and Mack {26] has used the Migdal—Polyakov
approach. The new renormalization group method is emphasized in this paper because of its
potential for handling nonperturbative problems (see refs. [33, 60] and sections 12 and 13). By
comparison, for problems which cannot be reduced to a few diagrams, it is hopeless to calculate
anything using the Gell-Mann—Low theory. Even for questions of principle the Gell-Mann—Low
theory is not satisfactory because it involves assumptions which are technical and not physically
motivated [73]. It is hard to believe these assumptions are always valid, although they appear to
be true order by order in a diagrammatic expansion [e.g. 73]. The Migdal—Polyakov bootstrap
(with conformal invariance assumed) is more interesting although not very practical unless only a
few diagrams are important. For field theorists an interesting and unique feature of the Migdal—
Polyakov bootstrap is Polyakov’s “‘stream unitarity” [91].

The next seven sections are concemed with critical phenomena. This is partly because this is
the most successful application of the renormalization group approach. However, critical
phenomena provides the simplest and clearest example of the problem of many degrees of
freedom within a correlation length. The experiments are precise and relatively unambiguous and
test the fundamental aspects of the theory. The simplest models like the Ising model have no
complications other than the basic problem of the large correlation length. The study of critical
phenomena gives one an overview of the problem of many degrees of freedom within a correlation
length that cannot be obtained any other way and is essential to understand the field theoretical
applications discussed in sections 9—13.

There are excellent reviews of experiment and previous theory of critical phenomena (see
section 2); this report will be devoted to explaining the renormalization group approach. Enough
background will be supplied so one can read this review without previous background in critical
phenomena, but the relation of the renormalization group to experiment and prior theory will
not be discussed in detail.

Sections 11, 12, and 13 are of importance to statistical mechanics; but the main interest from
section 9 on is quantum field theory. They depend heavily on the previous sections. They are part
of a series of papers [92, 73] explaining the renormalization group approach as an alternative to
canonical field theory. The ultimate aim is to produce a field theory of strong interactions, but
breakthroughs are still required both in fundamental theory and techniques of calculation before
the aim can be realized. Meanwhile, the study of the renormalization group approach has pro-
vided, as a byproduct, useful ideas which have been incorporated into more phenomenological
approaches to strong interactions [92, 93]. Particle physicists who have studied the ideas of this
paper find that it takes considerable effort over a period of time to understand them; they
provide a stimulating point of view on the problems of quantum field theory; and the outlook
for the future of these ideas is at present uncertain. See section 14.
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1.3. Elementary facts about the Ising model

Let us begin by discussing the elementary features of the Ising model. (For the history of the
Ising model, see [94].) The model has served in the past as a description of ferromagnetism but
probably also constitutes a model of relativistic field theory. We imagine a cubic lattice of points,
n =(nq, n,, n3) in three dimensions, say, and attach to each lattice point a spin variable s,. We
suppose that s, takes on only the discrete values + 1, so that it is not treated as a full-fledged
3-dimensional quantum mechanical spin variable. If the lattice consists of V sites, the system’
clearly possesses 2%V possible states. Each of these spin configurations will have a particular
energy. If only nearest neighbor spin-spin interactions are allowed the Hamiltonian is,

H==TD D susnsi (1.3)
n {

where {i} are the unit vectors for each axis on the lattice (fig. 1.1). Furthermore, if the lattice is

° ° . . .
. . ® . .
A
WA
2
. . oe—S»0 .
. . . . °

Fig. 1.1. A two-dimensional lattice,
with unit vectors for each axis.

emersed in an external magnetic field B, the Hamiltonian acquires an additional term,

H=-J2, D Sasnsi * uB 2, sn (1.4)

where u is a certain gyromagnetic ratio. The thermodynamics of the system can be obtained from
the partition function

Z= Z e HIKT (1.5)

{con"igurations}

where the sum runs over all possible spin configurations of the lattice, T is the temperature, and &
is Boltzmann’s constant. It is also convenient to introduce a free energy F,

F=—kTInZ (1.6)
Consider also the magnetization per lattice site,

_ 1 (us, exp(—H/KT)
M "N ; exp(—H/KT))

(1.7)

where {. . .) stands for a sum over configurations. M can be written

M:—]%E)EB(EI;) (1.8)
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The Ising model, in 2 or more dimensions, can display spontaneous magnetization. Let the
lattice be in an external magnetic field B. If M remains different from zero when the external
field is removed, there is spontaneous magnetization. For example, this occurs if at zero tempera-
ture the state of lowest energy of the system has all the spins aligned. We can expect M = 1 at zero
temperature but M = 0 at infinite temperature, where thermal energy overwhelms the spin-spin
interaction. Only for temperatures 7 less than a critical value 7, does spontaneous magnetization
occur. Spontaneous magnetization is also closely related to the behavior of the spin-spin correla-
tion function defined by,

_Asps0 exp(—H/KTY)

Tn = (exp(—H/kT)) (1.9)

At zero temperature when all the spins line up I, is unity, independent of n. However, as T = o
thermal excitations wash out the spin-spin correlations, so I}, is different from zero only at the
origin. We will in fact see that the way I, falls to zero as n increases will depend on whether
T<T,T=T,orT>T,. The Ising model, therefore, contains two lengths: the lattice spacing,
and the distance over which spin-spin correlations are appreciable.

In the first section we discussed the Ising model and the phenomenology of a critical point,
such as the critical temperature at which spontaneous magnetization first occurs. We will study
through seven sections the problem of critical behavior looking specifically at phenomena above
the critical temperature where, although there is no spontaneous magnetization, the system feels
the presence of the nearby critical point. In this section we will consider various theories of the
critical point at the handwaving level: Landau’s form of mean field theory, and the Kadanoff
theory of effective interactions involving block spins. This second approach will provide the
background for the renormalization group. (Some standard references on critical phenomena are
refs. [95—-1011].)

2.1. Elementary properties of systems near their critical temperature

If we plot the spontaneous magnetization versus temperature for a ferromagnet, an anti-
ferromagnet or the Ising model, one finds a curve similar to that shown in fig. 2.1. There is a
critical temperature, 7., at which spontaneous magnetization first occurs. The curve rises to some
finite value at temperature zero. In the region just below the critical temperature, the magnetiza-
tion is well approximated by a power law,

Mo (T, -T) (2.1

where § is an example of a critical exponent. Theories of critical behavior are mainly concerned
with predicting such critical exponents or, at least, finding relations between them.

There is also the correlation length which we introduced earlier. Consider two spins, one at
lattice site n, one at the origin and define the correlation function,

Iy = s 5o exp(—H/kT))/{exp(—H/kT)) (2.2)

where (. . .) indicates a sum over all configurations. The correlation function has the property
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exp(-In|/&(T))
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Fig. 2.1. A graph of magnetization Fig. 2.2. Spin-spin correiation
versus temperature for a ferromagnet. function versus distance between
T is the critical temperature. sites. Curve (1) is an example with
T > Tg; curve (2) is an example
with T < Tg.

that if 7> T, then I, falls off with |n| (curve 1 in fig. 2.2). The asymptotic behavior for large
In| is thought to be~

I, ~ exp{—Inl/£(T} (2.3)

where £(7) is the correlation length. (There are various ways of defining the correlation length.
It is not evident that the qualitative definition of section 1 (see, in particular, the discussion p. 78)
agrees with the precise definition of (2.3). They will in fact not always agree, but for the Ising
model above T, they do agree so far as is known.) Unfortunately, due to the complexity of the
system, the validity of (2.3) has not been proved in general. For T < T, the correlation function
is expected to approach the square of the magnetization divided by the square of the magnetic
moment as »n increases (curve 2, fig. 2.2). In other words, for large » actual correlation has
disappeared and what remains is the product of the expectation values of the single spins. At the
critical temperature the correlation function falls to zero for large n because there is no spontan-
eous magnetization. However, it falls very slowly (fig. 2.3) because we are at a transition point.
The correlation function at 7, is expected to fall as a power of » and, by convention, is written
in the form

T, ~ 1/lnf@-2%n (2.4)

where d is the dimensionality of the system. In two dimensions we know that (2.4) is the correct
form of the correlation function {95]. However, in three dimensions the statement is just a guess.
1 defines a second critical exponent.

&m

Fig. 2.3. Correlation function at the

critical temperature. Fig. 2.4. Correlation length plotted

against temperature.

One can also consider the correlation length £(7) itself. £(T) sets the scale for the falloff of the
correlation function when 7T is above T.. As shown in fig. 2.4, §(T) approaches infinity as 7 — T
from above:

EM~(T-T)™. (2.5)
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There is also a similar curve for the magnetic susceptibility,

oM
=2 2.

oH |, ., (2.6)
which behaves near the critical temperature as

x~(T—T,)™". 2.7)

Similarly, the specific heat (at constant volume) C, is controlled near the critical temperature by
the critical exponent ¢,

C, ~(T—-T,)™ (2.8)

We collect in table 2.1 both experimental and theoretical values of the various exponents. The
theoretical predictions come from the mean field (Landau) theory which will be described below,

Table 2.1

Critical E . Mean field Three-dimensional Two-dimensional
xperiment . .

exponent theory Ising model Ising model

[} 0.3-0.38 3 0.31 0.125

n 0-0.1 0 0.056 0.25

v 0.6-0.7 3 0.64 1.0

v 1.2-14 1 1.25 1.75

a 0-0.1 0 0.12 0

the two-dimensional Ising model solved exactly by Onsager, and the three-dimensional Ising
model. In the three-dimensional case the critical exponents are calculated approximately using
the high temperature expansion of the model carried to very high order. To obtain critical
exponents Padé approximant techniques are used. These assume power behavior near the critical
point for the relevant thermodynamic quantities. The data come from ferromagnets, anti-
ferromagnets, liquid-gas transitions, binary alloys and superfluid helium. Typically one or two
critical exponents can be measured in each system. The table has been organized to illustrate the
idea (to be explained in later sections) that the mean field theory accounts for systems with more
than four dimensions, and that exponents depend continuously on dimensionality below 4 dimen-
sions. One can plot critical exponents against the dimensionality of the system and construct a
smooth interpolating curve between the various dimensions. Fig. 2.5 depicts such a plot for the
exponent . The curve has a break in its derivative at dimension four and is smooth elsewhere.

Y

1.75
1.50
1.25

——t—t d
4 3 2
Fig. 2.5. Critical exponent

plotted against the dimension
of the physical system.
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We will concentrate on the exponents i, » and vy which have to do with the behaviour of the
system at or above the critical temperature when no external field is present. We will not work
in the two-phase region, although it would be more interesting; all the fundamental problems are
present above T,.

2.2. The search for analyticity

The various theories of critical phenomena are characterized by a *“‘search for analyticity”. The
formulas we have written down, such as for spontaneous magnetization, are nonanalytic at the
critical temperature. There is nothing really unusual about this, but it is difficult to see, starting
from a fundamental formulation of the Ising model, for example, how such nonanalytic behavior
arises. Recall that one calculates the thermodynamic functions from the partition function,

Z= {2}: exp{Kz Zs,,s,,+;}, K=J/kT. (2.9)

As long as the number N of spins is finite, then Z is an analytic function of K. Such a system
clearly cannot display critical behavior. However, once we take the thermodynamic limit of a spin
system filling all of space, the analyticity is no longer guaranteed. As the volume V of the system
tends to infinity, various sums will also become unbounded. The nonanalytic behavior we wish to
discover here, however, is usually masked by these large volume effects. Thus, while nonanalyticity
is allowed in principle, it has been very difficult to obtain the correct nonanalytic behavior in
practice from expressions such as (2.9). Because of this one tries to find a description of critical
behavior in terms of analytic functions, with the hope that the analytic functions could be
obtained more easily by practical methods. The various theories can be characterized by their
choice of analytic functions with which to describe critical phenomena. This is the “search for
analyticity”’. We will discuss this problem at two levels: First, the mean field theory which makes
a very simple theory of the analyticity; and the second, the renormalization group itself.

2.2.1. Mean field theory

A result of mean field theory is that there is a thermodynamic function which is analytic in its
variables at 7. Namely, the magnetic field H is an analytic function of the magnetization (per
spin) M and the temperature 7. This suggests Landau’s hypothesis [102] that the thermodynamic
properties of the system should be derivable from a free energy G which is an analytic function of
M and T. Then H would be given by,

0
=M GWM, T). (2.10)

What are the consequences of this approach? Near 7, where M is small we can write a Taylor

series for G in powers of M,

GM, T)=G(T)+r(TYM? + u(T)M* + . .. 2.11)

where M is the magnetization per unit spin. Only even powers of M appear in the expansion
because of the up-down symmetry of the Ising lattice. The magnetic field is given by

H=2r(TM + 4u(TH)M? + . . . . (2.12)

If we just consider the M and M3 terms and assume that « > 0 (such that the magnetic field
grows with M when M is large) we are left with two possible phenomena. If r > 0, then G will
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have one minimum as a function of M (fig. 2.6a). But if r <0, G can have two extra minima
corresponding to nonvanishing magnetizations (fig. 2.6b) and hence three local extrema corres-
ponding to H = 0. However, the system will choose a state of minimum free energy which
corresponds, according to fig. 2.6b, to a state of nonvanishing magnetization. We see that the
possibility r > 0 corresponds to 7> T, where there is no spontaneous magnetization, while
r<Omeans T <T..

(a)

Fig. 2.6. Plots of free energy versus magnetization for the
possible choices of the parameter 7.

Continuing with these analyticity assumptions we can obtain some of the critical exponents.
Namely, it is clear that r(7,) = 0 while u(7}) will attain some particular value. The next stage is
to assume that for T near T,

HT) <(T—-T,). (2.13)
Then at H = 0 it follows from (2.12) that,

M= -5~ (L= 2.14)
from which we identify

B=3 (2.15)
as the first critical exponent. If 7 > T, then near zero magnetization,

M=H/2r(T) (2.16)
from which we identify the susceptibility

x=1/2r(T) ~(T—-T,)! 2.17
and another critical exponent, v, is obtained:

y=1 (2.18)

The values of the exponents » and 7 can be obtained by extending these ideas to the case of space-
dependent fields. One obtains ¥ =4 and n =0.

Unfortunately, as we have seen from table 2.1, the mean field theory does not predict the
critical exponents very well. For example, accurate experiments with liquids, with (T — T,)/T as
small as 1075, give $=0.35 £ 0.01 [96] as opposed to the mean field prediction of 0.5.

However, mean field theory provides a very simple picture of critical behavior. And, although
its predictions are not very good, they are not very bad, either. In our later description of critical
exponents the mean field theory results will act as zeroth order approximations. Then a systematic
expansion in the dimension of the system will allow us to obtain more accurate results.
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2.2.2. Kadanoff theory

Now we turn to the second level of discussion. We will discuss the Kadanoff picture of the
critical point [103]. The basic results of the Kadanoff picture are relations among critical
exponents which had been guessed earlier by equally heuristic arguments (see [95—101]). These
relations will not be discussed here. What will be discussed is where one has analyticity, and how
the critical singularities are generated starting from analytic functions.

We have used considerable poetic license in describing Kadanoff’s picture. The following
paragraphs explain the spirit of his ideas but details of his work will be considerably distorted.

Kadanoff is concerned explicitly with the problem of the large correlation length near 7.. A
direct calculation of critical behavior requires that one consider (at the minimum) all the spins in
a volume the size of the correlation length — a hopeless task. In contrast, away from 7, where
the correlation length is small, only a few spins need be considered at any one time. Standard
techniques are available for such problems, such as Feynman graphs and perturbation theory.

Kadanoff had a brilliant idea which allows the hopeless problem with a large correlation
length to be replaced by one with a small correlation length. The idea will be explained for a
plane lattice, for simplicity. Consider a small region containing four spins, say. Because the
correlation length is so long near the critical temperature, all the spins in such a little block
should be strongly correlated. Kadanoff supposed that they are so well correlated that the four
spins in one block have only two possible states: all spins up or all spins down. This means that
the block of four spins acts like a single effective spin. Now suppose £ is 1000 in units of the
lattice spacing (fig. 2.7a). Group the spins into blocks of four spins each (fig. 2.7b). Each block
is supposed to have only two spin degrees of freedom, so there is a single spin variable for each
block. Therefore, one can replace the original lattice with an effective lattice where now ¢ = 500
in units of the effective lattice spacing (fig. 2.7¢). In this way the problem with ¢ = 1000 is
reduced to a problem with & = 500. Repetition of this analysis allows further reductions in £, to

e © o o ® o o o [0 e [ o « X X
e o o o o o e o o o |0 o
e o o o o o o o |[¢ o (o o X X X
e o o o o o o o | o [ o
e o o o o o e o (o o (6 o

X X X

(a) {(b) (c)

Fig. 2.7. Visualization of Kadanoff’s construction of block spins. The original lattice (a) of
spins at each site is divided into blocks (b) of 4 spins per block which is replaced by a new
lattice (c) of “‘effective” spins.

250, 125, etc., until finally one has an effective theory with & ~ 1. This will be discussed further
below. If the original spins have only nearest neighbor couplings, then the effective block spins
also can have only nearest neighbor interactions (see later). It is convenient to define renormalized
block spins such that their magnitude is +1 instead of £4. Then the energy/kT of the block spins is

> KOs, (2.19)
n,i

where K is a constant and sf,l) is the block spin variable and n labels sites on the effective lattice
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(X’s in fig. 2.7¢). The only practical difference between Kadanoft’s effective interaction (2.19)
and the original interaction Z, ;Ks,s,+; is the change in constants from K to K. It is easy to
determine the constant K,. There are two spin-spin interactions from the original interaction
which couple the block spin sﬁ,” to the block spin sﬁ,ﬂ) ;- If these block spins are parallel, the
coupling energy is 2K;; if they are antiparallel the coupling energy is —2K. So

K, =2K (2.20)

Suppose now one solves the original interaction and obtains the correlation length £(K) as a
function of K, in units of the original lattice spacing. The correlation length for the lattice of
block spins will be £(K,), in units of the block spin lattice spacing, since the block-spin interaction
has Ising form. But now the correlation length in units of block-spin spacing must be 3 of the
original correlation length, i.e.

E(Ky) =1 E(K). (2.21)

Given that £(K;) =-;— £(K) whenever K, = 2K, the dependence of £(K) on K is severely restricted.
Suppose one is at the critical temperature. There is a corresponding value K, = J/kT, for K. At
K., & is infinite. But now the correlation length for the block spins must also be infinite; this
means £(K) = o which is possible only if K, is also K. So

K. =K, =2K, (2.22)

which gives K, = 0 or K, = o, not K, = J/kT,.

This is a nonsensical result: K, is a finite number, not O or oo, The trouble originates with the
assumption that the spins in a block align exactly. Kadanoff did not actually assume this. He
proposed only that the block would behave as if it had only two possible states, and therefore
could be replaced by an effective block spin. However these two states would not be the states
with all spins up or down. Kadanoff proposed that there would be an effective Ising interaction
for the block spins, with K; being some function f(K), but the function f would be more
complicated than 2K obtained above: Kadanoff gave no prescription for determining f(K). What
Kadanoff does assume is that f(KX) is still an analytic function of K, even for K = K. The
rationale for this is the hope that only the spins in the immediate neighborhood of the block n
affect the calculation of K, even though this calculation cannot be spelled out. Nonanalyticity
at K should occur only for quantities involving the entire lattice.

The statement of the Kadanoff assumptions is that there exists an analytic function f(K) such
that

EK)] =5 £ (2.23)
What does this imply for critical behavior? First one must have

K. = f(K;) (2.24)
so that £[f(K.)] is infinite. Secondly, suppose K is near K.. Approximately, one can write

fIK) =f(K:)+ MK~ K.) (2.25)

where A = df/dK for K = K. This means
AK) =K, = NK - K,). (2.26)
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Now suppose £(K) behaves as (K — K.)™ for K near K.. Then one must have
EAUOY (K~ Ke)”

€K | KK, (227
if K is near K. But from (2.23) and (2.26), this equation reduces to
1= (2.28)
If one could determine f'(K.), one could calculate v from this equation:
v=In2/In X\ (2.29)

For example, if f{K) were the explicit form 2K obtained earlier, then A would be 2 and v would
be 1.

Equation (2.26) does not force £(K) to have power law behavior for K = K ; the most general
form for £(K) consistent with (2.23) and (2.26) is

EK)=(K—K.)™" FlIn(K - K.)], (2.30)

where F(x) is a periodic function of x with period In A. The reason for the periodicity is that if
&(K) is known, then £(K,) is also known where K; — K, = AM(K — K_); changing K — K by a factor
A\ is equivalent to translating In (K — K) by an amount In X. Because F is periodic, the behavior
of £(K) is not qualitatively different from (K — K.)™".

To determine £(K) precisely one can imagine proceeding as follows. Suppose £(K) is known
for K > 2K.. For K above 2K, £ should not be very large and should be relatively easy to
calculate. Now suppose K lies in the range K, < K < 2K.. Construct a sequence of effective
constants K, K,, etc. satisfying

Koy =AKy) (2.31)
with K, = f(K). Then Kadanoff’s formula implies
E(K) = 2"E(Ky). (2.32)

This means in particular that no matter what value K takes > K, itself), one can choose # so
large that £(K,,) is small enough that K,, > 2K_. Then &(K,)) is known and £(K) is determined by
(2.32). This calculation is of course possible only if the function f(K) is known.

What is important in Kadanoff’s analysis is the idea that starting from an analytic function
f(K) one generates a.nonanalytic’ behavior for £(K) at the point K. for which f(K.) = K. Further-
more one does not get an explicit value for v independent of the function f(K); to determine v
one must know the function f(K). Hence v need not be the mean field value-%. In fact v can be
irrational, contrary to the dreams of some statistical mechanicians.

In the following, Kadanoff’s idea that there exist effective block-spin interactions with coupling
constants analytic in T will be realized in various forms, with all functions given explicitly.
Critical exponents such as v will be computed explicitly.

3. Trivial example of the renormalization group: The Gaussian model

In this section we will begin to make Kadanoff’s intuitive ideas quantitative. The relationship
between the block spin interaction and the original interaction will be worked out and a critical
exponent (») will be computed for a trivial model — the Gaussian model [104] — to illustrate the
ideas involved. In this case the exponent » has the mean field value 3.
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The Gaussian model can be obtained by modifying the Ising model. First one writes the
partition function in terms of integrals. Namely,

Z=11 fw dsm28(s2, — 1) exp {Kz Zs,,s,,ﬂ’}. 3.1

This is a trivial rewriting of the original partition function. Now imagine smoothing the delta
function (fig. 3.1a) to a smooth distribution around s, = 1 (fig. 3.1b), to a smooth Gaussian

_I_L Ms 4_\.__.3
-4 + Sm -4 + m - +1 m

(a) (b} (c)

Fig. 3.1. The transition from the Ising to the Gaussian model. The Ising model

(a) has spin up or spin down at each lattice site. Model (b) has spin variables

which peak about the Ising values. The Gaussian model (c) has spin variables at
~ each site with smooth, Gaussian distributions about zero

(fig. 3.1¢). Of course fig. 3.1c bears little resemblance to the original Ising model. If we make this
replacement in the partition function anyway,

Z=11 f dsm, exp{—%bs?,,}exp{KZanst} (3.2)
m Yoo n i

where b is an arbitrary constant. This formula defines the Gaussian model [104]. Later we will
allow the generalization,

exp{—%bs%} *exp{—%bS% —usﬁ} (3.3)

where u is a positive number. The case u near 1 (not small) can be discussed using the recursion
formula to be derived later. In this case the smooth model begins to approach the real Ising model.
Finally, if u = o0 and b = —oo, with b = —4u, the original Ising model is recovered (if one includes
a constant factor (u/m)Y2 exp(—u) per spin).

Let us review some characteristics of Gaussian integrals. [t is convenient to introduce matrix
notation,

§As = Z z SnAnmSm, ps = Z PnSn 3.4)
n m n

with A assumed to be symmetric for n <+ m. Then, using techniques to be developed shortly, the
following integral can be evaluated,

1T f dsy exp{—%EAs + b’s} = Cexp{—; pA! p} (3.5
n oo

where C, a normalization factor, is a function of 4. (Specifically C = (det 4) Y2 2n)™? where N
is the number of sites.) Eq. (3.5) is derived by translating s,, in order to complete the square in the
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integrand. (See eq. (3.21) below for an example of a translation.) From eq. (3.5) one can derive
all integrals of the form

11 J dsn(Sm, Sm, - - - Smy) exp{—(EAs)/2} =I(my ... mg). (3.6)

These integrals will be needed in section 4. The procedure is to differentiate eq. (3.5) with
respect to py, . . . Py This gives

II f dsp(Sm ... 8m)ex {—1sAs+”s}=——...——— {l~ —1}
] nSm, my P)73 p 3pm, apkaexpsz pi-

The second step is to set p,, = 0 for all m. If k£ is odd the integral vanishes; if & is even one needs
to consider only the term of order pk from the exponential, giving

0 0
Imy,...,m =——~...——*—-C{-l- A }k/z k/2)!. 3.7
Oy ) = g o CL3 AT o) PH((2) (3.7)

One now has k derivatives applied to k/2 factors of (% PAp). To illustrate the calculation of the
derivatives consider the case kK = 4. Then one has to calculate

0 o 0 __a__1~—1}{1~—1}/v
apm, aﬂm2 apm3 apm‘ {5 AT Ay 2

Differentiating yields a number of terms such as (4 ") m, (4™, m, /8. The total number of such

terms is 24, namely the total number of ways of pairing each derivative with a p or . However,

many of these terms are identical to the one just cited. Due to the symmetry of A7!, the term

A D, m, (A_‘)m3m4/8 is identical. Obviously the term (A7), m, (4™ )i, m,/8 is identical.

Combining all identical terms one finds

Imy, . . ., ma) = CLA™ Y, (A, + (A, (A D, + (A D, (A D). (3.8)

The general rule for any £ is constructed similarly. The result is as follows. Let s, sy, stand for
(A—l)rn.mz' One calls s, 5, @ “contraction”. Then I(my, . . ., my) is the sum of all possible ways
of contracting s, Sm, - - - Smy in pairs, such that all s,; are in a contraction. For example

o fe— — —— — ——
I(m,, my, my, my) = C{sml Sm, Sm,Sm, Y Sm, Sm, Sm,Sm, ¥ Sm, Sm,Sm, Sm, (3.9)
which is the same as eq. (3.8). [(m, . . . mg) consists 0f 5, Sy §ms Sm, Sm,Sm, plus 14 other

terms. Note that it is not necessary for the m; to be distinct. For example, suppose one is dealing
with trivial 1 x 1 matrices so that the m; are necessarily all equal to 1. Then the integral (3.6) of
s% is 3CAT4, the integral of s$ is 15CA17, etc., in agreement with standard formulae. The rule for
I(m,, ..., my) is analogous to Wick’s theorem in quantum field theory [105].

In the cases of interest A, , only depends on the difference # —m and the inverse matrix
(A™")y,, m can be computed by Fourier transforms: write

Apy-m = L exp{iq - (n —m)}A(q) (3.10)
where

fza}r—)g J"dql... J.ndqd.

q -
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The inverse matrix is obtained by taking the transform of the ordinary inverse of A(q),
A D-m = fexp{iq ~(n —m)} AN (3.11)
q

since A is diagonal in the g representation.
Return now to the Gaussian model. We can rewrite the expression of interest,

Kz zsnsmi—% b Z Sn =% KZZ Gn+i—5n)* = (3 b—dK) Z Sh (3.12)
n i n n i n

where we are supposing for convenience that the sum over i runs only over positive values. d is
the dimensionality of the lattice. When written in terms of oy, 04 = Z, exp{—iq - n}s,, (3.12)
becomes

-3 _“Kz lexp(ig;) — 112 +?} 0q0—gq (3.13)
q i
with
F=b—2dK (3.14)

where q; is the ith component of q. There are now three further changes that will be made on the
model. The first change is to replace lexp(ig;) — 1|2 by its form for small g, namely g?. The
second is to change the range of integration over g to be 0 <|q| < 1 instead of —7 <g; <. The
third change is to renormalize the spins so that K = 1. So finally, the interaction is

-3 f(cf +7) 0404 (3.15)
q

with [, being (2m)™? fd?q for 0 <|g| <1 and r = ¥/K.

The second change causes a conceptual difficulty. With 0 < |g| < 1, one cannot relate the
functional variable o, to the ordinary variables s, . Therefore, one is forced to define the
partition function as a functional integral over g, rather than ordinary integrals over the s,.
However, for present purposes this is not a difficulty. The reason is that the method of translating
the integration variable is valid for functional integrals as well as ordinary integrals, and is as easy
to use. The reason one can translate variables in a functional integral is that a functional integral
is generally defined as a limit of ordinary integrals, each of which can be translated. For example,
the functional integral over o, can be described as a limit of ordinary integrals over variables g,
in the limit that the spacing of the points q,, goes to zero (see, e.g., [106]).

The replacement of |exp(ig;) — 11*> by ¢? is not an essential change in the model because we
will ultimately be interested only in the long wavelength behavior of the model which comes
from the part with small g¢. Likewise the change in the range of |q| is inessential.

The correlation function of the model will now be calculated. It is appropriate to introduce
a spin field s(x):

s(x) = J. exp(iq - x) oq4 0<lgl <) (3.16)
q
to replace s,. Then the correlation function is

M) = [ s(x)s(0) exp{—% faq 0_q(g? +r)}/z 3.17)
o q
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wherejo denotes the functional integral over functions o(q) and Z is the functional integral of
the exponential alone. The result for I'(x) is

1
N'x) = fexp(iq- Xx) = f exp(iq- x) I'q. (3.18)
7 7T A
This result will now be derived. One has
I'x) = f f exp(ig - x) f 0Oq 0g, exp{—-;— f(qz +r)og0_4 ;/Z 3.19)
9 q, o q
The functional integral is computed from the generating function
Z(j) =% fexp{—-; [ @+rogoq+ fj_,, o,,}. (3.20)
4 q q
Translating variables means in this case writing
_ '
aq—(?i—rwq. (3.21)
In terms of oy,
N l 1 2 ! ' 1 PR 1
Z(j) =7 _[ exp{—3 | (@*+r)ogoly +3 . Jqi-q (__q2 +r}. (3.22)
o q
The functional integral is proportional to Z, giving
. . 1
Z() = exp {% J,, jai-q (q"2'+_r>}' (3.23)
Expanding (3.20) and (3.23) to second order in j one sees that
1
3 [ [ g 1 [ z=1 [ 3.24)
I-qJ]-q, | Oq9%, exp{ f(q +r)o, U—q} ) j/q I-q : (3.
* 6[ g q G er

This equation must be an identity in the function j, which means

fﬂq Og, XP {—% f (q* +r)0q0-q }/Z =8(q +q,)/(q* +1) (3.25)
q

a

where 8(q + q,) is shorthand for (2m)469(q + ¢,). Substitution of this formula in (3.19) gives the
result (3.18) for I'(x).

The correlation length £ is customarily defined in terms of the behavior of I'(x) for |x| = oo, If
the range of g were infinite, the behavior of I'(x) for large x would be governed by the singularity
in (g +r)7! for g = i\/7, resulting in

N(x) = exp(—+/7ix]) (3.26)

for large |x| (apart from a power of |x| in front of the exponential). From this one gets £ = 1//7.
Unfortunately, the sharp boundary at |g| = 1 leads to another term in I'(x) for large x, behaving
as cos (|x|). This latter term is an artifact of the model; it can be removed by averaging over a
large but finite region in x space. When £ is large ( small) the term exp(—+/7Ix|) will not be
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affected by this averaging. However a more convenient procedure for our purposes is to introduce
an alternative definition of the correlation length. The correlation length as originally defined is
determined by the leading singularity of I'y : if the leading singularity of I'y is at ¢ = tiq, then §
is 1/q,. The location of this singularity can be determined roughly by comparing the derivative
dl, /dg® with Ty itself when g = 0, namely,

2
£2 o _dTq/dq* (3.27)
Fq q=0
Equivalently,

£ = fx2 I'(x) ddX/ I'(x) d%x.

With this definition, & is called the “effective range of correlation” [107]. ForI'y = 1/(q® +7r)
this formula gives

g2 o 1fr (3.28)

and hence & « 1//7 as before.
In the Gaussian model 7 is linear in the temperature 7. To be precise, with K = J/kT (from
eq. (2.9)) one has

r=(bkT - 2dJ)|J (3.29)

(see eqs. (3.14) and (3.15)).

The critical point corresponds to 7 = 0 and E oo; clearly § < (T —T,)~ 12 for T> T.. Hence,
the Gaussian model gives the mean field value 3 for ». Also this gives KT, = 2dJ/b. The critical
value of K is K, = b/2d.

An exact formulation of the renormalization group can be defined for the Gaussian model; it
illustrates the ideas that will be applied later to non-trivial models.

As a first step in the renormalization group transformation, let us integrate out the spin
components g4 with4 < |g| < 1, leaving unintegrated the components o with 0 <l|q| <3.In
other words one integrates out the rapidly fluctuation parts of the spin field s(x), leaving uninte-
grated the slowly fluctuating parts. This is a way of realizing in spirit Kadanoff’s idea of produc-
ing an effective interaction involving only block spin variables; namely, one integrates out the
other variables orthogonal to the block spin variables. In our case one thinks of the long wave-
length spin components g, for lg| <3 as analogous to Kadanoff’s block spin variables.

The integration of g, for 3 < |g| < 1 will be done in the functional integral for the partition
function, as opposed to the functional integral for the correlation function. However the same
calculation applies also to the correlation function integral if one considers the functional integral
only forT'y for lq,| <3, where

8(q, +q3) Ty, = _|—0ql Ogq, €XP {_il f (q*+71) oqo_q} Z (3.30)
o q

If |g,| and |g,| are both less than 4, then the explicit 0q, and 04 terms are not involved in the
calculation of integrals for < |q| < 1.

The calculation of the first step defmed above is trivial. The reason is that there is no coupling
between og f for |g| > and oq for |q| < 3. Hence the only result of the functional integral over og4
with |q| > 3 is a constant which muitiplies exp{—% f¢(q* +r) Oq 0_q} Where Jq means an integral
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over 0 < |g| <3 only. Since this multiplicative constant cancels in the ratio of functional integrals
defining I'y, the constant can be ignored. Thus the effective interaction produced by eliminating
the high momentum spin components is simply — 1 f4(¢* +r) 040_4.

The second step in constructing the renormalization group transformation is to perform some
scale changes designed to make the effective interaction look as much like the original interaction
as possible. Two scale changes will be introduced. A scale change in the momentum, namely
q' = 2q, is made so that the new momentum variable ¢ has the range 0 <|q'| < 1 like the
original momentum ¢q in the original interaction. The second scale change is to scale the spin
variable itself:

0q =§0, =50y, (3.31)

The scale factor { will be determined later. In terms of the new spin variable o', the effective
interaction is

H'=—4@227) f (@/4+r) g oy (3.32)
q

Now choose ¢ so that the ¢'? term has the same coefficient as the g* term of the original inter-
action; this means

¢=21+d2 (3.33)
and
H'=-1 f (q*+rogoly (3.34)
q
with
r' = 4r. (3.35)

The transformation that takes
H=-1 f (g* +r)og0_4 (3.36)
q

into ¥’ is an example of a renormalization group transformation.

The two scale changes introduced above are analogous to scale changes that occur in the
Kadanoff picture. When one discusses the block spin interaction, one uses the spacing of blocks
as a length scale instead of the original lattice spacing. This is analogous to the momentum scale
change introduced here. Secondly, the magnitude of the block spins was rescaled so it would be
+1] like the original spins; analogously, the spins o, are rescaled, although now the purpose is to
make a particular term in the interaction have the same form as in the original interaction.

What is 7' good for? It can be used to compute the correlation function [y, provided |g| < 1.
The correlation function naturally defined for ¥' is a correlation function involving ¢’ instead of
o, namely,

8(gy +q2)Tq = jo!,; o, exp{H'}/Z". (3.37)

g

The scaling relation between o and ¢’ gives
8(q, +q2)Tq, =§2Thq, 6(2q, +2q,). (3.38)
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Now 6(2q) = 2798(q) so
[, =229, =4T,. (3.39)

Thus, if one computes 1"", from ¥, one can reconstruct I'yj, from the scaling formula.
Now look specifically at the correlation length. The correlation length for ' is (using the
modified definition),

g =1R/r". (3.40)

Because of the change in momentum scale in defining ¥(’, £* will be different from £. Since
momenta were doubled in the transformation from ¥ to ¥', lengths will be halved, and therefore
£’ should be £/2. This is indeed the case, since

g =)y =@n2 =g/, (3.41)

Here we have an explicit example of the relation between ¢’ calculated from the effective
interaction ¥’ and & calculated for the original interaction. There are three relations involved.
First there is the relation between &' and §: £ =} £. This relation is a consequence of the explicit
change of scale in momentum introduced in the renormalization group transformation. This
relation will be true of all models so long as we stick to the program of integrating out the
momentum components g, with |g| >4 and then rescale the remaining momenta. The second
relation is 7’ = 4r, the relation between the constants appearing in  and ¥'. This relation is
special to the Gaussian model. However, note that 7' is an analytic function of r, even at the
critical point. This analyticity will be true of all subsequent examples. Finally there is the
dependence of £ on r: £ = 1A/7. Since ¥’ has the same form as ¥, the new correlation length &'
has the same dependence onr': §' = 1/\/r—’ . These relations are special to the Gaussian model; but
it will always be true that if £ = X(r) then £’ = X(r') with the same function X.

The critical singularity of § can be calculated by the method of section 2. The variable r sub-
stitutes for the variable K of section 2. The function f(K) of section 2 is now known explicitly:
r' = f(r) = 4r. The critical value of r is 7, = 0, which satisfies f(r;) = r.. The parameter X defined
in section 2 is df/dr = 4. Thus, from eq. (2.29)

p=In2/lnx=1. (3.42)

In this case £(r) must behave as £(r) « (r — rc)‘l/ 2 without the extra periodic function F[In(r —r.)]
of section 2. The reason is that the period of F' is determined by the fact that ¢ changes by a
factor 2[£(r") =3 £(r)]. One could have chosen to make & change by an arbitrary factor s, by
integrating Oq fors™! <|q| < 1 instead of ;— <|q| < 1. The result would still be v = % but the extra
function would have period In s instead of In 2. This gives a contradiction unless F is a constant.

Thus, if f(r) is known, one can determine both the critical point r, = 0 (K, = b/2d) and the
critical singularity of £.

One starts with an analytic formula for ' = 4r and obtains a nonanalytic form for §£. Why? The
reason is that as 7 = 0, 7’ comes close to r but ¢’ cannot come close to &, since £ must be £/2. It is
this conflict that forces £ to be singular whenr' =r = 0.

4. The s* model

In this section we will generalize the discussion of the Gaussian model. In particular, we will
add to the interaction a small quartic term. The renormalization problem now becomes nontrivial
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but much more instructive. A perturbative definition of the renormalization group will be given
and a nontrivial fixed point solution to the equations will be found. The discussion will also
introduce the use of continuous, nonintegral spatial dimensions.

The new model is specified by the partition function [108—111]

Z= ~{exp{i}f[o]} (4.1)
g
where
Hlo) =—3 .[(q2+’)aq°—q_“ f j f 0q,0q,%,9-q,-q,-q, - (4.2)
q 4 1, a,

The first term in the Hamiltonian (to be called ¥g) is familiar from before. The parameter u is
presumed small compared to one. This will allow us to describe the new term perturbatively. Also
note that the new term is just

Hy=~u f s*(x)
X
in configuration space.

Following the ideas of the previous section we attempt to define a new physical system in
which the high frequency modes of the present system are integrated out. The effective
Hamiltonian governing the new physical system will be defined to be as similar as possible to
(4.2). This will involve considerable simplification which will be justified in the next section. In
place of the constants 7 and u, new constants ' and ' will appear in the effective Hamiltonian.
They will be determined by r and u via simple formulae. The procedure is similar to Anderson’s
treatment of the Kondo problem [112].

The construction proceeds as follows. Let the momentum integrals in the original system run
over the range 0 < |g] < 1. The new system is obtained, as in section 3, by integrating out the
high frequency modes, 3 < |g| < 1. Write the function 04 in the form,

Uq = Oqu + Ol,q (43)
where

01,4 =04 if 3<lqI<1, zero otherwise, s
004 =05 if 0<lg|<3, zero otherwise. .

(This is the reverse of the notation of {111].) The functional integral Z then can be written as,

Z= J-exp{JC[o]} = _[ {J exp{Hloo + 04 ]}} (4.5)
Integrate out the high frequency modes 0. This leaves,
Z= J exp{¥'[o'1} (4.6)

where the new Hamiltonian ¥’ is defined by,

exp{#(’'[o']} = J exp{¥[o, + 0, ]}
i (4.7)
00,4 =§002q), 0<lgl<j3.
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Here, as in the Gaussian model, a renormalized field o:, depending on rescaled momenta has been
defined.
There is a correlation function l"j,r associated with the new Hamiltonian J'; the new correlation
length is,
1/2

. {dl" 1 }qzzo' (4.8)

dg* T’

As in the previous section, one will have I’y = ¢? 27905, and ' =L &
The precise relation between ¥ and ¥’ can be worked out perturbatively if » is small. The most
general form for ' can be written

W= _% j uz(q) U’qu—q - j _[ f us(q1, 42, qs3, 7914, —413)0:1, 01'1, 0;13 U’—q, -q, —q,

? R + higher order terms in o' (4.9)
The functions uj, ug, etc. will be determined from (4.7). The simplifications needed to put (4.9)
into the form of (4.2) will be introduced later. Write (4.7) in the form,

exp{H'[d']} = J exp{¥(r[o] + ¥ (o]}

o,

exp{H'[0'l} = exp{Irlool} [ exp{Itrlo,]+Hilo, + 0,1} (4.10)

9,

The term exp{}(Fr[0,1} can be written trivially in terms of ¢,

Hplool=—1 | (@* +7) 0_q0q (4.11)
0<igi<y
KHrlogl =— 3 (¢*227972) f (q* +4ryogol,. (4.12)
0<igi<1

The nontrivial physics lies in the terms depending on u. To obtain these terms, consider (4.10)
and expand exp{¥([c]} in powers of u. It is convenient to write this expansion graphically.
Denote (—3(y) by a cross (fig. 4.1a). The four endpoints of the cross symbolize the four o’s in ¥(j.

X =X+ 5 (XX)=+-

{a) (b)

Fig. 4.1. (a) Grapiiical representation of —¥(y.
(b) Graphs for exp {Jf[}

The expansion
exp) =1 +H+3HT+537+. .. (4.13)

is shown graphically in fig. 4.1b. Consider now the functional integral of eq. (4.10). Using the
expansion of (4.13), one has to calculate Gaussian integrals of the type

I(q,,....q¢)= J—o,,ql ce Oy g exp{¥rlo,1}. 4.14)

g,
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This integral can be written in terms of the functional integral

Ze = | exp{itrlo, )} (4.15)

o,

and the contraction 0y, 4 0y, 4, Which is

b1, 4 01,4, = (2m)?8%q +q,)/(g* + 1) (4.16)

provided that § <|g| <1 (it is O for |g| < }). The integral I(q,, . . ., q¢) is Z¢ times the sum of all
contractions of 0y 4 ... 01, ¢4, as explained in section 3. (The derivation of section 3 for discrete
spin integrations applies also to functional integrals.) The factor Zg contributes only a constant
independent of ¢’ to ¥’ and will be dropped (we will study only ¢’-dependent terms in ¥').

In the graphical expansion of fig. 4.1b each endpoint of each cross represents a variable g .
Writing o4 = 09 4 + 0}, 4, One has to consider two choices for each endpoint. When it represents
01, ¢, it must be contracted with another endpoint representing o; also. To symbolize this one
draws a line connecting the two endpoints, as in fig. 4.2b. Such a line is called a propagator. If

x 8 8

(a) (b)  (c)

Fig. 4.2. First order
graphs after performing
o, functional integral.

an endpoint represents og 4 it is left as is. The functional integral in eq. (4.10) is obtained
graphically by considering all possible ways of contracting some endpoints and leaving some
endpoints uncontracted. Topologically equivalent graphs are then lumped together. For example
the integral of | itself involves the three graphs shown in fig. 4.2. When one forms all possible
contractions on the single cross, the graph with no contractions (fig. 4.2a) occurs once, the graph
with one contraction (fig. 4.2b) occurs 6 times, while the graph with two contractions (fig. 4.2¢)
occurs 3 times. The diagrams that occur in second order are shown in fig. 4.3 together with the
number of times each graph occurs (the numerical factor includes the factor § multiplying J('Iz in
eq. (4.13)).

A given diagram is calculated as follows. Consider for example the first diagram of fig. 4.3c.
One starts with two crosses; before integration over o, these correspond to

| [ 2my8%@ + g, + 4> + a5) 0404,04,04,
7 a, (4.17)
x j . j (2m)%6%(@a + s + s + 1) 04,04,04,0, -

For each external line a o is replaced by a 04, while for each intemal line the corresponding a¢’s
are replaced by a propagator. For the example the result is

i [ [ ns%q +a,+ax +a)@nY8%g. + .+ 4D 8% s + 46)
T (4.18)
« 2m)*6% @3 + q7)q} + r17V (g} + )71 00,400, 4,00, 4,00, 4,
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with |ql, 1g,1, 194!, and |gs| restricted to be less than ¥ while |g,|, |g3], |96, and lg,| must lie
between % and 1. Eliminating all the §-functions, and putting in the numerical factor 36, one has

1 1
gi+r(q+q,+q)* +r

36 [ | 4[ 00,490,4,90,,00, ~a -a, -4, | (4.19)
q9 4q, 4 q;
where g, is restricted so that |q,| and |g + q, + ¢ | lie between 5 and 1. J’

The expression (4.19) is the contribution of one diagram to the integral J o, exp{¥(g[o,] +
Hloo + 0,1} of eq. (4.10). Other diagrams are calculated similarly. However what one wants to
compute is ¥ '[0’]. This requires taking the logarithm of the integral and replacing o, by ¢’. This
can be done within the diagrammatic framework. Taking the logarithm of the integral is equivalent
to removing all disconnected diagrams. In second order in u, the disconnected diagrams are those
of fig. 4.3a. Thus, to second order in u the logarithm of the integral involves the diagrams of
fig. 4.1 plus those of figs. 4.2a—4.2c¢. This is easily checked explicitly. It is straightforward but
tedious to verify that if #(] is the sum of all connected graphs to all orders in u then exp{JCi} is the
sum of all connected and disconnected graphs to all orders in w.

Lg{x+s?+38}{x+e?+38} 36 XX +48 8- 185 ¢

(a) (c)

a8 O + 12 XOX) + 72 9% +3eOOO+|2©
(a)

(b)

Fig. 4.3. Second order graphs after o, integration.

Since we shall study only ¢’-dependent terms in #('[o'] the graphs without external lines (see
figs. 4.2c and 4.3d) will also be dropped (one would have to keep these graphs to calculate the
free energy itself, but they are irrelevant if one computes only the spin-spin correlation function).
Finally, replacing o, by ¢’ simply means substituting ¢a,, for an external line instead of Op, q- One
then has to make a change of variables from ¢ to 2q in order to put ¥’ in the form of eq. (4.9).

One can write a set of rules for computing any diagram:

1. Label the momenta in the “incoming” sense at each vertex.

2. Internal momenta range from § to 1, external momenta range from O to 3.

3. Associate a propagator (21)? @ (g, + q,)/(q} + r*) with each internal line (¢, and g, are
the two momentum labels on that line).

4. Associate a factor u(2m)d&d(q, + q, + q; + q4) with each four-point vertex.

5. Associate a spin variable g, 4 = {054 With each external leg.

6. Integrate [, over internal and external momenta according to rule 2.

Writing explicitly only some of the diagrams in figs. 4.2 and 4.3, the functions u5, u4, etc. in
the new interaction ¥’ (eq. (4.9)) are:

’ = #+2 -d]1 ,2 1 _ 2 1 1 1
ux(g)=¢"°2 {,,q +r+ 12u p‘ 7 96u ;[ i!., PR [(;_q_p_pl)2+r]+...}
4.20)

' - 1 1
u (q ’ s s )= +42 3d {u—12u2 _2 tati ...}
4(41,42,43,94) =% ;!.(ph ) [(%ql_'_w py permuta 1ons(421)
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' - 0.
Us(q1,4q2, 93, 94,95, q¢) =502 Sduz{ i 8 TP + 9 permutations . . .}.(4.22)
[(2 q1 2QZ 2q3 + ]

The momenta |p| and |p,| are restricted to lie between 2 7 and 1. Likewise one must have
:<la—-p-p<1, 1<l3ait3q,+3q51 <1, etc. (4.23)

So far the discussion has been general. Now some approximations will be introduced to
simplify the effective Hamiltonian to the form (4.2). These approximations will be good for
dimension d near 4, but this will only become apparent later. First calculate u5(q) only to order w.
One can write

uz(q)=q* +r' (4.24)
provided that
§=21+d/2 (4.25)

as in the preceeding section. We will further simplify (4.23) by making the approximations
1 1

2 - 1= % ¢ 1

Lepict POEE Lo L+r

where ¢ =4 f, | with ] <|p|< 1, and

l | 1 . 1
; - = l=2c¢ .
§<Ip|<1(p2+r)[(%q1+%512'l7)2+"] (1+7r)? tepicr (1)

If we abbreviate uy(q, . . . q4) by u', (4.23) becomes

r'= 4[r + 3¢ }+ higher orders in u,

u
1+r
_ur
(1+7r)?
Finally ug and higher order terms will be'ignored in this section. A discussion of the validity of

these approximations will occupy the next section. Now eq. (4.26) will be studied as an example
of the Renormalization Group at Work. (These equations were studied in [113].)

(4.26)

u' =24-4d [u -9c } + higher orders in u.

4.1. Simplified renormalization group transformation

The first point to understand is that eq. (4.26) is to be iterated many times. That is, if the
parameters of the initial interaction are u = uy and r = ry, then one uses eq. (4.26) to define a
sequence of interaction parameters u; and r;, corresponding to a sequence of effective interactions
ZFC, The effective interaction 3(; is the result of integrating all spin components g, with
27 <)g1< 1 in the original interaction. The effective interaction ¥; describes the behavior of

spin components g4 with 0 <|q| <2~ ! Eqs. (4.26) now read
r =44r+3cu 1 +r
141 {Id 1/(1+ 1)} @27)
ure1 =24 fu = 9c u}/(1 + r?}

neglecting higher orders in uy.
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4.2. The e-expansion and a non-trivial fixed point

Consider now the fixed points of (4.26). At a fixed point (r = r* u = u*), one hasr' =r and
u' = u, which implies that ¢’ = £. However, we have argued before that §' = % , so at a fixed point
the correlation length must be infinite, i.e. we must be at a critical point of the theory. (Another
solution is § = £' = 0, but this possibility can be ruled out by other considerations.) It is clear from
(4.26) that a trivial fixed point r* = u* = 0 exists as in the Gaussian model. We will see below,
however, that the interactions in the present model can generate more interesting possibilities.

First imagine that the number of dimensions of the system, d, is greater than 4. If (4.27) is
iterated many times u; approaches zero, and if one approaches a fixed point it is the trivial point
r* =u* = (. So to get more exciting results, suppose d < 4 and u, is chosen small. Upon iteration
u; will increase with / until the second terms in (4.27) become comparable to the first. In this
case a new, nontrivial fixed point emerges. The fixed point (u*, r*) is given by,

u* ~ §12 (249 - 1), r¥ ~—d4c u*. (This assumes r* < 1.) (4.28)

If d = 4, u* and r* are both small and our approximations are reasonable. (See the next section.)
Define

e=4—-d (4.29)
Then, the position of the fixed point for small € is
1
ut~ - e, r¢~-2¢ln2. (4.30)

Imagine beginning the iteration scheme (4.27) with vy > u*. Subsequent values of u; will
decrease towards u* (fig. 4.4a). If uy < u*, subsequent values of u; will increase towards u*
(fig. 4.4b). Therefore, the value of u occurring in the Hamiltonian after many iteration steps is

Ung Uny
=u
Un+i=Un //Unu n
4 4
e ’
7 4
7’ rd
// ’,
7’
/// .
’ 7
1
7 : ’
4 ! 4 :
it
u* Ug Un U, U Up
{a) (b)

Fig. 4.4. The iteration formula for uy,. If u, > u*, the iteration scheme (a) leads
uy to u* from above. If u, < u*, uy approaches u* from below (b).

near u* no matter what u, was. This means that the fixed point value u* determines the strength
of the coupling among the long wavelength fluctuations in the system, independently of the
value of ug.

4.3. Linearized equations and calculation of v

Now the calculation of » will be discussed using eqs. (4.27). This is somewhat more compli-
cated than in previous examples and will be worked through in detail. See also [114] and [111].
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First it is useful to compare the solutions of the recursion formula (4.27) with the corresponding
recursion formula of the Gaussian case r;4 | = 4r;. In the Gaussian case one has two types of
solutions. If ry = 0 then r = O for all /: This is the fixed point solution and corresponds to the case
T=T,1fro #0thenr = 4'r, and r; > oo for [ = oo, This corresponds to the case T # T,. For T
near T, rg is linearin 7 — 7.

One complication of the non-Gaussian case is that one can be at the critical temperature 7 =7
without having r¢ and u, equal to the fixed point values. The reason is that one has to fix only
one parameter T to be at the critical temperature, while one must fix both ro = r* and uy = u* to
be at the fixed point. Thus one can imagine that for any value of u,, there will be a critical value
roc forrg (roc will depend on uy) which corresponds to 7' = 7;.. The role of the fixed point for
T=T.isthatr, > r*and u; > u* asl > oo (If T # T, #; and u; will have another limiting behavior
for large [.)

Suppose one is considering a specific starting interaction with T the only variable. Then
ro = ro(T) and uo(T) will depend on T in a specific analytic way. (See, e.g. (3.29).) Write
ro(T2) = roc, ug(Te) = .. We want now to study the theory for 7 near T, in order to calculate
the exponent v. The first step is to study the sequence {r(T), u;(T)} generated by iterating (4.27)
starting from ro(7T), uo(7T). Examples of these sequences are shown in fig. 4.5. We expect
r(T) = r*, ul(T,) > u* as | > o= (line A of fig. 4.5). Since the recursion equations are analytic,
one also expects ri(T) = r(T.) + (T — T.) r)(T.) (and similarly, for u;(T)) for fixed ! and small
enough 7 — T,. If ] is sufficiently large r(T.) = r* so r/(T) is also close to r*.

r

¢ .9/3

O\;\

Fig. 4.5. Plot of the iteration scheme for three
different initial choices of parameters. Sequence
A(T = T;) goes into the fixed point (u*, r*).
Sequences B and C begin for choices of u and r
slightly removed from criticality. These
sequences eventually deviate far from the fixed
point but approach the unique curve D,

This suggests that we study the recursion formulae for the case r; & r*, u; = u*. In this case
one can linearize the recursion formulae. The result, in matrix form, is

r —r* rp—r¥
il ~M|' (4.31)
Upeg —u* up—u*
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where
4 12cu* 12¢
(1 +r*)? 1 +r*
M= ) (4.32)
2¢ - 18cu*? .|, _ _18cu®
(1+r*)3 (1+7r%)?

It will be useful to know the result of iterating the linearized recursion relation many times.
The result is, formally

{m n r*} g [rz - r* } | (4.33)
Upen —T* up—u*
The advantage of studying M", with n large, instead of M itself is that M" is completely dominated
by the largest eigenvalue of M. The eigenvalues of M are easily calculated. In the limit u* — 0, the
eigenvalues are 4 and 1; hence the eigenvalues of M” are 4" and 1; clearly the eigenvalue 4"
dominates.

We need the explicit form of M”" neglecting the eigenvalue 1. This is easily obtained once M

has been diagonalized. The diagonalization is complicated because M is not symmetric; the result
can be written as follows

M’] = )\1Wil 01]‘ + >\2Wi202i (4.34)

where w;; and vy; are eigenvectors (with eigenvalue ;) of the matrices M and MT, respectively. To
be specific,

? Miiwix = Nwin, '2 vkiMij = Nevkj, (4.35)
and the orthonormality relation is
]z VgjWi = 6k1- (436)

Not every asymmetric matrix has a complete set of such eigenvectors, but for the matrix M the
eigenvectors can be constructed explicitly. (See table 4.1.) In terms of w and » and A, one has

M"yy = 2 Newigo. (4.37)

Table 4.1
Eigenvalues and eigenvectors of the matrix M (to order ¢)

A=4-%eln2 A, =1-eln2

1
( ) . _[4c(1+% eln 2)]
[ 4c(l+’eln2):| (0)
Uzz
1
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If A, is the eigenvalue near 4 (for small #*) while A, is the eigenvalue near 1, then for large #,

Fren — P = AN wi (o (7= %) + oy, — u*))
1+n 1n 1110117 12(ty (4.38)
Upen —U* = NyWay (v —r*) + o —u*)].

What is the significance of this result? Let / be large but fixed, let T be near enough to T so
that r; —r* and u; — u* are small and it is legitimate to use the linearized recursion equation. First
let T=T,. Then it was stated that r; > r* and u; = u* for [ > oo, This is consistent with eq. (4.38)
only if

v (T —r* T+ v [ul(T) —u*] = 0. (4.39)

Furthermore A, must be <1, otherwise the A} term in M would grow with » also. One can see
from table 4.1 that A, < I (for e > 0).

Now consider the case T = T,. For ! fixed, r)(T) — ri(T.) and u)(T) — u)(T.) will both be pro-
portional to T — T, so that,

v (D) = r¥] o, [u(T) —u*] =c(T—T) (4.40)

where ¢; is a constant. Hence, from (4.38),

r1+,,—r*=)\'}w“cl(T—Tc), u;+n—u*=)\'}w21cl(T—Tc). (4.41)

This equation is valid provided r; + , —r* and u; + , —u* are small; otherwise one could not
have used the linearized recursion formula to compute r; 4, and u; + .

The implications of (4.41) are illustrated graphically in fig. 4.5. The curves B and C in fig. 4.5
represent two possible trajectories (77, u;). For large / they approach asymptotically the unique
curve D; eq. (4.41) is the result of replacing the asymptotic part of B and C by D. The only
remaining distinction between B and C is where a given point (r;, u;) is located on D; this is deter-
mined by the factor ¢;(T — T}).

Now one can calculate v [111]. This is done as follows. The correlation length £ is defined for
any choice of the interaction parameters r and u; write,

£=X(r, u). (4.42)

In particular, it is defined for r = ro(T), u = ue(T) giving a function
£=§0(D), (4.43)

say. Now the scaling rule for effective interactions gives

Xy syt n) =277 X(rg, 1) (4.44)

if 7+, and u; . , are solutions of the recursion formula. But from eq. (4.41) one sees the
following: 7y 4+ » + ((T) —r*, for T — T, = 7/\,, is the same as ry ;. ,(T) —r* for T — T, = 7. Likewise
foru;+n+ . Thus

X[r,+,,+1, u1+"+lliT=Tc+r/)\l =X[r1+n, ul"'"”T=Tc+f' (445)
This means that

2 (T 4+ 1/Ny) = 27" (T, + 7). (4.46)
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Now if

ET . +1)x7™ 4.47)
one has for arbitrarily small 7:

(/A7 =2(r7"). (4.48)
This equation can be true only if

AT=2, (4.49)
ie.,

v=1In2/ln}\,. (4.50)

To order € this gives
y=In2/2In2—-5€en2)=05+ &5 € + O(e?).

A few remarks about this result are in order. The artificial features of the iteration scheme
(namely, the factors of log 2) do not appear in ». This is crucial since » should be property of the
physical system and not of the method of solution! Also, for non-zero €, v differs from the
Gaussian (mean field) model. Hence, the model studied in this section is an example in which
interactions play a role in determining the critical behavior of a physical system. The value of v is
determined through (4.50) in terms of the largest eigenvalue A, of the matrix M. This is similar
to the results of section 2. In section 2 the 2 x 2 matrix M is replaced by a 1 x 1 matrix with a
single eigenvalue A (see (2.26)). Analogously, the equation of section 2 for v (2.29) is obtained
from (4.50) by substituting A for A;. Finally, note that v is independent of the initial constant u,.
This is an example of the universality hypothesis discussed in section 1.

5. The s* model (cont’d.)

In the preceding section the renormalization group equations were mutilated in order to arrive
at resulfs quickly. In this section the renormalization group equations will be studied more care-
fully. The end result will be that the simple equations of the preceding section are correct to
order € = 4 —d. The discussion will be in two parts. First, abstract generalizations of the
simplified equations will be examined to find out which generalizations could cause trouble.
Then the correct renormalization group equations will be examined.

5.1. Irrelevant variables and the € expansion

The recursion formulae of the preceding section were,
r=4[r+ 3cu/(1 + 1, u'=2%Mu—9cu?/(1 +r)?] 5.

where € =4 —d and d is the dimensionality of the system. These equations possess a fixed point,

u* =§lzeln 2, r*=—§-eln2 (to order €). (5.2)
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Suppose that the true equations had one other coupling constant w. There will then be another
equation for w'. Suppose that (at least near the fixed point) the equation for w' is,

w' =aw (5.3)

where a < 1. Then, when (5.3) is iterated, w' = 0 and the variable w disappears from the problem.
w is then referred to as an irrelevant variable with respect to the fixed point for which (5.3) is
true. The term ““irrelevant variable” is not to be taken literally; the meaning of “irrelevant” in
critical phenomena is complicated, but should be clarified by this and subsequent sections. For
another discussion of irrelevant variables and fixed points, see [114]. The term “‘irrelevant
variable” is due to Kadanoff [115].

Now we want to know when the presence of irrelevant variables can change the fixed point
(5.2). Suppose that the equation for w' is,

w'= f;w + (second order terms like u?, uw, w?, etc.). (5.4)

In particular, we forbid the appearance of a term linear in « in (5.4). (w is still classified as an
irrelevant variable: second order terms are to be ignored in determining whether w is relevant or
irrelevant. A term proportional to u can only appear in the formula for 7 or «’ since the only
diagrams linear in u are figs. 5.1a, b.)

__O_><

Fig. 5.1. Diagrams linear in u.

Consider the fixed point of (5.4). Obviously,
w* = O(e?) (5.5)

assuming that (5.2) does not fail so that u* = O(e). We must now ask whether (5.5) can invalidate
the eq. (5.2) for u* and r* if terms involving w should appear in (5.1). Only terms of order € are
important in the equation for *, so w* is negligible. However, the u equation involves €? terms
in an important way. Therefore, if w appeared linearly in the u equation, (5.2) would be modified
in an important way.

Now consider the case that the w' equation has the form,

w' =% w + terms of order u3, u?w, etc. (5.6)
In this case w* ~ O(e3) and even if w appeared linearly in the u equation, it could not influence
the validity of that equation for small €.

These considerations show that the simple equation for u’ can be invalidated if there is an
irrelevant variable w such that both (1) w* ~ O(e?), and (2) w enters the u’ equation linearly. We
will now argue that this possibility does not occur for the exact equations defined in the previous
section. In the exact equations, the interaction (after some iterations) has the form

H=—3 J. U(q)0q0-q — J. J j J (11492 +93 +q4)us(q1, 92,93, 94) 0q,0q, 04,0,

q q, 4, 4; 4,
— (6th order term) — (8th order term) — . .. . (5.7)
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As discussed at length in the previous several sections, we integrate out the high frequency modes
in this system. After the appropriate rescaling of momenta and fields, a primed system emerges
which is described by a Hamiltonian identical in form with (5.7), but expressed in terms of
primed quantities,
= _% J. uy(q)ogoly — J‘ f j _[ §(q:+4q2 +4q3 +qa)us(g1, 92,93, 44)0:1,01'1, 0:;3 021‘
q 4, 4, 4, 4,
— (6th order term)’ — . . . . (5.8)

The relations between the u; and u; follow by the techniques illustrated in section 4 (assuming
u,(p) depends only on |p| = p because of the rotational symmetry of these equations):

us(34,-34,P,P)
— mr
u:z(‘h, q43,493,94) = §42_3d {“4(%‘11» %‘h: %‘13, %q«z)

wy(q)=¢227 {M(% q)+12 J- + (second order term) + . . } ,
)

15 j‘ Us 341, 392,0, =301 50, P)4a(343, 5494, P, — 33— 394+ P)
u,(Mu g, +3q:+p)

+ perms.

p
u (%41 %‘12 %‘13 %‘14 p. P)
+15 [Us 22t 2l s +...
b (D)

u,6(ql9 . ey q6) = {62_5d {uG(%ql’ R IRT) %qﬁ) (5~9)
v084aGd03d5,995 730, 7392739304344, 395, 396 "394 345~ 3d6) , }
Uy 341+ 342 +343)

Whenever u, appears in a denominator, its argument must lie between  and 1, e.g. 1<p <1, etc.
Clearly the system of equations (5.9) is intractable. The equation for u; in particular is a non-
linear functional equation. Therefore, the contention that (5.9) can be replaced by algebraic
equations (5.1) (to lowest order in €) is extremely important. The proof that the algebraic
equations are sufficient to determine the fixed point 7*, u*, rests heavily on the character of
the irrelevant variable ug.

An exact fixed point of (5.9) is a set of fixed functions u$(q), u¥(q., . . ., qa), uz(qy, . . ., qe),
etc. To test whether the simple equations are a valid approximation, we will suppose that to order
€ these fixed functions reduce to two fixed constants * and u*, namely,

ui(@) =r*+q* + O(e?)
uz(gy, . - - qq) =u* + O(e?) (5.10)
ugqy, . . ., q¢) = O(e?)

etc. The consistency of this assumption will be verified below.
First consider the u, equation. Write

uz(q) =q* +r*+v3(q) (5.11)

where v3(q) is a remainder. The parameter ¢ will be adjusted to ensure that the coefficient of g?
is unity. Let (5.10) represent an expansion about g2 = 0, so that

v3(q) ~q* - O(e?). (5.12)
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Substituting (5.11) into the equation for u,(q) gives,

* L 1 -
q2 + ¥ + v;‘(q) = ;22“0’{_‘1?(12 + ¥ + v;(%q)_’_ 12 j Ug (Zq;ZIq)\pa p) + ... } . (513)
P U \P)
Now, to order € the . . . is negligible and the last term reduces to
* —_— 2
12u £p2+r*+0(e ) (5.14)

The parameter ¢ is to be determined (as in previous sections) by the requirement that terms pro-
portional to g2 in (5.12) match. This gives

£2279 =4+ O(e?). (5.15)

(There is more discussion of { at the end of this section.) Now one has an equation for r*,

= afrr 12 ,,! - ; + 0 (5.16)

and an equation for the remainder v3(q),
v3(q) = 43 (3q) + €2F3(q). (5.17)

In this equation €2F ¥ simply represents the corrections from higher order terms in (5.13) (with
constant and g2 terms subtracted). Suppose that F5 is known; a series solution can be written for
v3(q) in terms of F3(q):

o0

vi(@) =€ > 2FI2 ). (5.18)
n=0

This is a solution only if the series converges. However, F'§ was constructed such that Fy(q) ~ ¢*.
Therefore, the nth term in (5.18) is of order,

€221 g4[24n = 22 g2 (5.19)

and the series converges. Therefore v ~ O(€?) as supposed.
What is the connection of this discussion with irrelevant variables? To see this, expand u, in
powers of g,

u (@ =r+q*+wq* +wyq®+.. .. (5.20)

Then, (5.17) gives to lowest order

—_ 4 r _ 4
Wi =76 Wi, Wh = gaW2 (5.21)
and all the variables w,, w,, . . . are irrelevant variables.

It should be clear now that v5 cannot upset the simple equations for #* and u*, since it
appears only in the terms with propagators in (5.9). These terms are already O(e?), so the
presence of v¥ leads to corrections ~O(e*) which can be ignored.

The discussion of u, parallels u,. We begin by writing,

us(qy, .- qa)=u*+v3(q,, ..., 495) (5.22)
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where v$ is a remainder defined such that 2X(0 . .. 0) = 0. Then, substituting (5.22) into (5.9) and

using (5.15), we can obtain equations for u* and vi(q,, . . ., q4),
*2 %
u* = 25{11* —36 [T 45 [4600.0.0.9p.P), } (5.23)
» P P
v:(ql, e ey Q4) = 250:(%q1, v . "El-q4) + ezFA;k(ql’ LS 614) (5'24)

The . .. terms in the equation for u* are all of order €3 or higher and can be ignored. Eq. (5.24)
implies that v ~ O(e?) in the same way that (5.17) gave v ~ O(e?). Since v does not appear
linearly in the equation for u*, v} cannot invalidate the simple equations.

Now consider u. Since u, appears linearly in the u* equation, it is potentially dangerous.
Consider the equation (5.9) for ug and the term corresponding to the diagram in fig. 5.2 in
particular. This term appears only when the internal line carries momentum greater than %, ie.

3414342 +Tas1 >3 (5.25)

However, it is only u¢(0, 0, 0, 0, p, —p) which appears in the u* equation. This corresponds to
q,=q,=0,q3 =p in fig. 5.2. In order to satisfy (5.25) |p| must be precisely 1 (see fig. 5.3). This
is only one point in the integral over |p| in (5.23) and therefore does not contribute to u*. There

1/2 a5 0 0
\\§Q,+‘5qz+‘5q3/ \ /

4/2(]2 / < 0/ \0

1724, 172 12

N~

Fig. 5.2. Diagram contributing to Fig. 5.3. The only diagram contributing
uUq,,- ... 9) to u, and entering the u* equation
linearly.

are other graphs which contribute to u¢(0, 0, 0, 0, p, p) for {p| < 1 but these are of order €3 ; thus

ug does not contribute an €2 term to the u* equation.t Therefore, the u* equation is safe!
Finally, we must cast the u* equation into the form we had last section. In particular, since

r* ~ O(e) and u* ~ O(e), we can replace,

| u? e [ L+ o (5.26)
(B2 & p¥y2 - oy .
7 * pP
and if we redefine the constant ¢ of section 4 to be
1
c=4 [— (5.27)
D
P

we find that (5.23) reads,
u* = 2%{u* — 9cu*?} (5.28)

which has the same form as (5.1) if we likewise neglect the r in the denominator of the second

1 The equation for ug has a term linear in ug, so if ug were of order €2 then ug would be also. But explicit study of the equation
for ug shows that ug is of order €3.



116 K. G. Wilson and J. Kogut, The renormalization group and the e expansion

term of (5.1). Now, we turn to the equation for r*. In particular, to calculate v one needs (5.16)
for small departures from the critical point. One gets:

' i 1
—_—pk = —_—pk — * —— — %k
r=r 4{r re—12u ,J,(p2+r*2)(r r )+.H}. (5.29)
We may approximate,
1 1
£W= ;[?*- O(e) =%¢ + O(e) (5.30)
and rewrite (5.29),
F—r*=4[1-3u*] (r —r*). (5.31)

Since the same constant ¢ appears in both (5.28) and (5.3 1), it will cancel out in the calculation
of the critical exponent v as in section 4. Therefore, we have shown that (5.1) suffices to lowest
order in € in determining the critical exponent.

5.2. Complete renormalization group transformation

What one sees from this discussion is that the exact renormalization group equations are not
hopelessly intractable functional equations. To order € they reduce to simple algebraic equations
for two parameters #* and u*. The basic reason that made this simplification possible was the
“iterability” of the equations for the remaining functional variables v5(q), vi(q, . . ., q3), etc.
That is, if the correction terms FJ(q) in the equation for v¥(q) are known, and are of order €2,
then v3(g) can be computed explicitly from (5.18) and is also of order e2. This is in contrast to
the equation for u*, in this case the second order terms are of order €2 but the solution u* is of
order €.

The iterability of the equations for the variables v3(q), etc. ensures that one can consistently
calculate the exact fixed point u5(q), uz(q, . . ., q3), etc. to higher orders in €. Then the
functions v3(g), etc. cannot be neglected; but no new problems arise in calculating them (except
possibly some difficulties with integrations in non-integral dimension d). This is because one can
arrange a calculation so that the diagrams contributing to v5(g), etc. (i.e. the function F3(q)) are
known to any given order €” before v3(q) itself is calculated to order €”. The iterability ensures
then that v3(q) exists in order €”.

The iterability of the equations for v5(g), etc. is a consequence of the fact that these functions
can be expressed entirely in terms of irrelevant variables. For example, we showed that if v3(g) is
written wig® + w¥g® + . .. then the equations for w§, etc. are of the form

wi =a,wf + second order term,
(5.32)

w3 =a,ws + second order term,

etc. where a; <1, a, < 1, etc. The fact that a; < 1 makes it possible to solve these equations for
wi and w¥ if the second order terms are known.

Iterability is possible even for relevant variables: in particular, the equation for r* is also
iterable if one writes it

r* = 4r* + other terms. (5.33)
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Then one can also solve for r*. It is only equations like the equation for u*:
u* =aju* + other terms (5.34)

with a; = 1 + € which is not iterable, because a; is too close to 1. ie2
Finally, consider further the constant ¢. In all calculations so far {2 has turmed out to be 2
independent of €. But in a higher order calculation { will change. The equation which determines

§ s,
g® =2"9¢2{4q* + (¢* terms from all diagrams contributing to u,)}. (5.35)

The lowest order diagram which has g2 dependence is shown in fig. 5.4, This diagram is of order

N
N

Fig. 5.4. Lowest order diagram
which affects the value of ¢.

€2, so ¢ will have to have a compensating term in order €2. It will be shown in section 7 that the
value ¢* of ¢ at the fixed point determines the critical exponent n. The formula is

n=d+2-=2In¢*/In 2. (5.36)

6. The approximate recursion formula

This section is devoted to the approximate recursion formula [111]. The approximate recursion
formula is an approximation to the renormalization group transformation discussed in sections 4
and 5. It will be used to provide order-of-magnitude understanding of the renormalization group
for 2 <d < 4 and will shed light on the validity of the € expansion.

The extra degrees of freedom in the exact renormalization group equations, as compared to
the simple equations for  and u, are of two types. First of all, there are momentum dependent
functions like u,(q) and u4(q . . . g3) instead of discrete parameters r and u. Secondly, there are
an infinite set of functions u,, u,, ug, ug, etc., corresponding to all powers of the spin variable,
not just u, and u,4. The approximate recursion formula takes into account all powers of the spin,
but does not allow momentum dependence except in u,. Most importantly for this report, the
approximate recursion formula includes Feynman graphs of arbitrarily high orders and in sufficient
number so that the divergent nature of the Feynman graph expansion is preserved by the recursion
formula. This means the recursion formula can be used as a model to see how badly the higher
order graphs affect the € expansion when calculated, say, in 3 dimensions.

The approximate recursion formula was first obtained by functional integral techniques [111].
Here a more transparent graphical derivation will be given due to Polyakov [116].

6.1. Polyakov’s derivation

Consider an interaction of the form

H =_‘;' I{Y's(x)}2 —Cy J. Qlcys(x)] (6.1)
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where s(x) is our usual spin field and the function @ is defined through its expansion,
Qlyl =rp? +up +wy+ ... . (6.2)

Two constants ¢, and ¢, have been introduced in H and will be adjusted so that the recursion
formula will be free of certain phase space integrals. Note that the only momentum dependence
in #C appears in its first term, i.e. no gradients are allowed in the expression (6.2). As usual, we
are going to force the renormalization group equations to produce an effective Hamiltonian ¥’
with the same form as #. That is, with the help of some approximations one tries to produce an
effective Hamiltonian JC' of the form

H=—L [ —c [Qleas'(0)] (6.1

(¢, and ¢, are the same constants as appear in () where s'(x) is the effective spin field obtained
by Fourier transforming oy ; the field og is as in previous lectures

L |
o' =§ 0g')2
and ¥’ is defined by integrating out the components aq with-‘; < {gq| < 1. The only difference
between the approximate recursion formula to be derived here and either the exact or simple
equations of sections 4 and 5 is that different approximations will be made.

To illustrate the approximations to be made consider the graph in fig. 6.1 which contributes
to u'. The prescription for neglecting momentum dependence will be to arbitrarily set the

Fig. 6.1. A graph contributing to
to u' in the approximate
recursion formula.

momentum of the external lines to zero. This is not an absurd idea because the external lines
have lower monienta (|g| <%) than the internal lines (|q] > ). So, the approximation goes in
the right direction anyway. Now, fig. 6.1 gives the following contribution to u':

1 1
2 442 4-d . 6.
3¢ {iu (re2) (p2+2rc1c%>2} S ©:3)

The factors of ¢,;¢3 multiplying u in (6.3) appear because they appear multiplying u in the
interaction (6.1): to fourth order in s(x), ¥ is

=—3 j [Vs(x)]1? —rc,c3 J.sz(x)—uclcg J.s“(x)+... ) (6.4)

X

The factor 2% 9 = £*273 appears in (6.3) as a result of the definition of oj as discussed in
section 4 and the value of ¢ (4.25); and finally, the last factor (—c;c3)”! appears in (6.3) because
the strength of the s'(x)* term in ¥ is —u'c;c3, so to obtain u’ one must divide by —¢;c3. In
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developing the approximate recursion formula contributions such as (6.3) are simplified further
by applying the following two rules:

1. Replace p? in the integrand by an average value p3.

2. Replace the integral [, (% <|p| < 1) by a constant P.
Clearly, such simplifications are not necessary in discussing relatively simple graphs such as
fig. 6.1. However, the neglect of the precise momentum dependence of the internal lines will
allow one to calculate graphs of arbitrarily high order.

Yet another calculational rule is imposed,

3. Only even numbers of internal lines are allowed at each vertex.
The primary purpose of this rule is to exclude graphs of the form shown in fig. 6.2. Such graphs
should not appear in the physical theory since they do not conserve momentum. However, rules 1
and 2 by themselves would permit such effects; this will be shown below. Rule 3 also eliminates
graphs such as fig. 6.3. In the limit that the external momenta go to zero such graphs are forbidden

internal < external \ /
RN

Fig. 6.2. A graph which does

not appear in the approximate Fig. 6.3. A graph eliminated by
recursion formula. It is rule 3.

omitted in accordance with

rule 3,

by momentum conservation so this is also good. Unfortunately, this rule also forbids graphs, such
as fig. 6.4, which should be present in the real theory. In particular, the class of graphs which are
allowed to contribute to ' is very restrictive in this approach. It is not true, however, that all the
effects of graphs of the type in fig. 6.4 will be lost. For example, after one iteration the graph in
fig. 6.1 contributes to . In the next iteration two of the external legs of fig. 6.1 might be
contracted forming a graph topologically like that in fig. 6.4. In other words, within the frame-
work of these rules the graph of fig. 6.5 would be omitted while the graph of fig. 6.6 would
appear.

12~ 12=1
O i J T
_— —_—rr— 174 -4/2
Fig. 64 A desirable graph Fig. 6.5. This graph is not Fig. 6.6. This graph occurs in the
forbidden by rule 3. " X 5 .
accounted for in the approximate approximate recursion formula.

recursion formula. The labels
1/2—1 indicate the momentum
ranges on the internal legs.

Now we shall simply write down the approximate recursion relation and show from its
perturbation expansion that it is equivalent to the rules 1, 2, and 3 above. The approximate
recursion formula is,

[ dy expl=y* =302 2 x +y) =402 x — )]
exp[-Q'(x)/2%] = — - . (6.5)
[ dv expl-y* =$00) ~5Q(»)]
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To compare this formula with the rules for simplifying graphs, this formula must also be
expanded in diagrams. This means writing out the exponential of the numerator as

exp{-y2 =30 +2172x) =3 Q(-y + 272 x)} =
exp{—(1 +1y? =22 9 —upy* — 6 x 2279 yy2x2 — 24~ 24y x4 — | 3 (6.6)

One then expands in powers of the quartic terms (proportional to «) and higher. This can be done
by graphs, just as was done for the exact functional integral. The uy?, 6uy2x222~9 and ux?24-24
terms, for example, define the 4-point vertex, with uy* corresponding to all lines being internal,
the 6uy?x222~? corresponding to two lines being internal, two being external, etc. The pro-
pagator for internal lines is the inverse of the coefficient of%y2 in (6.6), namely (2 + 2r)" . It is
easy to see that the absence of terms odd in y in (6.6) corresponds to rule 3 — removing vertices
with an odd number of internal lines. Without rule 3 one would have had exp[—y? — Q(y + 2! "¥2x)]
instead of the exponential with two Q terms, in eq. (6.5). Then the ry? term in Q(y) becomes

r(y + 2192x)2 which has a cross term rxy. This is the term corresponding to the graph of fig. 6.2
which is excluded in the exponent of eq. (6.6) and which is not present in the complete theory.
The variables x and y are analogous to the variables go4 and 0,4 in the theory of section 4; there
is no term of the form 6440,_4 in section 4.

The denominator in (6.5) removes all graphs without any external lines (‘““vacuum to vacuum”
graphs in field theoretic terminology). Taking the logarithm of the right-hand side of (6.5) removes
all disconnected graphs. So —Q'(x)/2¢ is the sum of all connected graphs with at least one external
line. Note that the x? term in (6.6) passes through the integral (6.5) and contributes 4r tor'. We
recognize this as the usual free field term which contributes 47 to r’,

The most important fact about (6.5) is that it produces the same set of graphs (apart from the
restriction of rule 3) that are generated by expanding the exact functional integral. This is
because the graphs themselves do not distinguish whether the integration variable is a single
discrete variable (») or a set of variables, or a function variable o4 . The distinction is made only
in terms of the rules for graphs: in the exact case a four-point vertex stands foru,(q . . . q3), for
example, while in the approximate recursion formula the four point vertex stands for u. Further-
more, the topological factor associated with a graph (the factor 36 for the graph of fig. 6.1, for
example) is also the same; it comes from the number of topologically equivalent ways of combin-
ing a given set of vertices and propagators and this is a counting problem which involves-only the
graphs themselves and not what they represent.

6.2. Some numerical results

Verification of the first two rules is now a matter of bookkeeping. One must show that the
factors of P and p3 produced by rules 1 and 2 can be absorbed into the coefficients ¢; and ¢, for
every graph in the theory. Consider a general graph of / internal lines, 2m external lines and n
vertices. In the exact theory, this graph has n—1 delta functions affecting the momenta of
internal lines, and consequently / — (n — 1) momentum integrals. There will be 2m + 2/ lines at
vertices. Now one can record the factors (apart from the topological factor) for this diagram. There
will be

1. (—c¢y)" — a factor.—c, for each vertex.

2. ¢2™*2 4 factor ¢, for each line at each vertex.

3. P'7"*Y _ 4 factor P for each integral.

4. (p3 + 2c,c2r)”! — a propagator for each internal line.
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We want the contribution of this diagram to a coefficient in the expansion (6.2). Therefore, we
must divide by an overall factor of —c, and a factor c%’" (one factor of ¢, for each external line).
There is finally a factor coming from the change of scale which is {272~ (m = Dd=2m - (m =1,
¢? is equal to 22*9 since no graphs are permitted to contribute g terms to u,(q) (due to rule 1).
Collecting all factors gives,

(_l)n—-lciil C%m +21Pl—n+1 1 1 22m—(m—1)d_ (6.7)

"‘*l——%c—ca'r)'l 2m
(P% 1C2 ci1C2

In order that the dependence on P and p3 disappear, choose

¢ =P, €2 = po/(zp)l/z- (6.8)
Now (6.7) becomes,
(—1yr=1 22m=(m=10d ) 4 2p)l. (6.9a)

Consider now the same graph in the expansion of the approximate recursion formula. For each
external line there is a factor 2! ~4/2. For each propagator there is a factor (2 + 2r)"'. Combining
these factors for the 2m external lines and / internal lines gives

22m=md(p 4 2py7, (6.9b)

Besides these factors there is a factor —u for each 4-point vertex, a factor —w for each 6-point
vertex, etc.; these factors also appear in the original interpretation of the graph except for the

— signs. There are also combinatorial factors such as how many ways the internal lines can be
assigned at a vertex (the factor 6 in 6u x2y22279 in eq. (6.6) is a combinatorial factor) or the
number of ways of hitching different vertices to form a given graph. The combinatorial factors
are the same for both the functional integral expansion and the expansion of the recursion
formula. There is one final factor: the graphs for the integrals on the right-hand side of (6.5) give
—Q'(x)/2%, not Q'(x). So to obtain Q'(x) one multiplies by —2¢. This changes the factor (6.9b) to

(__1)n-—122m ~(m —1)d(2 + 2’.)—1’

which is identical to (6.9a).

This completes Polyakov’s derivation [116] of the approximate recursion formula. Note that
n = 0 for the approximate recursion formula; this follows from eq. (5.36) since ¢ = 2¢*2. The
reason for this is that all momentum dependence of graphs has been ignored.

The approximate recursion formula is not a quantitative approximation to the exact renorma-
lization group equations. So far as is known, it is not the first term in any exact expansion of the
exact renormalization group equations. Nor is it the first term in a sequence of successive
approximations converging to the exact equations. One can only judge its validity by comparing
solutions of the approximate recursion formula with other calculations such as high temperature
expansions (see sections 7 and 8). In this respect it does rather well.

Baker [117] and Dyson [118] have constructed models for which the recursion formula is
exact. However, these models contain long-range interactions of a peculiar sort. Golner [119] has
derived a modified form of the recursion formula in which 7 is not automatically zero.

The original derivation of the recursion formula [111] using “phase space cell analysis” is more
compelling than Polyakov’s derivation presented here. Phase space cell analysis is not discussed
in these sections because it has already been described several times: thoroughly in {111], briefly
in [120]. One should find these references less difficult to read after studying this section and
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section 7. Phase space cell analysis was originally developed in connection with fixed source
models of the nucleon [121]. The real importance of phase space analysis is that it is an idea one
can use to get started on a problem for which all conventional techniques have failed. That in fact
was the situation in critical phenomena at the time [111] was written. Another example of the
use of phase space cell analysis is given by Langer and Bar-on [122]. v

We shall now discuss how one uses the recursion formula to study critical behavior without
expanding in powers of u, w, etc. Since (6.5) is a non-linear integral equation, the only adequate
tool to analyze it is the computer. Luckily, one dimensional integrals can be evaluated with great
ease and accuracy numerically. The analysis of (6.5) begins with a search for the fixed point [111].
Consider an initial interaction with Qo(y) = ro¥? +3 ¥*. The coefficient 7, is a parameter which
one varies in order to locate the critical temperature. To do this one generates on the computer a
sequence

Q) > 0,10~ ... > Q) (6.10)
for a given rqy . This sequence is examined for a fixed value of y, say y = 1.5. What one wants is a
sequence tending to a limit for / - oo, as depicted in fig. 6.7. This never happens in practice. If r,

Qg
+
+ + 4+ 4+ +
+ +

-+ + + — + + + "
—t + + + {

{ 2 33 5 6 7 8 9

Fig. 6.7. An ideal plot of the approach of
Qj to a fixed point.

is chosen too large, the sequence goes off to infinity because one is above the critical point and the
-Gaussian term r;¥? dominates for large /, and thenr; +; =4r. To compensate, one lowers r, and
generates a new sequence @;. If r, were chosen too low, the sequence will tend to oscillate badly
for large /. In practice one compromises between these two extremes by choosing an r, such that
Q) falls within a preassigned range after a preassigned number !’ of iterations. This procedure is
then repeated for larger values of /’. Once one has a sequence with Q;(») stabilized over many
iterations /' (I' = 12 in practice), one has a good approximation to the fixed point function Q*.

In three dimensions the resulting function is shown in fig. 6.8. Further properties of the
recursion formula and the fixed point function @* will be discussed in the next section.

Qe(y)

-7+

Fig. 6.8. Fixed point function @*(y) for
dimension 3 as determined numerically
from the approximate recursion formula.
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This section is divided into two parts. First is a continuation of the presentation of the results
of investigations using the approximate recursion formula. Then comes the derivation of a scaling
formula for the n-spin correlation functions. This formula will allow us to compute € expansions
for critical exponents using Feynman graph techniques.

7.1. More results from the approximate recursion formula

Recall that last section’s presentation of the approximate recursion formula began with the
interaction

Ho==% [(vs®]?—c, | Qolessx)] 7.1)

where the possible momenta in this physical system run over the interval 0 < |g| < 1. The
recursion formula then generates a new interaction which describes the same physics for a
system with a momentum cutoff one-half as large. In particular,

==L [ (Vs =¢; | Qilersin)] (7.2)
X X
generates the same physics as (7.1) but with a momentum cutoff |g| < 27/, provided that
Qi+ 1) =29 In{L,2"~¥2y)/1(0)} (7.3)
where
I(2)= [ expl-y? =3 Qi +2) =5 Qi(-y + )] dy. (7.4)

— oo

These formulae have been studied numerically for several choices of @, and dimensionality d of
the physical system. Consider in particular

Qo =roy?* +upy? (7.5)

for d between 2 and 4. As discussed at the end of last lecture, given u, one adjusts 74 to find the
critical value, i.e. the value ry. of ro for which,

Qi) > 2*0), asl— oo, (7.6)

For d =3 and u4 = 0.5 one finds the fixed point function @*(y) shown in fig. 7.1. For dimensions
near 4, say 3.9 or 3.8 (and smaller u,), one finds flatter curves as shown in the same figure. Recall
from our earlier discussions that the fixed point function is trivial (i.e. @* = 0) in four dimensions,
so the behavior of the curves in fig. 7.1 as d tends to four is expected. When d is precisely 4, and
ug <0.35, one finds that u; ~ 1/ for large I. So, free field behavior is approached very slowly as
expected from other formulations of the renormalization group {123], (see section 13). In
practice this means that when d is near four it takes many iterations of (7.3) and (7.4) in order
to reliably map out the fixed point function.

As d varies from 3 to 2, @* becomes much more complicated. Ford = 2, @* behaves roughly
as shown in fig. 7.2. (This figure was obtained from a slightly modified form of (7.3). Namely,
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Qc (d=3) Q. (d=2)
~y6 &
.-(d=3.9) ~ylé
Y

- —————

Fig. 7.1. Fixed point functions in
dimension3-and-3.9—

Fig. 7.2. Fixed point function in

2 dimensions. This curve resuited from

a numerical study of a slightly modified
form of the recursion formula.

the factor 2! ~9/? was replaced by 2! ~4/271/8 ) It is easily seen that two dimensions is rather
special: Suppose one is calculating Q; + ;(¥) for large y. If d =2, Q0,4+, (v) is determined by [;(y),
i.e. the arguments of the two functions match. The behavior of /;(y) for large y is in turn deter-
mined by @; when its argument is large and comparable in size to y. Therefore, the asymptotic
behavior of the input function @, to the iteration formula will tend to propagate through many
iterations. This behavior is contrary to the existence of a fixed point independent of Q,, and
makes it hard for a fixed point to occur. In contrast, for d > 2 the factor 2! /2 means that
Q1+, (») is determined by Q;(»") for y' ~ 2179/2 which is considerably less than y when  is
large. Then there is no problem. ‘

Once one has found the critical function @*(y), further numerical studies of the recursion
formula yield the critical exponent ». For this purpose, one begins the iteration scheme with
ro = ro¢, but not equal to ro.. One then observes how Q;(y) departs from Q*. For reasonably
large /, one expects that Q; has the form (by analogy with eq. (4.41))

Q)= Q% + (ro — roc) N'R*(») (1.7)

where R*(y) is a function independent of / and 7,. For this to be true, / must be large enough so-
that initial transients have disappeared; then 4 — ro. must be small enough so that (ry — rgc) A is

small. A is the leading eigenvalue of the linearized renormalization group equation as in section 4.
The exponent v is,

v=In2/InX (7.8)

as in section 4. The eigenvalue X\ can be determined by fitting (7.7) to the results of the numerical
iterations.

In fig. 7.3 we plot the calculated values of v as a function of d obtained from the approximate
recursion formula and compare the results with the high temperature expansion result at d = 3
and the exact Onsager solution at d = 2. The calculated curve is fit well by a quadratic function
ofe=4—d

Another use of the recursion formula is in studying the € expansion. One can compute the e
expansion for v resulting from the recursion formula by numerical techniques. The recursion
formula yields the following series for 2p:

20=1+0.167¢ + 0.04e2 —0.016€% + 0.077¢* —0.2¢% + 0.67¢% —2.5¢" + 10.3e¥ +... (7.9

indicating that the series is really an asymptotic expansion. If one truncates the series at second
order, one finds » = 0.603 at d = 3. This is to be compared with the best numerical result of the
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recursion formula, v = 0.609. Keeping only the linear term in (7.9) gives v = 0.583. These results
suggest that it is sensible to terminate the series at €2. A Padé analysis of (7.9) also reveals that
there is no appreciable improvement over the €2 approximation until eighth order at which point
the Padé expansion yields a slightly better value. This suggests that it is important to calculate the
exact expansion for » to order €2, but that there is not much point in calculating the €3 term or
higher. The most important result from the recursion formula is the hint that the series to order €?
should give a good value for » for € = 1. One might not otherwise have expected the series to be
good for this large value of €.

Fig. 7.3. Critical exponent v plotted
against the dimension of the physical
system. The open circles resulted from
numerical studies of the recursion
formula. The x atd = 2 is the value of v
from the exact Onsager solution while
the x atd = 3 is the best number
available from high temperature
expansions.

The next topic to be discussed is a method of calculating the € expansion exactly to any order
using Feynman graph techniques. It is first necessary, however, to establish a theorem concerning
the correlation functions. The proof will require the rest of this lecture and the theorem will
underlie much of the work to follow. Consider the correlation function defined for the original
Hamiltonian ¥, depending on temperature 7,

I'gy,....,q,;T)= Z"(oql ... Og, exp(FoN/8D(g, + ... +qy). (7.10)

The field theory analogs of (7.10) are the vacuum expectation values of the products of n fields
in momentum space. See section 10. We will show that if all the g; are very small (<1), and
T =T, then

T@1, .. qn; ) =70 S0 Fleq,y, . ., £40), (7.11)
where £ is the correlation length and
dy=3d-2+n), (1.12)

where 7 is a critical exponent. In field theory, d; becomes the anomalous dimension [132] (in
mass units) of the spin field. It will be calculated in a later lecture using Feynman graphs. The
correlation length £ depends upon T — 7, and it is only through this factor and the normalization
constant {4 that (7.11) contains any dependence on the original Hamiltonian.

Eq. (7.11) is true independently of the size of &g;. (¢ is large for T = T; one can make £q;
small or large without violating the requirements q; <1, T = T.)

Eq. (7.11) is an example of the “scaling laws’ proposed several years ago for critical phenomena
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(see the reviews in [124]); this particular formula was proposed by Patashinskii [125]. None of
the scaling laws have been proven from scratch for three dimensions and none will be proven here.
Here it is assumed that there is a renormalization group transformation which has a fixed point
and a simple form near the fixed point as exemplified by the approximate equations of sections 4
and 6. A proof from scratch would have to prove this assumption.

To obtain the result (7.11) requires the use of an exact renormalization group equation. For the
present purpose it is convenient to use a differential form of the renormalization group transforma-
tion. In previous lectures the renormalization group transformation was a discrete transformation
resulting from decreasing the cutoff from A to A/2. A differential transformation results from
changing the cutoff infinitesimally, from A to A — 8§ A. An explicit differential transformation
will be constructed in section 11; for now it is sufficient to know that a differential transformation
exists. In previous lectures the interaction with cutoff A = 27/ was denoted ¥;; here it is convenient
to write A = e’ and denote the effective interaction with cutoff A by ¥(;. In previous lectures the
interaction #(; +, was determined by a recursion formula in terms of ¥;. The differential analogue
to a recursion formula reads

d¥,/dt = U[,]. (7.13)

An explicit form for the infinitesimal transformation U is given in section 11. The interaction ¥,
is a functional of the variable o,’,, where

o =5, Nog, q'=¢q, 0<]q1<1 (7.14)

and {(¢, T) is a renormalization parameter; this is a straightforward generalization from the discrete
recursion scheme.

A crucial feature of eq. (7.13) is that U[¥(,] has no explicit  dependence, i.e., it is not U[¥(,, ¢].
This is a generalization of the fact that the recursion formula for ;. ; does not depend on /.

As in section 3, one can compute I'(q,, . . ., ¢,, T) for small enough g; using ¥, in place of ¥,.
The result is,

4., ....q, 7)=Z'[5¢, D" (o;zq’ Oy exp{IC, [0, TI}YV6%(q, +. .. +qyn) (7.15)
provided

0<le'q;l <1 (7.16)

for all i. (The reader is warned that when ¥, is defined using the explicit formulae of section 11,
eq. (7.15) is replaced by a somewhat more complex formula for technical reasons. The theorem
(eq. (7.11)) is unchanged and the argument given here is still correct in essence.) Z, is the
partition function {exp(¥(,)).

To proceed one must know how {(¢, T) changes with the cutoff. Recall that {(z, T) is deter-
mined by the requirement that the g2 term in u,(q, t) in ¥, have coefficient 1. Now, in the
iterative form of the renormalization group, a single iteration determines the ratio {;+,/{; where
{1 is the renormalization factor relating o4 to 03 lg.after [ iterations. In a differential formulation
one determines the ratio ¢(f + d)/¢(s), ie. (1 + [&(2)] 7! [d¢/d¢] df). This ratio is determined purely
by ¥, if the g2 term in u,(q, t) has coefficient 1, {!d¢/d¢ must be chosen so that the g2 term
in u,(q, t + dt) has coefficient 1. So there will be an equation

L ¥y (7.17)

§(r) dr

where V is an unspecified functional of ¥(,.
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We want to consider the physical system only near the critical point. From experience with
the recursion formula in previous lectures one already has a good idea of the behavior (7.13) will
produce. In particular, suppose one could plot #, (actually a term of ¥, such as u,) versus ¢: see
fig. 7.4. For small ¢ (relatively large cutoffs) ¥, passes through a transient region until it reaches
its critical value. The system is not quite at the critical point so eventually ¥, departs from its
critical value. ¥, may go to zero or it may diverge as shown in fig. 7.4. The onset of this region is
characterized by a value of ¢, ¢y say. The area to the right of ¢, we call the “correlation length
region”. Now imagine changing the parameters in 3, so that the differential equation (7.13) starts
out closer to criticality. Then the instabilities in (7.13) do not appear until larger values of ¢.

Hi |
u ; i
o™ N Uc “correlation

transient | length
region | | region
) H t

L

o
Fig. 7.4. 3, plotted against ¢. ¢ is related to the cutoff A; in
Heby Ap=e,

However, after the transient region, memory of the initial #, has been lost, so the right end of
the new curve will be identical in shape to the old, but will simply be shifted to the right. To see
this formally from the differential equation, suppose one has a solution H(¢, T') depending on the
temperature 7. Consider the region of  somewhat less than ¢, where (¢, T) is departing from
the fixed point H *, but not by much. In this range of # one expects H (¢, T) to have the form

H(t, T) = 3* + (T - T.) e ¥4 (7.18)

where a is the leading eigenvalue of the linearized renormalization group equation, and ¥4 is a
fixed interaction. The eigenvalue X\ of the discrete case (see, e.g., eq. (7.7)) corresponds to 2¢. The
important feature of eq. (7.18) is that both the ¢ and T dependence of #(¢, T) are contained in
the single parameter (7 — 7,) e?’. In consequence, a change of T in the curve ¥((¢, T) is equivalent
to a translation in ¢, as claimed, as long as (7.18) is valid. One expects, as in previous discussions,
that when e’ (the inverse of the cutoff) is of order &, then ¥((¢, T) will be appreciably different
from ¥*,i.e. (T — T,)e*" ~ | when e’ ~ & This means that a is 1/v. This aiso means that for

e! > &, (¢, T)is no longer near (* and the linear approximation (7.18) is invalid. Further
analysis allows us to treat this case. Define #,(7),

(T = T) = exp{—to(D)/v}. (7.19)
Then,

(e, T) = 3* + exp{{t — to(T)] v} 34 (7.20)
in the linear region. Thus it looks as if (¢, T) can be written

H(t, T) = H(t — 1o(T)) (7.21)

where 3(,(¢) is a particular solution of the renormalization group equations. It does not depend
on T and is defined for —oo < ¢ < oo. Because (7.13) is independent of ¢, (¢t — ¢,) is a solution if
Hs(¢) is. This ensures that (¢ — £4(T)) continues to be (¢, T) even if ¢ is too large for the
linearized equation (7.18) to hold. Hence, the “trajectories” ¥(; (o', T] have identical shapes for
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different values of 7, as claimed. Only for small ¢, for which initial transients are present, is
H(t, T) not equal to H(t — to(T)).

A further word about the initial transient region (small ¢). There are many possible choices for
the input interaction #(,, in addition to the choice of the temperature T. There are many para-
meters in #y; if one is completely general the entire functions 1,(q), ua(q . . . q3), etc. are
variable. Only one parameter, typically r4 = u,(0), has to be varied to find the critical point. For
small ¢, 3, obviously will depend on all the parameters in #y. But if ry = ry, its critical value,
then ¥, = 3(* for ¢t = oo; and H* is independent of the initial parameters in #,. This is because
H* is a solution of the renormalization group equations, and, at least for the examples discussed
in sections 4 and 6, J(* is completely determined by the renormalization group equations: there
are no free parameters in #* so J* cannot depend on any of the parameters in 3.

Likewise in the example discussed in section 4 there is only one growing solution of the
linearized renormalization group equation, up to a multiplicative constant. But a multiplicative
constant can be absorbed into a translation in ¢, so all the growing solutions can be obtained from
a single solution #(¢). #(¢) is defined so that I (—o0) = JH*; #,(¢) starts out at £ = —oo at the
fixed point. For large negative ¢, ; has the linearized form,

H(r) =H* + " Hy. (7.22)

For t > 0, #4(¢) can differ appreciably from J(* but is still unique.

The independence of H* and # (¢) of any parameters in ¥, is the basis for universality. This
will be discussed further in section 12. The solution #,(#) is called a ‘“‘renormalized trajectory”:
see section 12.

7.2. Scaling theorems for n-spin correlation functions

Now let us return to the analysis of the n-spin correlation function (7.15).
For large ¢ one can replace ¥, [0’, T] by ¥[0', t — to(T)]. Define,

(og: . .. og, exp{Hslo', T1P

f(‘h,---,‘In:T): 6d(q’l++q}z)Z(T) (723)
Then,
1t D'y, - .. elq,; 1 = 1o(1) 89D(e’q, +. .. +e'gy)
I'qy,....qn;7)= (7.24)

6d(q1 ...t aqn)

where we have explicitly displayed the delta function in the numerator of (7.15). The delta

functions cancel after producing an overall factor of e“d’,

TGy, .. qn: D=8 T Y f(eqy, . . ., e'qns t — to(T)). (7.25)

This relation holds only when:

1. ¢ is outside the transient region, i.e. ¢ large;

2. ¢/q; <1 foralli<n.
This means that one must consider only very small values of g;.

It is convenient to introduce the variable 7 = ¢ — £(,(7) and hold it fixed independent of 7.
Rewrite (7.20),

TGy, .. @ T =[5+ to(D), D" e Do g . et g 7). (7.26)
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This formula accomplishes the following. The T dependence was originally in the last argument of
F (as in eq. (7.24)) where it is hard to control. Now the 7 dependence has been transferred to the
explicit exp(#o(7T)) factors which are more manageable. The factors exp(¢o(T)) can be expressed

in terms of the correlation length £. Consider for example the definition of £ adopted in section 3:

£2 = -dInT(g)/dg?| -, (7.27)
Using eq. (7.26), one obtains

£2(T) = exp{2to(1) + N} d Infq', /dg"] . - (7.28)
A consequence of this formula is that one can write

exp{to(T)} = E(D/E(r) (7.29)

where £(7) is a function of 7 and independent of 7. It is a consequence of this formula that £(7) is
independent of 7 also.

Finally, one must determine the dependence of {(¢, T) on ¢ and 7. This is straightforward given
the differential equation (7.17). Over much of the range of ¢, ¥(; is approximately J(*, so consider
first the simpler equation d In {/d¢ = V[¥*]. It is convenient to define d as

d—d, = V[H*] (7.30)

(d, is a constant independent of 7" and ¢).
A solution of the simple equation is

£, T) = exp{(d —dyt}. (7.31)

There are two ranges of ¢ for which the simplified equation is incorrect; the formula (7.31) will
be modified to take this into account. First of all, for ¢ > ¢4, #; is not close to #*; but for this
range of ¢, ¥(; can be replaced by ¥, [a’, t — to(T)]. This means V[¥(,] is a function only of

t = to(T), say v(t — to(T)). For t <to(T), v(t — to(T)) reduces to d —d,. Taking the function v
into account, one can write

din¢/dt =d —dg + [v(t — to(T)) — (d — dy)). (7.32)

This is to be integrated with the boundary condition ¢ = 1 for # = 0. The quantity #o(7) is large
for the range of T near T, of interest, and for ¢ < #y,(7) the term in brackets is negligible. Thus
when (7.32) is integrated one is free to integrate the bracketed term from ¢ = —oo to ¢ instead of
0 to ¢. Then one has,

In§(t, T)=(d —ds)t +In {p(t — 1(7)) (7.33)
where
In {g(7) = f [v(ry) —(d—dyldr,. (7.34)

One now has,

£, T) = &p(t — 1o(T)) exp{(d —dy)t}. (7.35)

(Note that ¢g is 1 when t < ¢t4(T).)
Finally, there is.a correction to this formula due to the transient region for small #. As long as
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T =~ T, the behavior of 3, for small ¢ is independent of both T and the final large value of 7. In
consequence one finds that the correct form for In ¢ is,

In§(z, T)=(d —dgt +In §lr —16(1] +1In§y (7.36)

where {, is independent of both ¢ and T (provided ¢ is large and 7 = T). The constant {, does
depend on variables (besides T) that appear in ¥, such as u, in section 4. Using eqs. (7.26) and
(7.36) one has

E_(_Q](n— 1)d - ndg

@y, Gns T) = [Ea8e(7) expl(d —dg)7}1" 797 [ ; f(eTEq, [, . . ., eTEay/E, 7).

(7.37)
To obtain eq. (7.11) one defines
drin -1 _
F(q\, . ... qn, T) = [$(r) exp(—d,7) E%5]" ["egaz] fle'qi/E, .. . e7qnlt, 7). (7.38)
Then,
T@ys - -, )= D)D" Figq,, . £qn, D8R (7.39)

But since neither I' nor £ depend on 7, F must also be independent of 7; thus one obtains eq. (7.11).
A stronger result can be obtained for momenta large compared to 1/ but small compared to 1.

Return to eq. (7.15) and consider the case that ¢ lies in the range t > 1, to(7) — ¢t > | so that

H,; = H* Define,

fXqy, .. . an) =(Z*) " og . . . 0g; exp{IC*[o’I/8% g, +. .. +q)). (7.40)
For ¢ in this range {p is 1; therefore
TGy . .. qn, T) = $F expln(d —dg)t} e f*(e'q,, . . ., 'qn). (7.41)

This equation has two consequences. First, it has no T dependence on the right-hand side, which
means one can replace 7 by 7¢:

F(ql> -« s qn, T) = F(Qh < qn, Tc) (7-42)

The only apparent restriction on this equation is (7.16); since ¢ must be large, the restriction is
that |g;| < 1. However, the H4 term in eq. (7.18) has been neglected in replacing ¥; by #* and
this is legitimate only if §7! < |g;| for all |g;] (see below). The second consequence is a scaling
law which will be stated for 7 = T¢:

Tqy, ... qn T.)=s" D41 D(sq,, . ., sq,, T.) (7.43)

for an arbitrary scale factor s, provided both |g;| and sig;| are <1. (To prove eq. (7.43), calculate
I'(sq,, . . ., sqn, T;) using (7.41) with g; replaced by sq; and ¢ replaced by t'=t —Ins.) The
scaling law (7.43) is (to field theorists) a consequence of scale invariance for vacuum expectation
values of a field with anomalous dimension dg. To see this more clearly, let I'(x,, . . ., x,, 7.) be
the coordinate space multi-spin correlation functions

F(xl"--’xn’TC)z J."' j exP{iql'xl+v-~+iQn'xn}6d(q1+~-+‘In)F(q1,-~-,qnsTc)'
“@ (7.44)
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The scaling law in coordinate space analogous to (7.43) is
D(sxy, . . . 5xn, To) =550 (xy, . . . xp, To) (7.45)

and is valid for |x;} > 1. In an exactly scale invariant field theory there would be no such
restriction; the restriction occurs because the statistical mechanics has a cutoff momentum
(Ig;1 < 1) and therefore a cutoff length ~1; scale invariance only occurs at distances large com-
pared to the cutoff length. The relation of dg to 1 (eq. (7.12)) follows from comparison of
eq. (7.45) with n = 2 with eq. (2.4) of section 2.
Now the restriction £7! < |q;| for eq. (7.42) to hold will be explained. In order to neglect 3(q
in eq. (7.18) the size of (T — T,)e* ¥4 must be small. One can choose ¢t and T — T, so that
‘(T - T,)e* is small; the problem is the “size” of 4. g4, like any interaction, must be the integral
of an energy density:

Ha= | 3Ha00) (7.46)

and the “size” of ¥4 depends on how large a volume is important for the integral. The approxi-
mate recursion formula provides an example of the form (7.46): within this approximation, ¥q is

Hax—ci [ R*[epsx)] (7.47)

(cf. (7.2) and (7.7)). Consider the x-space form of the two-spin correlation function for J(’,l,
['(x;) = ¢(x,)s(0) exp(; ). (7.48)

This function behaves for very large x, like exp(—|x,|/§,) where §, is the correlation length for
¥, . Clearly £, can be ignored only when |x,|<§,, and £, becomes infinite if #; is replaced by
H*. The region over which #4(x) is important for I'(x,) is expected to be a region of size several
times |x,| surrounding the points x, and 0, from rough locality considerations. If |x;| <&, &, is
negligible in I'(x;) which suggests this region is small enough so the 4 term in (7.18) is only a
small perturbation. For |x,| = &, the region is large enough so ¥4 is no longer a perturbation.

The general rule in coordinate space is that the (4 term is negligible only for correlation
functions at distances short compared to the correlation length. This condition translated into
momentum space means all the |g;| must be much larger than {7, This was a very cursory
argument; a more careful but not rigorous analysis gives the same result.

This discussion of when #4 can be neglected can be avoided by assuming that I'(q,, . . ., qn, T)
has a well-defined limit for T > T, e.g. I'(q,, . . ., gn, T) becomes independent of §(T) for T > T¢.
Then the scaling law (7.43) follows directly from (7.11). The reason for discussing the strength of
H 4 is that this is an example of a very general problem in renormalization group theory. The
general problem is this: One has an interaction #, + 6 where 6 is a small parameter and H
and Hg are two arbitrary interactions. Under what circumstances can Hg be neglected? For
example, 6Hpg might be a transient term for large ¢, which has a small coefficient; we have con-
sistently neglected such terms. According to the above discussion it should be legitimate to
neglect Hp if one is calculating spin-spin correlation functions with |x;| ~ 1. However, for
correlation functions at large x, one has to consider the possibility that ¥y is enhanced due to
large volume effects and is no longer a perturbation.
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A warning is in order here. Suppose one takes a short distance correlation function and
differentiates it with respect to a parameter in the interaction, such as the temperature. For
illustration let the parameter be 6. The resulting expression can be very sensitive to the g term
even if 8 is small. The reason is that after differentiation one has a new correlation function con-
taining (g = f, #g(x) integrated over all space: the new correlation function is no longer a short
distance correlation function.

7.3. Slow transients and their removal for small €

Now another problem also needed as background for the € expansion calculation will be
considered.

A problem that arises when d is near 4 is the slow approach of the effective interactions ¥,

(or ¥, in the discrete case) to H* when one is at the critical temperature. This slow approach
can be illustrated using the simplified recursion formula of section 4. The study of this problem
is important for the calculations in the next section.

The simplified recursion formulae (4.27) have a fixed point (#*, u*) given by (4.30). Suppose
the initial value of g is close to u* but not equal to it, and that 7y = ro. (o). Then the solution
(r;, u;p) of the recursion formula approaches (r*, u*) for / - o, The rate at which r; and «; approach
r* u* can be determined by solving the linearized equations for r; —r* and w; — u*. This was done
in section 4. The result is that 7, — 7* and «; — u* behave as 2 ¢! for large I, where 27€ is the
smaller eigenvalue of the linearized equation. When e is small u; — u* goes very slowly to 0; for
u; — u* to be very small, e/ must be very large. In terms of the effective cutoff A; = 274, one must
have € In A; large.

This slow approach is undesirable for the purposes of the following section. Fortunately, it
can be avoided. If one chooses 1y = u* exactly, then 1; = u* for all / and there is no problem
with the slow approach anymore.

This is not the whole story. The full renormalization group recursion formula involves many
other variables besides 7; and ;. To simplify the discussion consider a single irrelevant variable w;.
It is not practical to set w, = w* because in practice there are too many irrelevant variables.
Fortunately it is not necessary to put w, = w*. Consider initial conditions (rg, #y, wo) near the
fixed point (r*, u* w*). Then the solution (r;, u;, w;) can be computed by setting up and solving
the linearized equations for r; — r*, u; — u*, and w; — w*. There will be three linearly independent
solutions of the linearized equations corresponding to three different eigenvalues. In the limit
€ = 0 these eigenvalues are 4, 1, and % (& is the largest eigenvalue for any irrelevant variable in the
€ = 0 limit). For € small, the third eigenvalue is still close to };.

The growing solution (eigenvalue near 4) is eliminated by choosing r, to be its critical value
roc(tg, wo). Similarly the solution with eigenvalue near 1 can be eliminated by proper choice of
Uy there will be a choice ug = ugc(Wo) such that (r; —r*, u; — u*, w; — w*) involves only the third
solution with eigenvalue near L. When w is neglected altogether, the “critical value” Uge iSjust u*
With w taken into account, uy.(W,) is equal to u* only if wy, = w*. But for other values of w,,
there is still a choice of u, which makes the coefficient of the slowly decreasing solution vanish.
In fact, ugc(wy) turns out to be u* to order €; only in order €2 is ug.(wq) different from u*. This
might have been expected since the presence of w only changes u* itself to order 2.

In conclusion, the initial values of all irrelevant variables can be chosen arbitrarily (typically
they are set equal to zero). There will then be critical values ry. and 4. such that ; - J(* like
47! instead of 27¢/. By setting ro = roc and uy = 1o, H; becomes approximately equal to J(* after
a few iterations regardless of how small € is (ro. and uq, like r* and u*, depend on ¢).
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8. Feynman graph calculation of critical exponents (¢ expansion)

In this section we shall discuss the calculation of critical exponents in powers of € using
Feynman graph techniques [126]. This approach will be illustrated within the context of
statistical mechanics although it will also serve as an introduction to following sections on field
theory and anomalous dimensions. In particular, we wish to calculate the behavior of the spin-
spin correlation function near the critical temperature. From the discussion of the last section
(see eq. (7.45)) one expects that

T(x) ~ 1/x2% (denoted I'(x, 0) in section 7) (8.1)

for 1 €K x €£and T = T,. The calculation of this section will yield d,, the anomalous dimension
of the spin field, when the dimensionality d of the physical system is near four. Various critical
exponents have also been calculated. See [126, 127], and table 8.1.

Table 8.1

Formulae obtained to date for critical exponents from Feynman graph calculations. See section 2 for definitions of
exponents (M = H 18 2t T= T defines 6). The number n is the number of components of the spin s; elsewhere in these
lectures n = 1. The constant 7 has been calculated to be 0.60103, approximately: see [127]. The formulae for n and v
are obtained in [127]. The other exponents are derived from scaling laws; the scaling laws are derived for the e expansion
in [131]:
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0= T amrer P gy {n* + 50n® + 920n* + 34720 + 4800 — 192(5n + 22) (n + 8) T}e
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8543058 T T DT © 80 v 8" {3n° + 128n* +488n + 848 — 48(5n + 22)(n + 8) T} e
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SR RE e e+4(n+8)3 ( +22m+ 52) & + grs 8)s{n +44n® +664n* + 24961 + 3104 — 96(5n + 22)(n + 8)T}e>
8=3+e+———{n + 14n+ 60} ¢ + ——— {n* + 30n° + 276n* + 1376n + 3168} +———— {2 + 96n*
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~192(5n +22)(n + 8) T}e®
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32( + 8)‘s

3 (n* +23n + 60)e* + {Zn +89n® + 1412n* + 5904n + 8640

v=4+

32( + 8)’

This section is rather brief, but there are now many other references on the € expansion; see
the supplemental list of references at the end of this report.

The basic idea of the Feynman graph calculation is the following: For physical systems with d
near four and with scalar coupling s*(x), the strength « of the s*(x) interaction is of order e = 4—d
at the fixed point. Therefore, it is sensible to calculate perturbatively in the parameter . If d = 4,
one would be dealing with the usual Feynman graphs of ¢* scalar field theory. Then, the Fourier
transform of I'(x) becomes the propagator of the field theory and has the form (at T}),

I'(q) °‘ql—z{1 +ayuglog q* +a,uf log*q® +. . .} @2
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Here 1, is the bare s* coupling constant and a; are certain constants. The field theory is cutoff
dependent; the cutoff has been set equal to unity as in previous lectures. For € # 0 all that
happens is that more logarithms appear in order €, €2, etc. See later in this section. To obtain
useful information from the first few terms of (8.2), we must restrict our discussion to values of
1y and g? such that

lug logg?{< 1. (8.3)

In principle one could relax (8.3) and sum the logarithms in (8.2) to all orders by other techniques.
However, using what we have learned about the renormalization group and critical behavior, it will
be sufficient to study only the first few terms in the expansion.

At the critical temperature one has from the Fourier transformation of (8.1),

L(g) ~ 1/g*™™ (8.4)
(n =2(ds + 1) —d). This equation can be expanded, if 7 is small:

1
F(q)~b—2{1+nlogq +3n?logq+...}. (8.5)

If it were sensible to compare coefficients of the logarithms in (8.2) and (8.5), we could actually
compute 7n directly. In general, matching power series (8.5) and (8.2) is not sensible. This is so
because for most choices of 1, the power law (8.4) is correct only when ¢? is so small that
o In g2 is large, in which case the expansion (8.2) is invalid. This tight restriction on g2 is due
to the slow approach of H; to H* discussed in the previous section.

Fortunately it is possible to choose the parameters of the initial interaction such that
eq. (8.4) is valid for a larger range of ¢2. In terms of last section’s discussion, one must choose
Uy = Ugc(€) so that 3(; settles down to its critical form JC* after only a few iteration steps. This
means that (8.4) and (8.5) are valid for all ¢ with g < 1, independently of €. Then for small ¢,
which means small u,, (8.2) and (8.5) are both valid for g in the range,

exp(—1/uy) €q <1

and the two equations can be matched order by order in In g2.

Now we turn to the calculation for uy.(€) (denoted uq(€) from now on) and n. To do this we
shall study the following two quantities: the four point function ug with its external legs set to
zero momentum for T # T, and the propagator I with its external legs carrying momentum g
for T = T,. Then, if we define the propagator for T # T, but ¢ = 0 (i.e., the susceptibility) to be
r~1, it follows from the scaling laws for n-point functions discussed last time that

g o €= /2 =n) (8.6)

as we shall show. A second expression for ug follows from a Feynman graph expansion for ur
in powers of u,. Matching the graph expansion with (8.6) determines u4(€). Then 7 is finally
obtained in terms of € by matching expansions (8.5) and (8.2).

Our first task is to prove (8.6) from the theorems developed in the last section. The initial

interaction for the system will be,

¥, =_% J[q2(1 +g2)? +rologo_g —uo f j j 0q,04,04,0-q,-q,~q, (8.7)
q 9, 49, 4,

where ¢ is allowed to range from zero to infinity. The kinetic energy piece of #, has additional
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q* dependence which serves as a cutoff in place of an upper limit on q. (Nitpickers will discover
that one power of 1 + g% would have been sufficient.) This form of cutoff is more convenient for
calculating Feynman graphs. It is also convenient to perform a ‘“‘mass renormalization” on (8.7).
Write

Ho==% [1a?+q?P+ 1040 =% [(ro =r)og0_q = (1t term), (8.8)
q q

The new term in (8.8), a self-mass correction, is treated as a perturbation as is the u, term. Since

the r dependence is added and subtracted in (8.8), it can be chosen arbitrarily. We will choose it

such that I'(0) (¢ = 0) is precisely r 7!, i.e. we demand that I'(0) be given as if only the first term

in (8.8) were present; all corrections to I'(0) due to the perturbations must vanish identically.
Define the #n spin correlation function in the usual way,

(og, . . - 0q, exp(Io)
5 (ql ..t qn)

where we have indicated explicitly that I’ depends on r. The definition of ug will be precisely,
UR = F(O, 0, 0) O, r)connected/F(O, r)4 (8' 10)

where the subscript “connected” means that no graphs consisting of the products of 2 point
functions should appear in (8.10). The denominator I'*(0, ) is equivalent to removing self-energy
insertions on the external legs of all diagrams. To discover how ur depends upon r we refer to the
scaling laws obtained in the last lecture. In particular from (7.11) we have

'y, .., qn:N= (8.9)

L@1s - - qns 1) ~ BN DI F(q g, ., qn8) (8.11)
SO,

I'(n zeros; r) ~ g(r)® D4 —nds (8.12)
The propagator then has the property,

LO;r) ~¢ "M =g2n (8.13)
But, ['(0; r) = r 7! by definition, so r and § are simply related,

r-l~g2°n (8.14)
From (8.12) the correlation function for four spins satisfies,

I'(0, 0,0, 0;r) ~ §3973ds = gd+4-2m, (8.15)
Therefore, combining (8.13) and (8.15),

ug ~gdraTanjg8an, (8.16)

In terms of r this reads

~ ple- 2n)/(2-n)

UR (8.17)

as claimed.
Our next task is to obtain power series for ug and I'(g; r) in the parameter uy. This is an
exercise in computing Feynman diagrams in 3.99 dimensions [ 126, 128]. The graphs contributing
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to ug to order u3-are shown in fig. 8.1 and the graphs contributing to I'(g; r) to order u} are given
in fig. 8.2. Before illustrating the calculation of a graph contributing to ug, consider the graphs in
fig. 8.2. Since the self-mass term in the Hamiltonian is defined in order that I'(0; ) be just the

free propagator at ¢ = 0 and since the loop integral in the second diagram in fig. 8.2 generates no
q dependence, the second graph is completely cancelled by the self-mass term. The final diagram
for I'(q; r) does depend on g; the self-mass correction cancels this graph completely only for g = 0.

2
><u° ' >©<u° * ><(ZUS + >O©<u3+
3 ..

Fig. 8.1. Graphs contributing to uR.

+ Q Uo + % + :/_\.,— uZ o+ -

Fig. 8.2. Graphs contributing to I'(g;r). The x refers to the r, — r term in (8.8).

As an illustration of the calculation a Feynman graph in 3.99 dimensions consider the u3
contribution to ug. It gives

)
| d—q (8.18)

u .
0 [q2(1 +q2)2 +)’]2
The angular integration is simple and produces an unimportant constant. Now (8.18) becomes,

°° g9 'dgq

2
const. ug Of TRErR DR (8.19)
The € dependence of (8.19) comes from,
g% =g =q>—eq®logq++€*q® logq—... . (8.20)

Consider first the g3 term contributing to (8.19). We are interested in very small values of 7, so
the range of the integral » < ¢2 < 1 will produce a single log r,
34 1 2
[ ~ [ o (8.21)
[q>(1 +q*)* +r]? q
Similarly the eg? log ¢ term in (8.20) will produce an € log?r contribution to (8.19). So, we can
expect an expansion of (8.19) in € to have the form,

w3 {Inr +e[ln?r +Inr + const.] + €?[Inr + . . B (8.22)

where a host of numerical constants have been suppressed. The integral in this example was
particularly simple. In general we meet nontrivial angular integrations such as,

[q? 1 sin?2(6) . . . dq do (8.23)

and possibly even two angular integrations. These are still well-defined for non-integer d
(126, 128].
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Using the techniques discussed here and exercising more care with factors of 2 and w, one
obtains the following expansions:

ug =t + 9 wd/4n){Inr+1l —Felnr.. . }+... (8.24)
for small r, and

I'(q; 0)——{1+ 1 ng+...} (8.25)

for small q. First observe that (8.25) lacks a ¥, term since no graph enters the calculation in first
order. Since I'(g; 0) ~ ¢~2*" for g small, n must be of order u3. Now look at ug. Up to the
In 7 term,

Su,
ur = ug {1 +— e SInr+...} (8.26)

which must be proportional to #€~27/2=") The factor uy can be dropped (it is a constant of
proportionality); therefore

1+Z Inrore20/@=m =1+ 1e+0wd)]Inr+. (8.27)
72
and we have

Ug == m? € + higher orders. (8.28)
Matching (8.25) with (8.5), we find:

n =¢€?/54. (8.29)

It is interesting to observe that 54 is not a small number, so even choosing € = 1 results in n =~ 0.02
which is small compared to unity. n has been calculated to order €* giving n = 0.04 for e = 1. The
best guesses for n from the high temperature expansion give 0.041-0.056 [129, 130], so our
rough calculation seems quite reliable. The anomalous dimension of the spin field becomes, for
e=1,

=1d-2+1)=0.5+0.025

from the high temperature expansion result. It is dg which has special significance as an anomalous
dimension in field theory applications. And it is interesting to note that the correction to the
mean field theory value for d, is small compared to unity.

Table 8.1 lists the results of Feynman graph calculations for critical exponents obtained to
date. Table 8.2 lists the comparison of Feynman graph calculations at € = 1 with high tempera-
ture series calculations for the three-dimensional Ising model (as summarized in [130]). The
differences are too small to be taken seriously.

Table 8.2
Comparison of high temperature results for the 3-dimensional Ising model [ 130] with the e expansion to order €*, except
to order e® for n (table 8.1) for e = 1 and n = 1, and Landau theory.

Exponent € expansion Ising Landau
v 0.626 0.642 : 0.003 0.5

n 0.037 0.055 + 0.010 0

vy 1.244 1.250 + 0.003 1.0

o 0.077 0.125 + 0.015 0

i 0.340 0.312 + 0.003 0.5

5 4.46 5.150 + 0.02 3
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9. Dimension of tensor operators in 4 — € dimensional space-time

In this section quantum field theory in 3.99 space-time dimensions d will be discussed. In
particular, the dimensions of tensor operators relevant to deep inelastic scattering will be com-
puted using the € expansion. (For a review of theories of deep inelastic electron scattering and the
relevance of tensor operators see [ 132].) The theory discussed here approaches a free field theory
for d — 4, so it is not directly relevant to physics. The importance of the calculation is that it gives
an example of anomalous dimensions in a theory which shows scale invariance at short distances.
Previously the only known example was the more trivial Thirring model. (For references on the
Thirring model see [133].)

The details of the connection between critical phenomena and field theory will be discussed in
the following section. Here we shall rely on the obvious connection that the Feynman graphs
discussed in previous lectures are similar to the (unrenormalized) Feynman graphs for a ¢* field
theory. The actual calculation will be set up in statistical mechanical language; the obvious analogy
between correlation functions of spins and vacuum expectation values of fields will allow us to
interpret the results of the calculation in terms of anomalous dimensions.

To begin, consider the rules of the Feynman graph approach to the € expansion. The propagator
had the cutoff form [g2(1 + ¢?)? + #]7! and the vertex was —u,. The mass renormalization was
done such that the exact propagator at momentum zero was equal to the free propagator at
momentum zero, namely r~!. Now consider ¢* field theory. The propagator is [k? —m? + ie] ™!
and the vertex is iAy. One can relate the field theoretic quantities m?, k2 and A, to the statistical
parameters r, g% and u,. Comparing the propagators at zero momentum, the identification

r < m? 9.1
is clear. Considering only small g% (g% < 1),
q* < —k2. (9.2)

So, positive g2 corresponds to space-like k. Therefore, the statistical mechanical calculations

apply only to vacuum expectation values of fields in the space-like region. It is well-known that
the internal momenta in graphs having space-like external legs can be made space-like by a contour
rotation. Therefore, the perturbation theory rules of previous lectures are Feynman rules for
space-like momenta. The bare coupling after rotation of internal momenta becomes —\, which
should be identified with —u,. m? appearing in these rules is not quite the true renormalized mass
because the renormalization has been done at zero momentum instead of on the mass shell. Since
the cutoff is fixed at 1, one must have small m (i.e. small r) in order that the physical mass be
much less than the cutoff. No wave function or coupling constant renormalizations have been
done.

The integrations in the statistical mechanical case were of the form [ ddq where d is the
dimension of space. In the field theoretic case d is the number of space and time dimensions. Thus
d =4 — e means only 3 — € space dimensions in the field theoretic case, whereas it means 4 — ¢
space dimensions for the statistical mechanics case.

In this section we will calculate the dimensions of several composite operators within this
framework. Defihe a vertex in configuration space by,

Uyp(q, —q)T%(q) = fexp{iq- x} exp{—igq - ¥} (s(x) s(») T,5(0) (9.3)
where

T, 5(0) =5(0) V, V; 5(0). (9.4)



K. G. Wilson and J. Kogut, The renormalization group and the ¢ expansion 139

I'(g), the exact propagator, appears squared in (9.3) in order to remove self-energy insertions on

the external legs of the vertex. The operator T,z will be denoted graphically as in fig. 9.1. We are
particularly interested in the pure tensor piece of the operator T, ; (as opposed to the scalar part
2 T, ). Choosing o # 8 picks out just this piece.

aB

Fig. 9.1. Diagrammatic representation
of the composite operator Tyg.

In field theoretic language T, is a linear combination of the stress energy tensor and the total
derivative V, V; s2(0). The matrix element U,z has been cleverly chosen so that the total derivative
does not contribute to U,g. The reason is that the external momentum carried by T, is zero. It
can be argued on general grounds that the dimension of the stress energy tensor is d, the dimen-
sionality of the system, for a scale invariant theory. We will see that this is true at least to order
€2. In real life there are other operators which carry intsrnal quantum numbers such as isospin
which need not have dimension d. To illustrate this, internal quantum numbers will be introduced
by giving s an internal index. Call the new fields s;. The theory will be constructed to be invariant
under rotations among these fields. The interaction term in the new Hamiltonian becomes
Z;, j uosts}. There are two possible tensors:

Tas(0) = > 5/(0) V, Y 5;(0) (9.5)
and, !
To5i7(0) = 5:(0) V, Vgsi(0) (i #7). (9.5b)

T,4ij(0) is a tensor with respect to the internal rotational symmetry as well as to spatial rotations.
Corresponding vertices U,z(q, —q) are defined by substituting (s; (x) s; () T,5(0)) or
(Si (x) Sj (y) Taﬁi}'(o)) into (93)

The analysis of these tensors will be done for small  and small external momenta q. In order
to discuss the case ¢ = 0, a kinematic factor q,q; must be removed from U, explicitly. We will
calculate the scalar functions multiplying g, q;. To begin, recall several results from the last
lecture. Scaling arguments proved that the exact propagator at zero momentum scales as a power
of the correlation length, £ 29 Similarly, the four point function scales as £39~%9s/£4d ~8ds when
its external momenta are all set to zero. These results are easily understood. In the case of the pro-
pagator, one is considering the quantity fd9x (s(x)s(0)). The important values of x which contri-
bute to the integral are x ~ §. Therefore, the d-dimensional integral contributes £¢ while each
spin field contributes a factor £ 9. Similar arguments can be made for the quantity Uys(a, —q)
and Uqygi7(q, —q) when q is very small. If dr is the anomalous dimension of the operator T,g4,
then

2d-2dg-dp
Uws@, —q) ~ Tpdad, F.5(q¥). (9.6)

As argued above, U,z(q, —q) is proportional to q,qg. Therefore, for small g, F,4 is proportional
to go £ qg¢. Then (9.6) becomes,

Uss(q, —q) ~ E“z‘i"quaqﬁ (gt < ). 9.7)
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Eq. (9.7) can be written in terms of r and 7 using the definitions d, =%(d —2+7n)and
r~1 ~£d-2ds Then (9.7) becomes,

Ung(q, —q) ~r9T=3=mIQ=mq a0, (g8 < 1). (9.8)

The critical exponent i can be calculated as a series in € by using the matching procedure
described in section 8. The only added ingredient is the presence of internal symmetry which
increases the number of graphs which must be considered. The appropriate generalizations of
(8.24) and (8.25) turn out to be,

2

Yo nr+. .}, q"~1+32(n+2)(1;‘$)21nq+..., (9.9)

1672

where n is the number of possible values for the internal symmetry label i. And finally, u, and n
can be expressed in terms of €,

Ug/16m? =€/8(n + 8), n=32(n+2)ud/(1672)%. (9.10)

rel? ~uo {1+ 4(n+8)

Setting n = 1 reproduces the results of section 8.

The same type of analysis will now be used to determine dimensions of tensor operators.
Consider the diagrams contributing to the vertex functions U,4(q, —q) and Ui (g, —q). To order
zero in u, the diagrams are those of fig. 9.2. The possible diagrams in order u, and u3 are shown

aB ,Q,i ,q,i ,Q,i
“_q,i @B rq,i °# -q,]
(b)
(a)

Fig. 9.2. (a) Zeroth order graphs contributing to Uqyg. (b) Zeroth order graph
contributing to Uygg ;.

in figs. 9.3 and 9.4. However, the diagrams of figs. 9.3 and 9.4a vanish. The reason for this is that
q does not appear in the loop integration where the indices « and 3 appear. Therefore, there is no
possible way for a factor g, g to emerge from the calculation. Hence the graph must vanish
identically. The calculation of the graph shown in fig. 9.4b consists of two parts. First is the cal-
culation of the integrals and second is counting the number of ways the graph can be constructed.

k q
o
o aB
-k ]
Fig. 9.3. Potential contribution

to Uyg of order u, . This
diagram vanishes.

One way to calculate the basic graph in fig. 9.4b is to do the internal p integration first,

1 1 J
(PH1+pH)2 +rl(p+k+q)ll +(p+k+q)2]2+r]d b 9.1D)

z[(k+q)21=f
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The k integration then reads,

1
2
i [ ks G T

Sk + ¢)?] d4k. (9.12)

(a)

(b)

Fig. 9.4. Two graphs of order u? contributing to Uag. Graph (a) vanishes
identically but (b) does not.

Since our goal is to calculate U,g and U,gj;; to O(u}), the d = 4 — € dimensional integrals can be
replaced by familiar four dimensional integrals. This is true since (9.12) is O(u3) and the €
dependence of the integrals will introduce only higher order corrections. Eq. (9.12) is not difficult
to evaluate. The contribution to U in the limit g = 0 is,

2

u
— 1 9045 (677 61‘;2)2 Inr (9.13)

To do the counting one must look at the different ways the indices i and j can run through the
graph. Fig. 9.5a, b shows two alternatives for U, while fig. 9.6a, b shows two alternatives for
Ua,gij . Associated with fig. 9.5a is a counting factor 4 x 4 x 2n. The factor n comes from the free
sum over indices of the internal loop. In fact, any graph with an internal loop of indices contri-
butes a term proportional to n. Furthermore, there are 4 ways the upper four point vertex could

0~

(a) (b)

Fig. 9.5. Graphs (a) and (b) show two distinct ways for indices to circulate through a graph
contributing to Uypg.

(a) (b)

Fig. 9.6. Graphs (a) and (b) depict two alternate ways for indices to appear in graphs
contributing to Uyg, jj.
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be constructed. A similar factor of 4 comes from the bottom vertex. Finally, there is a factor of
2 from the ways of making the loop after the two vertices are determined. Similarly, the counting
factor for fig. 9.5b is 64n. The total for the two figures is 96n. There are also diagrams without
loops (of the sort in fig. 9.6b) which contribute to U,;. Taking these into account, the total
counting factor is 96(n + 2). The counting problem for U,y ;; involves different combinatorics.
Fig. 9.6a contributes 32n (the calculation is identical to fig. 9.5a). However, this is the only graph
with a loop contributing to U, ;;. Fig. 9.6b shows one of the non-loop diagrams. Including all
the possibilities produces a counting factor of 32(n + 6) for Uyg, ;5.

Collecting the integrals and the counting factors gives,

96(n +2) ud
Uap ~ 2409 [1_ 6 (161?2)211”]

(9.14)

The overall factor of 2 in the O(u3) term comes from the fact that the indices & and 8 could

appear on either the upper or lower lines in fig. 9.5a, b etc. Similarly,

_32(n+6) u}
6 (lé6m

Uag,ij ~ 4ads [1 2 lnr] (9.15)

Eq. (9.14) is to be compared with the scaling result,

qaq5r(dT—d—n)/(2_n)- (9.16)

Since 7 is O(u3), it can be neglected in the denominator of the exponent. Then, comparing (9.16)
with (9.14) gives,
dr =d +n -3¢ (n+2) ud/(16m2)>. (9.17)

Using the previous result (9.10) for 7 it is apparent that the second and third terms cancel in
(9.17) leaving_

dr=d 9.18)
as claimed. To determine the anomalous dimension d(7};) for T,5;; compare (9.15) with (9.16).
This gives

d(Ty)=d +n—3(n+6)ud/(16n?)2. (9.19)
Using (9.10) this becomes,

d(Ty)=d+ (9.20)

n 2

3(n+8)

Choosing n = 3 (so the s; form an isospin triplet) gives,
d(Tj)=d +€*/121. (9.21)

Since € is at most of order unity, the deviation of d(7j;) from d is remarkably small. Of course,
higher order corrections to d(7};) will change the details of d(7};) — d, but the semi-quantitative
result that d(Tj;) —d is small is expected to still hold. The reason the anomaly is small is that the
graph of order u, (fig. 9.3) is identically zero.

The relevance of this calculation is, of course, a matter of debate. However, it does present an
example of a scale invariant theory in which one can actually calculate anomalous dimensions. It
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may be that the anomalous dimensions that actually govern the behavior of deep inelastic scatter-
ing [132, 134} are also very close to canonical. (For recent perturbation theoretic analyses of
deep inelastic electron scattering see refs. {135, 136].)

Since u, is of order ¢, it is clear that vy = O for € = 0 which means there is no interaction when
d = 4. So this calculation cannot be applied directly to real elementary particle physics. The hope
is that what one sees here for dimension d < 4 (say d = 3) is an indication of what a more realistic
theory will show for d = 4.

Anomalous dimensions have been computed for the mth rank tensor operators T

T ap(©)= 2 $5(0) Ve, - . . Vi, 5(0) 9.22)
To, ... amif(0) =5:(0) Vq, ... Vy,, 51(0) (9.23)
for even m. These will be denoted T{,,) and T(yij, respectively. The results, to order €?, are
d(Tomy) = a(fn +| 28)32 e? {1 m} (9.24)
d(Tomyij) =§((—"n——% e {1- +22(;7r:(,i) " 1)}. (9.25)

10. Connection between statistical mechanics and field theory

In section 9 a brief argument was given that the Feynman diagrams for the ¢* interaction
(converted to imaginary times, i.e., a Euclidean metric) are identical to the diagrams for the
partition function of earlier lectures. To be precise, the vacuum expectation value of n fields ¢
is proportional to the n-spin correlation function. In this lecture the same identity will be estab-
lished at a more fundamental level and with greater care. Greater care means, for example, intro-
ducing a specific (and noncovariant) cutoff procedure for the ¢* theory, and not making use of
the Feynman.expansion.

The connection between critical phenomena and field theory has been recognized and exploited
in diagrammatic form by Gribov and Migdal [137, 138] and Polyakov (139—-141]; a detailed
comparison of the Feynman path integral to the partition function is given by Moore [142]. The
connection is also discussed in a thesis by Suri [143]. The emphasis in this section is on the
transfer matrix (as in [143]).

Quantum theory on a lattice will be a crucial part of the discussion. In this theory one has
discrete operators ¢, instead of a quantum field operator ¢(x). Simple Hamiltonians on a lattice
have the form of coupled harmonic or anharmonic oscillators (see below). A locality requirement
will be imposed: the Hamiltonian H should be a sum,

H=§Hm (10.1)

where H,, depends only on operators ¢,, near the site m. Quantum field theory reduces to a lattice
theory by use of a suitable cutoff method; lattice theories will be defined from statistical mechanics
using the ‘““transfer matrix” formalism (see, e.g., { 144]).

The cutoff procedures are likely to distort the original ¢* theory even if the original theory
makes sense. In perturbation theory the effects of a large but finite cutoff can be removed by
standard perturbation theoretic renormalization techniques. A nonperturbative renormalization
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theory will be described in section 12. At the end of this section there will be some preliminary
remarks establishing the equivalence of an infinite cutoff in the field theory to an infinite correla-
tion length in the statistical mechanics.

The lattice theories are not Lorentz invariant (or Euclidean invariant for imaginary times).
Lorentz invariance has to be recovered in a continuum limit. The nature of this limit is deter-
mined by the renormalization process. In perturbation theory Lorentz invariance is restored. (For
example, the graphs in sections 13 and 9 are all Euclidean invariant.) The conditions needed to
give Euclidean invariance in general are discussed in section 12.

There is no trivial connection between the Hamiltonian which defines the statistical mechanics
and the Hamiltonian of the corresponding field theory defined in this section. If the statistical
mechanical Hamiltonian is defined in a space of dimension d, the field theoretic Hamiltonian acts
in a space of dimension d — 1. Statistical mechanical interactions are denoted by ¥, field theoretic
Hamiltonians by H. The statistical mechanical interaction #( is more closely related to the
Lagrangian of the field theory (see below and [142]).

The transfer matrix formalism has been described elsewhere [144], but will be reviewed here.
(It was used in [ 144] as a basis for a transparent derivation of Onsager’s solution of the two-
dimensional Ising model.) Consider a statistical mechanical model on a discrete lattice. The
partition function is defined to be,

7= H( ds,, exp {—%sfn —uosf,,}) exp {K 22 s,,s,,q} (10.2)
m n i

where the notation is borrowed from sections 3 and 4. (The sum over{ is a sum over the d axes; i
is a unit vector along the axis i.) The partition function (10.2) involves integrations over the spins
at each lattice site. Inside the exponentials there are terms associated with individual sites and
terms which couple nearest neighbor sites. We will now show by construction that Z can be
written in the form,

Z=tr vV (10.3)

where N is the extent of the lattice (assumed finite for now) and V is the transfer-matrix, which
will be defined below. To begin, one must organize the integrations in (10.2). For a plane lattice
the spin variables are integrated out row by row (see fig. 10.1). (For a lattice of dimension d, a

° . . ° o .
ROW+1{ o . ° ° . °

ROW O e [ [ [ ] [ ] °

Sm  Sma+y
ROW -{ o . . . . °
. . . ° . .

Fig. 10.1. A two-dimensional lattice of spins. Spins
within each row are labelled with a subscript.

d— 1 dimensional sublattice substitutes for a row.) Schematically, Z will be written in the form,

z=. . [ .. . (10.4)

row 1 row 0 row —1
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where the rows have been labelled in fig. 10.1. Since the interaction in (10.2) involves only
nearest neighbors, the partition function can be written more explicitly in the form,

Z=... f exp{¥C [row 2, row 1]} f exp{¥ [row 1, row 01} [ e (10.5)

row 1 row 0

There is a degree of ambiguity in the meaning of ¥ in (10.5) since terms in (10.2) which involve
only row 1, say, could appear in either ¥ [row 2, row 1] or ¥ [row 1, row O]. By convention
such terms will be divided equally between ¥ [row 2, row 1] and ¥ [row 1, row 0]. Clearly all
the #(’s in (10.5) are identical in form and differ only by a translation. It is convenient to label
lattice sites within a row (sublattice) by ad —1 dimensional vector m. (For a two dimensional
lattice m is a scalar.) Defining s,, (s;y ) to be the spins in row 0 (row 1) (fig. 10.1), it follows from
(10.2) that,

Hirow 1, row 0l =—%b 2 (s +smp)—5to 2 Gm+Sm)+3K 2 SmSm+? +SmSm+D+
m m m, i

+K S Smspm, (10.6)

m

where the third term includes interactions among the lattice sites in rows 0 and 1. The fourth
term gives the interactions between row 0 and row 1.
Let s denote the set of spins {s,,} in a particular row. Then ¥ is a function of s and s'. Define

V(s', s) = exp{H (5, 5)}. (10.7)

The function V(s', s) defines the elements of a matrix; matrix multiplication involves integration
over all the spins s, ins. One can now set up an operator-wave function formalism. Wave
functions are functions y(s); the operator V¥ acting on { gives a wave function y/'(s"):

V= [V, s (10.8)

where f; means I, [~ ds,, .

On a lattice of finite extent it is convenient to impose periodic boundary conditions, which
means only that, in addition to coupling row n torow n+ 1 (1 <n <N — 1, say), one couples
row N to row 1. In this case, the partition function is Tr( VN) as promised.

The space of functions Y(s) defines a Hilbert space (provided each row is of finite extent;
otherwise one has an inseparable Hilbert space, which makes the rigorously-minded croak). The
operator V is an Hermitian operator since #((s’, s) is real and symmetric. Therefore, ¥ could be
chosen to be a Hamiltonian of some quantum mechanical system. However, an acceptable
Hamiltonian must satisfy the additional requirement of locality. V is the exponential of sums
over the lattice sites. To obtain a quantity which is additive over distant lattice sites, the
Hamiltonian of the field theory will be chosen to be,

H=—%ln v (10.9)

where 7 is an arbitrary normalization constant. When K in (10.6) is zero it is easy to show that
In V is actually a sum over lattice sites (in this case V is the direct product of independent
operators, one for each site). This can also be verified in perturbation theory in K [143]. Other-
wise proving the locality of In V is a nontrivial problem which will not be discussed further.
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To put the definition (10.9) of H into perspective, a long digression will be made on the
definition of the Hamiltonian and the nature of the operator exp(—H7) in quantum mechanics
and quantum field theory.

In the ordinary formulation of quantum mechanics there are two types of restrictions on the
Hamiltonian. First there are general restrictions on H; it must be Hermitian, it must obey specific
symmetries in specific cases, etc. In field theory H must also be at least macroscopically local. The
second type of restriction is a requirement of simplicity. The Coulomb Hamiltonian can be
written explicitly in terms of just two parameters, the electron charge and mass. This contrasts
with the set of eigenvalues of the helium atom, for example, which are extremely complicated
and cannot be written down in closed form. The Hamiltonian would be a much less useful concept
if there were no simple way to define it.

Even in cases like nuclei where the exact Hamiltonian is not known, the tendency is to invent
simple model Hamiltonians (square well or harmonic oscillator potential models, for example)
which reproduce qualitative features of the physics.

In the present case the requirement of simplicity has been ignored. The operator V has been
rather simply defined, but In V is more complicated. For example, one cannot write matrix
elements {s'|In V|s) in closed form. The field theories one normally investigates (e.g., quantum
electrodynamics or the ¢* interaction of a scalar field) have simple Hamiltonians. At least this is
the case if canonical field theory is to be believed. There are three arguments for being interested
in theories with less simple Hamiltonians such as the one defined here. First is that one may be
interested in studying Hamiltonians of any kind that satisfy general principles such as locality.
Then the advantage of considering In V as a Hamiltonian is that all the techniques of statistical
mechanics are available to solve it. It will become evident in section 14 that statistical mechanical
methods are more powerful for strongly interacting (scalar) theories than any field theoretic
methods. The second argument is based on the universality principle which will be discussed in
section 12. What will be found in section 12 is that large classes of interactions are expected to
give the same renormalized field theory, so the precise form of the initial interaction (simple or
complex) is not very important. Finally, there are cutoff procedures which result in the form
(10.9) for H; these cutoff procedures will be explained later in this section.

Now consider standard quantum mechanics and the operator exp(—H7). If one defines a state
vector Y(7) by,

[Y (T = exp(—HT)|¥) (10.10)

where ¥ is 7 independent, then ¥(7) satisfies the differential equation,

;%_ [W(r) =—HIY(r). (10.11)

This is just the Schrédinger equation for imaginary time. Suppose that the state |(7)) has a wave
function Y (x, 7). Then the solution to (10.11) can be written in the form,

Y= [ Glrrx, Y, 0)dx (10.12)

where G is a Green’s function: in abstract form,

G(x, 7, x', 0) = {x|exp(—H7)|x"). (10.13)
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As discovered by Dirac and Feynman (see [145] or [146]), the Green’s function has a simple
form for small 7. One can write formally,

G(x, 7, x',0) = exp {f Lix, x] d'r} (10.14)
0

where L is the Lagrangian of the non-relativistic system with the time ¢ replaced by —ir. For a
simple time independent potential V, the Lagrangian for imaginary time reads,

L=—1mx?— V(x) (10.15)
(where x is dx/d7). For small 7, x is approximately,
x = {x(r) —x(0)} /7. (10.16)
Then (10.14) becomes for small 7,
— 2 [
G(x, 1;x', 0) =~ exp ——;-mg_‘r'ﬂ'—‘r v +2V . (10.17)

This equation provides the definition in practice of eq. (10.14). The proof that (10.17) gives the
Green’s function for small 7 is given elsewhere [145, 146].

Eq. (10.17) shows that exp(—Hr) is a simple operator for small 7. If 7 is not small one can
write,

exp(—Hr) =~ exp(—H /1) exp(—H 7/l) . . . exp(—H 7/I) (I factors) (10.18)

where [ is so large that 7/l is small. The operators exp(—H 7/I) are simple, and exp(—H7) is built
from them by iteration. If one computes the multiple product by matrix multiplication, one has

{xlexp(—H7)|x") = f - f (xlexp(—Ht/D) |x,) {xq lexp(—HT[Dx5) . . . {xjlexp(—H7/[D)|x".
x, Xl
(10.19)

This multiple integral can be written more explicitly using eq. (10.17). In the limit / = o< it defines
the Feynman path integral [ 145, 146].

In quantum field theory there is also a path integral formalism; one must introduce a cutoff
to make it well defined. One can introduce the cutoff in such a way that the Hamiltonian con-
tinues to have a simple form and likewise for exp(—H7) for infinitesimal 7. Alternatively, the cut-
off can be introduced so that only exp(—H7) for a given finite value of 7 is simple. This will be
explained below. Neither cutoff method is Lorentz invariant; there are of course Lorentz invariant
cutoff methods too. (A Euclidean invariant cutoff was used in sections 8 and 9.)

Consider the Lagrangian for a scalar field theory (ind — 1 space, 1 time dimension):

L=[ a# x{5(36/00* ~ (V9) ~ 4 1347 ~No*) (10.20)
where ¢(x) is the scalar field. As the first cutoff method, replace continuous space by a lattice of

small but non-zero spacing a. One uses a finite difference approximation for the gradient and
replaces the integral by a sum. Let ¢, be the value of ¢(x) at lattice site m (x = ma). Then,

L=a"""% {%(aqsm/at)2 —% 2 $m+t = om)l —7 ub O -7\0¢:‘..l. (10.21)
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Eq. (10.21) is the Lagrangian for a set of coupled anharmonic oscillators, with each ¢,, being the
displacement of an oscillator. The mass parameter of each oscillator is a® !, If P, is the momentum
operator for the oscillator at m, the Hamiltonian is,

1 -
H= 2 {M-l Put5a®™ 3 (fm o~ bm)® +7 uga? o +xoad'1¢;‘n}. (10.22)
i

m

The operator exp(—H7) for sufficiently small 7 is (by analogy with the non-relativistic formula
(10.17)),

@I~ exp 3 (=32 a0 G = 9m 41087 5 (b= Om)? + (B4~ 6]

B CERR R R P WE) +¢;::)}. (10.23)

How small must 7 be for this formula to be valid? To obtain a rough estimate, consider the
Hamiltonian (10.22) and neglect the ¢* terms and the terms ¢, ¢, +7 Which couple different
lattice sites. Then the Hamiltonian becomes,

1

H~ Z{Fi Py + [ g™ +(d—1)ad‘3]¢3,.} (10.24)
m

which is a sum of independent harmonic oscillators with energy level spacing,
w=\/ud+2(d-1a2 (10.25)

Since w is the only energy scale in H, one expects (10.23) to be a good approximation when
wr <€ 1, which for small enough lattice spacing a, is just 7 < a.

The expression (10.23) is rather similar to the formulae (10.6) and (10.7) for {s'(V|s). To
make an explicit comparison let s,, be the same as ¢,, except for a scale factor,

Sm = $Om- (10.26)
Then eq. (10.23) becomes

(s'lexp(—Hr)|s)=exp 2 {3 bk +52) —Fuo(sm +5Sm) ¥+ Ky 3 SmSm+7+ SmSm +7)

m I

+ KysmSm} (10.27)

where
ad{2 2d—1)r | udr
= (=
2 \ra a3 a }
o = Noa® 1 7/54, K, =a9737/¢2, K, =a97} 752 (10.28)

The requirement that 7 be much less than a means that
K, <K,. (10.29)

Nevertheless, one can still define exp(—H7) = V to be the transfer matrix of a statistical mechanical
system; the resulting statistical mechanical interaction is anisotropic in space, having coupling K,
along one axis, K, along all other axes.
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Thus, if one is willing to accept anisotropic statistical mechanical interactions, one can have
both a simple cutoff field theoretic Hamiltonian and the relation 7H = —In ¥V giving H in terms of
a transfer matrix.

It is simpler in practice to deal with isotropic statistical mechanical interactions, which one
obtains by putting 7 =a so that K; = K,. Now eqs. (10.22) and (10.23) are incompatible. If one
is willing to give up the simple explicit form (10.22) for H one can use eq. (10.23) to define A,
this means that H = —77! In V as proposed earlier (with K = K, = K,).

In summary one can take the formal field theoretic expression (analogous to (10.14)),

(¢ lexp(—HT)|¢) = exp[—f fdd"‘x{%(awary +2(V0)? +3udo? + N9} (10.30)
0

and cut this off by introducing a spatial lattice of spacing a. One then has a spatial cutoff length a
and a time cutoff 7. If 7 =4, one obtains an isotropic transfer matrix and a non-simple H. If 7 <a,
one obtains an anisotropic transfer matrix and a simple H. Eqs. (10.28) give the relation between
the field theoretic parameters uy and A, the cutoff ¢ and renormalization parameter {, and the
statistical mechanical parameters b, uy, K; and K,. From now on, only the case r =a(K, = K, = K)
will be discussed.

The next topic is to establish the connection between spin-spin correlation functions and the
vacuum expectation values of the cutoff quantum field theory. The propagator will be discussed
explicitly, but the results are valid for any n-field expectation value. The relations H=—7"'1n V
and {¢,, =s,, will be assumed. The standard definition of the propagator, in coordinate space, is

D(x, t) = Q|T¢(x, t)$(0, 0)|$2) (10.31)

where |2) is the ground state (vacuum state) and T is the time-ordering operator. The field ¢(x, )
is the Heisenberg field operator

¢(x, 1) = exp(iHt) ¢ (x) exp(—iH?). (10.32)

Now replace the continuous variable x by the lattice variable m. The result is a lattice propagator
Dy, (¢) defined as,

D (1) = (2T dm (1) 99 (0)| ). (10.33)
Using the lattice analogue of (10.31), one has, for ¢t > 0,
D (1) = Qo exp(—iHt) ol 2 exp(iEyt) (10.34)

where E is the ground state energy of H.

We need the formula for the spin-spin correlation function in terms of the transfer matrix V'
(see, e.g., [144]). A point on the statistical mechanical lattice is labelled by a row index # and a
lattice variable m within a row. A general lattice spin is s, ,,. The spin-spin correlation function is

Tpm=2"" {f . ...}sn‘mso,oeprC. (10.35)
Tow n row 0

(This is for n > 0; for n <0 the integrations over row n and row 0 appear in reverse order.)
Suppose there are 2N + 1 rows altogether numbered —N to N, with periodic boundary conditions
(and N 2 n). Then it is easy to see that for n > 0,

Tom =Tr(VN s, Visg VN 1), (10.36)

(note that one of the factors ¥ couples site N to site —=N) where s,,; is now the Schrédinger
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operator s, acting in the Hilbert space of wave functions {/(s) defined earlier. The trace can be
rewritten,

Dpm =Tr(V2N*1=-ng yrg )/ Tr(V 2V +1, (10.37)

Assume that the Hermitian operator V has a unique largest eigenvalue. (Statistical mechanical
considerations suggest that this is true for 7> T, (K < K,) and not true for K > K_: see, e.g.,
[144]). The largest eigenvalue of V is exp(—E,7) where E is the lowest energy eigenvalue of
H =—(In V)/r. The corresponding eigenstate of V is the ground state |2) of H. For large N the
operator V'V is

VN ~ |Q) exp(—NE,o7) (£2; (10.38)
the error goes to zero exponentially in NV as V= oo, Using this result, one obtains (for infinite N)
[y, m = (828, exp(—nHT) 5412 exp(nE,t). (10.39)

One can now relate D, (¢) to I, ,,,. The result is (for n = 0)
Do, m = §*Dim (—inT). (10.40)

The function D,,(¢), starting with ¢ > 0, can be analytically continued into the lower half ¢
plane. The reason this is possible is that H — E, is a positive operator (by definition of £,) and
therefore exp {—i(H - Eo)t} is bounded for Im ¢ < 0. This analytic continuation defines Dy, (—it).
Conversely, if Dy, (—it) is known, D,,(¢) is determined by analytic continuation.

In summary the spin-spin correlation function of the statistical mechanical theory is equal to
the propagator of the lattice quantum theory at discrete values (n7) of the (imaginary) time
variable.

Note that while the original statistical mechanical system was defined on a lattice in the
imaginary time direction, the quantum theory derived from the statistical mechanics is defined
for a continuous real time variable. However, it is difficult to evaluate D,,(¢) for any real values
of f or imaginary values between the lattice points in 7. To get to values of ¢ between the lattice
points in practice one has to diagonalize V and use expressions like (10.44) below. There are at
present no practical methods for diagonalizing ¥ near the critical point (except for the exactly
soluble two dimensional Ising model [144]). A study of some eigenstates and eigenvalues of V'
as an expansion in X is described in [143].

To replace the spatial lattice m by a continuum is more difficult. In the field theoretic
derivation of the lattice quantum mechanics, a lattice spacing a was introduced, so one might
expect to recover a continuum theory by letting a > 0. Consider, however, the physical
(renormalized) mass ur of the field theory. If one does not make a mass renormalization, (that
is, if uo is held fixed as a = 0) then ur will be proportional to the cutoff momentum a™! rather
than a constant. This is the conclusion from perturbation theoretic renormalization theory in
dimension d = 4 (for 3 <d < 4, ug diverges but less rapidly as a = 0). The same conclusion
results from looking at the statistical mechanics in the limit of small a, without regard to pertur-
bation theory. As will be shown below, the physical mass is (£a)~! where § is the correlation
length of the statistical mechanical system in units of the lattice spacing. In dimensiond =4, ¢
most likely stays finite when a = O (see below) and hence ug behaves asa™!.

To prove that

MR = 1/(ta) (10.41)

one compares the long range behavior of the spin-spin correlation function and the propagator.
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Consider the spin-spin correlation function I, ,, in the limit of large n, with m = 0:
T 0 = exp(—n/§) (10.42)

for n > §, apart from a power of n. Now consider the propagator D,,(—int) for m = 0 and n large;
it is

Do(—int) = (2 ¢y exp(—HnT) dpo| ) exp(EonT). (10.43)
Writing this as a sum over all eigenstates |} of H gives,
Do(=int) = exp{=(E, = Eo)n} (QUgo 7. (10.44)

v
For large n the lowest energy dominates. Because of the symmetry for ¢ > —¢, the lowest energy
state that contributes is not the ground state but the first excited state. According to conventional
wisdom the first excited state is a single particle state at rest. (This can be demonstrated in per-
turbation theory in K [143] but is not proven generally.) The energy difference E,, — E, for this
state is the mass ug of the particle. Therefore

Do(—int) = exp(—ugr n7) (10.45)

for n = oo, (The sum over v becomes an integral over the momentum of the single particle state

and results in a power of # multiplying the exponential; see {147].) Comparing egs. (10.40),

(10.42), and (10.45), one obtains ug 7 = 1/£. Since we have chosen 7 = a, one obtains eq. (10.41).
To see that £ is likely to be finite for a > 0, consider the statistical mechanics with the para-

meters given by (10.28), in the limita = 7 = 0. If { is held fixed the parameters b, u, and

K = K, =K, all go to zero as a = 0, which is not very helpful. For finite a one can choose { at

will without changing £ (see below); with the particular choice

g- =a(d*—.2)/2 (1046)
the parameters b and K have non-zero limits for a = 0:

b—2d, K—>1. (10.47)
For any a one has,
Up = Nga* ™9 (10.48)

S0 Ug =N\ ford =4 (ford <4, uy = 0 asa = 0). The reason that £ is independent of { is that the
change from ¢,, to s,, is only a change of variables; if ¢ is changed to ¢’ this does not change
expectation values of ¢,, at all and the spin-spin correlation function I, ,, is only changed by
the scale factor (¢'/¢)%. This does not change §.

Ford = 4 and a = 0 the parameters in the statistical mechanics are: b =8, K =1, uy = \¢. For
£ to be infinite, K must be at its critical value. If Ay = 0, K = 1 is the critical value (see section 3),
and £ is infinite. For A¢ # 0, 1 is not K in general and £ is finite. For example, for large Ay, K = 1
can easily be treated by an expansion in K and is nowhere near the critical point (this is analogous
to the expansion proposed by Schiff [148]).

Ford <4, u,is 0 ata =0, so K = 1 is the critical point for any value of A,. However, careful
examination of how § behaves as a = 0 shows that (¢a)™! is still divergent as a = 0, when d is in
the range 3 <d <4.

This ends the digression.

The basic aim of this section is to construct a field theory from the statistical mechanics. In
this case one has no a priori rules for how b, u,, and K should depend on the lattice spacing a. No
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such constant appears in the statistical mechanics because one naturally expresses lengths in units
of the lattice spacing. In field theory one has to introduce the lattice spacing a as a nontrivial
parameter because for a field theorist the natural unit of length is the reciprocal of ug . Even if
one does not set ug = 1, it is necessary for ur to have a finite limit when a = 0.

In preparation for constructing the field theory, it is logical to discuss the statistical mechanics
in units with ug = 1. These units can be used for any choice of the statistical mechanical para-
meters b, u,, and K not at the critical point. The lattice spacing in these units isa = 1/&(b, u,, K).
It is a somewhat peculiar change of units since it depends on the parameters b, u, and K. Working
in these units, ug remains fixed no matter how one varies the parameters. In particular, the limit
a > 0 holding ug fixed is obtained by letting K > K¢ (b, ug) where K. (b, u,) is the critical value
of K.

Thus it is rather trivial to obtain a finite mass ug in the limit 2 > 0. What is less trivial is to
obtain definite limits for the field theoretic vacuum expectation values as @ = 0. The trouble is
that one has to know how the multi-spin correlation functions behave as K = K. In particular,
one is interested in vacuum expectation values for distances which are fixed in units of ug . A
fixed distance in these units is a distance proportional to £ in units of the lattice spacing. Thus, if
the long range correlation functions have too complicated a behavior as K - K., there will be no
definite limit for the vacuum expectation values as K = K. In section 12 it will be shown that
the continuum limit does exist for all vacuum expectation values if the critical behavior is deter-
mined by a fixed point of the renormalization group.

We conclude with two brief comments. For d < 4 the conventionally defined Ay ¢* theory is
easy to renormalize in perturbation theory; only a mild mass renormalization is required. This is
related to the fact that ug > 0 as @ = O as discussed earlier. However, one can construct a more
general field theory for d < 4 starting from the statistical mechanics and holding u, fixed (instead
of Ay) asa = 0. The existence of the limit in this case is established (assuming the existence of a
fixed point) in section 12. It is this theory that has tensor operators with the anomalous
dimensions calculated in section 9.

The second comment is this. One normally takes for granted that the Hilbert space of a
quantum theory has a positive metric (although there has been some flirting with quantum field
theories with indefinite metric by Heisenberg and others). The use of the transfer matrix formalism
insures that the statistical mechanics defines a lattice quantum theory with a positive metric. This
is a nontrivial result, because one can define statistical mechanical models which cannot be
equivalent to quantum theories with a positive metric. A simple example is a Gaussian model
with interaction,

JCo=f [ro + q*1%040_ 4. (10.49)
q

The propagator of this theory is 1/(ry + ¢2)* which has a double pole at g% = —r,. A double pole
cannot occur for a quantum theory with positive metric. Therefore, this theory cannot be written
as a lattice theory having a transfer matrix. The main restriction of the transfer matrix approach is
that there only be nearest neighbor interactions between rows, so that eq. (10.7) is valid. Hence,
lattice approximations to (10.49) necessarily involve second nearest neighbor interactions at least.

11. Exact renormalization group equations in differential form

The purpose of this section is to present an exact formulation of the renormalization group in
differential form. These equations are very complicated so they will not be discussed in great
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detail. However, the underlying concepts will be stressed. (The equations derived here were
reported informally by KGW to the Irvine conference (1970); they have not been published
previously.)

The formal discussion of consequences of the renormalization group works best if one has a
differential form of the renormalization group transformation. Also, a differential form is useful
for the investigation of properties of the € expansion to all orders (for questions like “does it
exist’’; this question has not been answered yet). A longer range possibility is that one will be able
to develop approximate forms of the transformation which can be integrated numerically; if so,
one might be able to solve problems which cannot be solved any other way.

In previous sections a discrete renormalization group transformation was defined by integrating
out the spin components g, with |g| > % Then one made a change of scale in the remaining
0q (1q] <3) replacing them by §0hq with { being a constant.

The obvious way to construct an infinitesimal transformation is to integrate out only those o4
with 1 — 67 <|q| <1 for §¢ small. This however turns out to be difficult. The problem is that
normally to order 6f a Feynman diagram will have at most one internal momentum in this range;
however, when two internal momenta are restricted to be +q and —¢ by particular choices of the
external momenta (e.g., when p = 0 in fig. 11.1), then two internal momenta can be simultaneously
in the range 1 — 8¢ < |q| < 1. This fact creates problems. See supplemental ref. [5] for further

discussion.
Py : :q :pz
P-p, P-pP,

P-q

Fig. 11.1. A Feynman diagram which

is difficult to handle in an infinitesimal
formulation of the discrete renormalization
group transformation.

More philosophically speaking it is desirable to avoid sharp boundaries in momentum space
between integrated and unintegrated spin components o,. The trouble is that sharp boundaries in
momentum space result in non-local interactions in position space which one would prefer to
avoid (see section 1).

To avoid sharp boundaries a trick will be used. A smooth interpolation procedure between
integrated and unintegrated variables will be introduced, called “incomplete integration’. This
will permit replacing the sharp boundary in g space by a finite interval in g for which oy is
“incompletely’ integrated. (See fig. 11.2.) There are many ways of realizing the idea of incom-
plete integration. The particular choice presented below happens to have many useful features but

P

not terribly /’olmost
integrated / completely

)
|
l
|
nintegroted : integroted /I integrated
|
!
1
1

‘—k = 4 ;k
k° kO

(a) (b)

Fig. 11.2. (a) A sharp boundary between integrated and unintegrated
momenta. (b) A smooth boundary between almost completely
integrated and not terribly integrated momenta.
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is certainly not unique. The idea will be introduced by considering an ordinary integral in place
of a functional integral.
Recall a few facts about differential equations. In particular, consider the differential equation,

0y _9 (9
ot ‘ax(ax ”) v (11.1)

Solutions to (11.1) can be written in terms of a Green’s function,

Y(x', 0 = [dx GG, £;x, 0) Yo (x). (11.2)

Because (11.1) is quadratic in x and 9/dx, the Green’s function is known explicitly: it is,

. _ 1 ~ (x'—xe™")?
G X, ) = T = exp(=20) e"p[ 2(1—e-2f)] (11.3)

Eq. (11.2) provides a particularly simple realization of the notion of incomplete integration. As
t = 0, the Green’s function becomes 8(x —x") and y/(x', ) becomes the initial arbitrary function

llfo(x’),
Y(x', 0) = Yo(x"). (11.4)

As t becomes very large Y(x’, ) becomes proportional to the integral f{,(x) dx apart from the
known Gaussian function exp (—% x'?),

! 1 ' ¢
w(x,oo)=m exp(— 1 x'?) _£ Volx) dx. (11.5)
Therefore, considered as a function of ¢, Y(x', r) gives an interpolation between a completely
unintegrated function Yo(x') and its completely integrated form. Thus ¢ gives a measure of how
far the variable x has been integrated.

Consider now the functional integral. Since each momentum component of the fields must be
integrated over, a quantity a,(¢) must be introduced to measure how completely each component
04 has been integrated. A particular choice for ag(#) will be introduced shortly. In general, one
wants ag(?) to have the shape displayed in fig. 11.3. Let o,’,' denote the spin variable for the
Hamiltonian #(, before the momentum has been rescaled from the original momentum scale. The

—————— t=3
Ol t=2
Qq(f) /// PP t=1
—’:—’—” i
""" =

Fig. 11.3. A choice of the function aq(t) which
measures (as a function of #) how completely each
component og has been integrated.
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spin variable after the scale change will be denoted o4. The functional analogues of (11.1)and (11.2)
become,

) " 8 8 "
5o exp{¥,[d"]} = (5 . +oq) exp{¥C;[d"1}, (11.6)

exp{¥,[0"]} =¢ fexp{—% f (0q — 04 exp{—0(1)}) (024 — 0-q exp{ey(1)})

1 — exp{—204(1)} }exp{}fo (o}

(11.7)

The constant ¢ is unimportant since one only computes ratios of expectation values involving
exp(#,). o4 and o_,4 appear in the right-hand side of(ll 7) in order that 3,[o] conserves
momentum. A functlonal differential equation for 3(;[0"] follows straightforwardly from (11.6)

¥, _ fﬂ_a (t){(S—JC’ B—JC'+——6ZJC’ + o O +const} (11.8)
or \bag 80’y 80500-4 % 5 A '

The “const.” is a 6" independent term which can be ignored.
Now a useful o, (#) must be chosen. This function should have the property that it separates
small g from large g. A good choice turns out to be,

og() = q*(e* = 1) + p(1), p(0) = 0. (11.9)

The purpose of the function p(¢) is to allow a normalization condition to be imposed on the
kinetic term in ¥, , say

fq'zo(', olq . (11.10)

(in terms of oqf which will be defined shortly). Clearly p(¢) serves the same purpose that { did in
the discrete scale changes of earlier chapters (see, e.g. eq. (3.33)). Some such normalization
condition turns out to be essential if critical behavior is to be described by a fixed point. Imposing
this normalization condition on ¥, for all ¢ results in an equation for p(¢).

The final step in constructing the renormalization group transformation is the change of scale,
i.e. ¥, should be written in terms of a momentum variable ¢’ whose range is effectively
0<|q'l <1.From (11.7) and (11.9) it is clear that the effective cutoff on g is e, so the rescaled
momentum ¢’ should be ¢' = ge’. Also, the rescaled spin variable o4 must be introduced. It will
be defined to be

0g' = exp(—dt/2) og. (11.11)

The scale factor is determined by the requirement that the differential renormalization group
transformation we will derive must be independent oft (It is easily seen from (11.8) that one
cannot make arbitrary changes of normalization of oq without foulmg up the equatlon )

The functional differential equation must now be rewritten with og' replacing og. The time
derlvatlve 03, /0t in (11.8) is for a fixed function oq This must be replaced by a derivative for
fixed oq The relation between the two time derivatives is

ﬁf_r Lo jd_oi &m
ot

(11.12)

o
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The derivative dog/dt|,~ follows from (11.11),

%‘ =(_%_quvq,)0"l, (11.13)

”
g

so (11.8) becomes,

o1, [a’ %) 53, @zg[a:}c, 53¢, 87K, 53(:,]
207 R o - BN O 1.7, 8%, roy 3| 114
or [1G*a v "4]50;, + 5 S0y Bo"g 602807, 9 oy (11.19)

)
o

But, from (11.9)

E)ozq/f)t=2(126:2’+dp/dt=2q'2 + dp/dr. (11.15)
Finally, (11.11) and properties of functional derivatives imply,
8 /804 =exp(dt/2) 83,/80y . (11.16)

Substituting (11.15) and (11.16) into (11.14) gives the desired renormalization group differential
equation,

o, _ [(d ., . N\ 83, dp ,2)(536, 8K, . 8%, , szc,)

vl - ! : o) =t -— + 7 + 7 ] + T R

ot 3(2 % ta Ve °") 50y j(dt 20N 5oy 507y T By 0Ty T %0 Say
(11.17)

This is a functional differential equation. It can be reduced to ordinary partial differential
equations by expanding ¥(; in powers of ¢: write (the primes on ¢ and g are omitted),

1
Hilo)==% Jua@. 00504535 [ | [we@,41.02,05,00004,05,09,~. ..  (11.18)
q "q q, q,

(where g3 = —q — q, — g, to conserve momentum). A constant independent of ¢ has been
omitted. The equations for u,, us, and ug are

;) d d
é;z(q, 1 ={—q al +2(a§ + 2q2) (1-us(q, r)]} urg, N+ | (d—f+ 2q%) us(q, =4, 41, 41, 1)
q. ’

ou dp dp
5,—“(11-.-qa)={—d—q'vq+('&;+2q2)[l —2u2(q,t)];. R E -Vq,+(a+2q§)

x [1=2us(qs, t)]} uslg, ..., q3, 1)+ f(d—f + 2qi) us(q, 41,42, 93, 44, ~qa; 1)

q,
ou _ , dp dp
Vo as,0={-2d-q v+ (L +202) 01~ 2msta. 01— . a5V, +(L+ 203)
d
x [1 —2u,(qs, t)]}ue(q, cenqs, )T 2[a’ti+ 2q tq, +q2)2} _
Xua(q, g1, 92,93+ qa + 45, 1) us(qs, 94, 45, 4 + q1 + 4>, ) — (9 permutations)

d
+ (S5 2a2) ust@. . 45,0606, (11.19)
qs
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The “9 permutations” in the equation for u means the 9 inequivalent permutations of
(41, .., qs)in the uy X uq term.

So far, no equation has been given for dp/d¢. The normalization condition (11.10) means that
if u,(q, t) is expanded in powers of ¢2:

Uy(q, 1) = usa(t) + usp(1)g* + . .. (11.20)

then u,p(?) = 1 independent of .
This means du,g(?)/dt is O, which results in an equation for dp/d¢. Write u, as an expansion in
powers of q:

us(q, 4, g1, ~qy, ) = uan(q@, )+ q - quss(qy, ) + q2uac(qs, ) +(q - q1)uap(q, H + . . ..

(11.21)
(This expansion assumes rotational symmetry.) Then the equation determining dp/d¢? is,
d d
0= 2up L) 11 = 2upa (0] = 2z + duaal1 — a1 + [ [d—‘; (1) + 2q%]

1

x [uacqy, ) +d 1q usp(qy, 1. (11.22)

However the reader is warned that the simple normalization condition u,g(¢) = 1 for all ¢ cannot
always be realized; one must be prepared to allow u,g(#) to be another constant or perhaps ¢
dependent. See the Appendix for an example of the solution of the renormalization group
equations and a determination of dp/dz.

We know how to obtain spin-spin correlation functions given ¥4, but it is desirable to be able
to obtain them when given ¥(;. To do this first consider the generating functional originally given
in terms of ¥, and then rewrite it in terms of #(;. The analogous problem for one variable, x, will
be sketched to begin. The Y o(x) of eq. (11.2) is analogous to exp(H[o]) so construct the
generating functional:

ZG)= [ Yolx) exp(x") dx’. (11.23)
A straightforward calculation shows that this is equivalent to
A NIV e
ZG) = f J exp{}x o L 5 )= G(x', t; x, 0)Yo(x) dx' dx (11.24)

for any ¢. (To prove this one performs the x’ integration using the explicit form (11.3) for the
Green’s function.) Reversing the order of integration gives

2(a2f —
j*(e U}dx’.

3 (11.25)

20)= [ v,y explix'e’ -
Now consider the generating functional of actual interest

Z(j) = J exp {(_{fj(q)o_q + Jfo}. (11.26)

[ed
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In terms of #; and q”, one has in analogy to (11.25),

Z(]')=J exp{fi(q)oﬁq exploy (0} =1 [ j(q)i(—a) expi20q ()} = 11 + 1, (11.27)
a” q q

and converting to o’ gives

Z() =J eXP{ J et 2 ®j(gle)0qr expliq)? — ()2 e
o q'

-3 ff(Q'e"’)]'(‘tI'e_’)e_d’[exp(2CI'2 =29+ 2p(1) — 1] + K, [0];. (11.28)

q

This is a rather complicated formula. According to the general principles of the renormalization
group approach, the only change in calculating correlation functions from ¥, as opposed to ¥,
should be a scale change; namely, o_4 should be replaced by §; o',q' with ¢’ = ge’. In other words,
one should write

ff(q)o-q =e ¢, fi(q'e")olq' = ff(q’, nolg (11.29)
q q q
with
g, ty=e%¢,j(g'e™). (11.30)
Suppose one defines
¢ = ed1/? eP®) (11.31)

then (11.28) becomes (dropping primes for convenience),

Z() = J exp { J i@, Doq expla? =g 1= [ j(a, (=g, ) lexp(2g? - 2q%e™2") = &7200)]
° ‘ ! +JC,[0]=. (11.32)

This formula for computing Z(j) is more complicated than expected from general principles.
However, it will not affect the general renormalization group analysis: For large ¢ and g of order 1,
the e™2% and ¢ 22 terms can be neglected (neglecting e 2°® assumes that p(¢) = o as t = oo this
is true of examples that have been studied to date). Then Z(j) depends on ¢ only through j(g, )
and the ¢ dependence of ;. This is the crucial fact needed for a general discussion of conse-
quences of the renormalization group.

It is remarkable that one can write an exact yet completely explicit form for 9J(,/d¢ (eq.
(11.17)). Previously all formulations of the renormalization group have involved perturbation
theory in an essential way (as in the Gell-Mann—Low formulation or the graphical formulation of
sections 4 and 5) or else involve incalculable functions (the Kadanoff approach). Eq. (11.17) can
be nasty to work with, but in the long run it or similar equations will probably be the basis for
most work on the renormalization group.

For future reference the form of Z(j) for large ¢ is,

20) =J exp {f i(a. Do_q exp@®) -+ [ i(q. Di=q. D exp<2q2)+:fc,[ol}. (11.33)
[ q q
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This is the formula that is used for ¥;[o] near a fixed point 3* or on a renormalized trajectory
leaving JC*.

Note that actual correlation functions always involve a denominator Z™! so the generating
functional of practical interest is Z(j)/Z(0). This is fortunate because the constant term in ¥, was
neglected in deriving the differential equation (11.17).

There is another useful formula for the generating functional Z(j) (more precisely, Z()/Z(0)).
The formula is the following. Define a particular function o;(g) to be

or(q) =j(qe™") exp{Bq (1) —dt/2} (11.34)
where
Ba() = g*(1 — e™2) + p(t) = &g exp(—n (D). (11.35)
Then,
Z() = lim exp{JCt[oH +1 [ oi@ai—a +CXp{—2Bq(t)}]}. (11.36)
q

This formula is demonstrated as follows. First write (11.7) in terms of 6;(g), then let # > o0 and
use the definition (11.26) to identify Z(y). To begin relate the unscaled variable o} to the scaled
variable oy,

0r(q) = exp(dt[2) oy(qe’) = j(q) exp{ag(1)}. (11.37)
Substitution of ¢/(¢) for og in (11.7) gives,
‘o _1 (@i exp {2041}
exp{Jf:[Ot ]} =c expl 2 ! = exp{—2aq(t)} }
x fexp{ [ J@oza . [ 949 xp{"20(1} +JC°[O]}. (11.38)

5 g Free{=2egtt)} * 7 1-exp{~204()}

In the limit # = oo, (11.38) can be rewritten,

Jim exp|3:(0}] +3 J oi@oi-a) (1 + exp{-28,0})| = | exp| | i@oq +3l01).
7 ° 1 (11.39)

From its definition (11.26), Z(j) can be recognized as (11.39). The advantage of (11.36) is that it
avoids the explicit calculation of functional integrals; it is only necessary to solve the functional
differential equation for 3(,.

12.

12.1. Topology of the renormalization group transformation (fixed points, trajectories, and
subspaces)

Underlying the detailed calculations and analyses of the renormalization group approach
described in previous sections are some simple topological ideas. Fixed points, for example, have
already been emphasized. In this section topological ideas will be considered at length. They will
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be discussed in simple but abstract form without reference to specific forms of the renormaliza-
tion group transformation. A few general assumptions will be made concerning the effective
interactions generated by the renormalization group. These assumptions are true of solutions
(exact or approximate) obtained to date, but have not been proven in general. Simple forms of
the topology will be considered to illustrate the ideas. In actual examples the topology gets more
complicated (e.g. many different fixed points can occur) but one can handle complications once
the ideas have been mastered.

Fixed points were discussed in the original paper of Gell-Mann and Low [149] (see also [150]).
The need for a full topological discussion arose only when the renormalization group transforma-
tion was defined to transform many coupling constants rather than just one. A complete topological
analysis was first given for a simplified fixed source model [151]; much of the inspiration for this
section comes from [151]. Wegner [152] has given an extensive discussion of solutions of the
renormalization group near a fixed point, which overlaps and considerably extends the last part
of this section.

Spaces and subspaces

A renormalization group transformation is a transformation U on a space of cutoff interactions
S. In the previous lecture an example of an infinitesimal transformation U has been given. The
renormalization group equation is

0¥, /ot = U[H,]. (12.1)

The interactions 3, come from the space S.

The interactions in .S are given in dimensionless form with momenta given in units of the cut-
off. One is always free to take any interaction 3 € S and change the cutoff by making a change
of units. The cutoff can consist of an upper bound on all momenta g imposed either directly or
through the introduction of a lattice (cf. sections 3 and 10). The cutoff is necessary because the
renormalization group transformation U is defined to integrate out the momenta just below the
cutoff and that is a meaningless operation if the cutoff is infinite. In the case of the exact renor-
malization group equations of section 11, a strict upper bound on g is not necessary, but it is
difficult to integrate the equations if the non-Gaussian terms in 3 are not cutoff for momenta
g > 1. In the renormalization group approach an uncutoff field theory has to be obtained as the
limit of cutoff theories. (This is independent of whether one is calculating in perturbation theory
or not.)

The coordinates in S are the free parameters in an arbitrary interaction # € S. In the simple
examples considered in previous lectures, » and u were coordinates in S. To discuss the exact
renormalization group equations, an arbitrary interaction in ¥( is defined in terms of an infinite
set of arbitrary functions u,(q), u4(q, g, g2, q3), etc. This means S is an infinite dimensional
space.

A solution ¥, of the renormalization group, as a function of ¢, provides a set of interactions
all of which describe the same physical system. However one must make a r-dependent change of
scale when relating #(; to the physics. One can first of all make a scale change when going from
¥, to the physics so that the physics has a cutoff momentum Aq # 1. This is a scale change with
no restrictions: Ay can be chosen at will. Given Ay, the scale change which relates ¥; to the
physics is fixed, namely the cutoff momentum of ¥, in physical units must be e A,. (See, e.g.,
section 7.)

Let the physical system have a correlation length £, in physical units (cm or MeV™!, say). This
must be independent of which interaction ¥, (i.e. which value of t) is used to describe the physics.
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Let & be the correlation length of 3, in dimensionless units. Then the scale changes defined
above imply that

£ =e g A,. (12.2)
This in particular means that &, satisfies
& =ek (12.3)

for a solution #(; of eq. (12.1).

The interaction ¥, rescaled to physical units has an artificially small cutoff e “A, compared to
the true cutoff A, of the physical system. This is by construction; the higher momenta in ¥(,
have been removed by integration. The artificially low cutoff means that the interactions in ¥,
are artificially of long range. The interactions in the rescaled ¥, will have a range of order €’/A,,
at least. The initial interaction #(,, rescaled, has interactions only of range 1/A, unless one
deliberately adds longer range interactions.

In practice a “‘short range” term in #(,, before rescaling, is for example [, f exp{—(x —»)*} x
s(x)s(y) while examples of “long range” interactions would be [, fy exp{—0. 0001 (x =)} s(x)s(y)
(which has a long but finite range) or [, [, |x — y| 's(x)s(y) (which has infinite range).

The space S will be restricted to interactions of short range in dimensionless units. There are
several reasons for this. One is a practical one: the approximation schemes of previous lectures
considered so far assumre that #(; has only simple short range interactions. A more fundamental
reason is that the qualitative ideas about critical behavior (like universality) are known to be false
if long range interactions are permitted. (See, e.g., [ 153].) It will also be crucial to the renormali-
zation theory described later that .S have only short range terms.

The space S must be large enough so that for any interaction y € S, all the effective inter-
actions #(; generated from ¥, lie in S. Thus one must verify, for example, that the interactions
¥, are all of short range (before rescaling). There is unfortunately no certainty that this is the
case in general. It is true of examples solved so far. (Note however that an incorrect choice of
p(f) in the equations of section 11 can lead to long range interactions: see the Appendix.) In
approximate formulations of the renormalization group (e.g., the approximate recursion formula
of section 6) one can replace S by a subspace of S but one must make sure that the approximate
transformation transforms the subspace into itself.

There are four types of subspaces or “‘surfaces’ in S which should be defined. First the elements
of S can be separated according to their correlation lengths. Thus, one defines surfaces consisting
of all interactions ¥ € § with given dimensionless correlation length £. Of special interest will be
the “critical surface” with £ = oo denoted S;. Fig. 12.1 shows a possible set of surfaces of fixed
in a space parametrized by r and u only.

Fig. 12.1. Lines characterized by fixed values of the
correlation length £. The line labelled ¢ = < is the
“critical surface” S;.
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Secondly, there is a surface of simple interactions to be called the “canonical surface’. This
surface consists of the set of initial interactions 3, for a given system or model. For example,
the canonical surface might consist of the interactions (4.2) with » and u as the only free
parameters.

Thirdly, there are surfaces of definite symmetry. For example, in order to allow for interactions
on a lattice, S includes non-rotationally invariant interactions. (Interactions on a three-dimensional
cubic lattice have cubic symmetry but not full rotational symmetry.) Then there will be a subspace
SR of interactions which are rotationally invariant.

Finally there are the subspace S(¢) generated by applying U to the space S itself. This means
the following. Suppose one starts with a space S as illustrated in fig. 12.2 and an infinitesimal

boundary: S
boundary : S ({)

boundary : S(2)

Fig. 12.2. Nested subspaces S(¢). In this example the
subspace S(e) is one dimensional.

transformation U defined on S. The space S(8¢) with 8¢ infinitesimal is defined as the set of points
¥ ' such that,

H' =3+ 6t UK (12.4)

where J( is some point in S. One then obtains the space S(258¢) by applying U to the space S(8¢):
S(26¢) consists of all interactions ' of the form (12.2) where ¥ is some point in S(§¢). By
induction one can define S(¢) for any ¢. In other words, if one solves the renormalization group
equations to obtain ¥, from ¥, then S(¢) is the space of all interactions ¥, generated from all
possible initial interactions #, contained in S.

By assumption the effective interactions ¥(; lie in .S so S(¢) is a subspace of S.

The subspaces S(¢) are nested: S(¢ + ¢') C S(¢) for any positive £ and #'. The reason is simple:
S(z + ') is obtained by integrating the transformation U through a time ¢ + ', starting from all
points in S. This is equivalent to integrating U through a time ¢ starting from all points in S(¢').
Since S(¢') is contained in S, one gets a larger space by starting from all points in S instead of
S(¢"): hence, S(r + ') C S(¢).

The spaces S(¢) for finite # have the same dimensionality as S itself. However, the space S(o°)
(obtained as the limit of S(¢) for £ = o) can be smaller. A basic idea of the renormalization group
approach is that S(e0) is a surface of many less dimensions than S. For illustration the surface
S(e0) in fig. 12.2 is a single curve C. The reason that S(e0) is expected to be much smaller than S
is the following: ¥, (for large ) describes a physical system with forces of a much shorter range
than the range of interactions in ¥, itself (as shown earlier). It is unlikely that an arbitrary inter-
action 4 in S has this property; thus S(#) for large f should be only a small subset of S.

A differential equation like (12.1) can be integrated backwards in ¢ as well as forwards.
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Suppose ¥ is in S but not in S(¢). Then the interaction ¥ _, generated by integrating backwards
cannot lie in S. If 3_, is not in S, the reason is likely to be that #(_; has long range interactions
on a dimensionless scale. In fact, along a random trajectory integrated backwards one would
reasonably expect all the interactions #_, to have the same range in physical units. If this is the
case the range of interaction must grow like ¢’ in dimensionless units for the interactions ¥ _;.
Hence, for large ¢, 3_, will generally lie outside S.

Trajectories and fixed points

The renormalization group equation (12.1) defines trajectories in the space S. On a trajectory,
£ =e"&,. Thus, if the initial interaction ¥, has a finite correlation length £, then the trajectory
passes through all the surfaces of fixed &' with §' < £,. This is illustrated by curve A in fig. 12.3a.
If the initial interaction ¥, has an infinite &, then the trajectory lies entirely on the critical
surface S. (curve B in fig. 12.3a).

A (transiated)

§=1(t=0)
E=2(t=-fn2)

£ §=0(1=-m)
- /“_/
~ (b)

Fig. 12.3. (a) Two renormalization group trajectories A and B. Curve A begins at £ = 2 and crosses lines of smaller
£. Curve B begins on the critical surface (¢ = ) and stays there. (b) Trajectory A translated so that £, = 1.

Since the renormalization group transformation is independent of ¢, it is possible to translate
trajectories in the variable ¢ (as already seen in section 7). The only effect of a translation,

He >3 =3 -y, (12.5)

is that the translated trajectory begins at ¢, instead of £ = 0. One can use the freedom of trans-
lation in ¢ to specify a normalization condition on §,, say £, = 1. Then, §, = e”. With this
normalization the surfaces of equal £ become surfaces of equal ¢ for translated trajectories
(fig. 12.3b).

A fixed point is an interaction 3* satisfying U[F*] = 0. A fixed point is a trivial trajectory:
3, = JC* for all £ solves (12.1). A fixed point must have a correlation length £* = 0 or £* = oo
(since if ¥, = H*, then &, = £*, but, being a solution of eq. (12.1) means & = e™"§, = e "£*).

In order to illustrate the topological ideas, we will now develop the simplest form the topology
can take. There are many ways in which the topology can be more complicated than described
below, but complications can be understood once the simplest picture has been grasped.

Assume there are only two fixed points, one with £* = 0, one with £* = oo, These fixed points
are denoted Py and P.. in fig. 12.4. The fixed point P, will be assumed to have the same
properties as the fixed point (r*, u*) of section 4.

The simplest behavior one can obtain for a trajectory in the limit # = oo is that it approaches a
fixed point. This is not the only behavior possible in principle, but it is the only limiting behavior
seen in previous sections and will be assumed here. Other possibilities are discussed in [150] and
[154]. If all trajectories approach a fixed point, then the trajectories with finite £ approach P,
for t > oo (e.g., curve A in fig. 12.4) and the trajectories on the critical surface approach P_ (curve
B, fig. 12.4).
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Fig. 12.4. Simple topology: the space S has two
fixed points P, and P. P, lies on the critical
surface and has ¢ = . P, has £ = 0. Curve B
runs into P, and A runs into P,.

There is a simple analogy in classical physics which provides an example of the topology being
discussed [155]. Imagine a ball rolling on a hill according to the equation of motion

dx/dr =—=VV(x) (12.6)

where x = (x, y) are the horizontal coordinates of the ball and V(x) is the elevation of the hill at
the point x. (This equation is a simplification of Newton’s law in that velocity (dx/d¢) replaces
mass times acceleration.) An example of a contour map of V is shown in fig. 12.5. It is assumed
that V(x) is analytic in x. The equation of motion is an example of (12.1); a fixed point is a
stationary point of V. Two fixed points are shown in fig. 12.5; P, is an absolute minimum and
P_ is a saddle point. If the ball is placed anywhere to the west of the ridge line R, the ball rolls
to the bottom of the hill (Py) and stops (the curve A in fig. 12.5 is an example of a trajectory of
the ball). If the ball is placed exactly on the ridge line R, it rolls down to the saddle point P, and
stops (curve E, fig. 12.5). The ridge line R is analogous to the critical surface for the renormaliza-
tion group equation (12.1).

Fig. 12.5. Contour map realizing the topology of
fig. 12.4. P, is a saddle-point on the ridge R and P,
is the bottom of the gully G. Path D shows the course
of a ball initially near the ridge line, spending a
great deal of time near the saddle point P, and
eventually rolling down the gully G and stopping
at the bottom P .

It is interesting to study the trajectory of the ball when it is placed infinitesimally close to the
ridge line R. Then it rolls down close to the ridge line almost to the saddle point. This is illustrated
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by the curve D in fig. 12.5. Near the saddle point the ball veers away from the ridge line and rolls
down the gully G. Near the saddle point the ball rolls very slowly because the terrain is almost flat.
Now let the initial location of the ball approach the ridge R. In this limit the curve D approaches
a limiting curve E. The curve E has two parts; one part is a section of the ridge line R. The other
part is the line G defining the bottom of the gully. The gully line G is also the trajectory of a ball
which starts infinitesimally close to P .
Consider again the simple example of the renormalization group with the two fixed points
(fig. 12.4). Consider a trajectory which begins infinitesimally close to the critical surface (curve D
in fig. 12.6). Assume the analogy to the classical equation of motion is valid. Then D has two
parts; one part is essentially the trajectory E going to the fixed point P . The second part is a
trajectory G connecting the two fixed points. (The approximation of replacing D by G is
equivalent to the approximation (4.41) of section 4. A change in ¢ in the current lecture is
equivalent to changing » in (4.41). The linear approximation of section 4 is appropriate only near
P where the trajectory G is a straight line: changing either n or T — T, only changes one’s location
on G. The analogue in section 4 of D is obtained by keeping terms proportional to A5 (A, was
defined in section 4) in eq. (4.41). The analogue in section 4 of E is then obtained by setting
T =T, in eq. (4.41) which leaves only the A} terms.)

Fig. 12.6. Renormalization group trajectories
near two fixed points. The curve D begins
close to the critical surface. As the origin of
D approaches the critical surface, the
trajectory D approaches the trajectories E
and G. For this example G is S(e0).

Now look at the space S(e0) defined earlier. With some assumptions, S(°) is the curve G,
including the two endpoints P_ and P,. Starting at any interaction ¥ on the curve G, one can
extrapolate back along the trajectory an arbitrary amount of time without leaving the space S.
The reason for this is that £ > o on G as one approaches P_; to reach the point P with § = oo
from any point with finite £ requires an infinite amount of time (since &, = e ™' §,).

This means that any point on G is in S(e0). Starting from any other interaction in S not on G,
and extrapolating back in ¢ can take one outside the space S. For example, extrapolating the
trajectory D of fig. 12.6 backwards would leave the figure. If so, S(e°) is only the curve G.

This completes the formulation of the simplest topology of the renormalization group. There
are some general observations to be made. First of all, the primary role of the fixed points is to be
“time sinks”. Trajectories which go into a fixed point spend an infinite amount of time near the
fixed point (just as the ball rolling down to the saddle point takes an infinite amount of time to
reach the saddle point). This occurs because the velocity d¥(,/dt goes to zero as 3, approaches the
fixed point. Trajectories like D of fig. 12.6 which pass near a fixed point use up a lot of time near
the fixed point for the same reason. The existence of these time sinks enables trajectories to spend
an infinite amount of time in a compact region of S; otherwise there is danger of the trajectories
leaving S, especially when one tries to move backwards in time along a trajectory.
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The second observation is that in the example there is only one trajectory leaving the critical
surface, namely, the trajectory G. The reason trajectories do not leave the critical surface any-
where other than P_ is that away from the fixed point the velocity d¥ ,/d¢ is non-zero; but where
the velocity is non-zero it must point along the critical surface. As long as the velocity is con-
tinuous in S, the direction of the velocity has to be parallel to the critical surface for points
infinitesimally close to the critical surface. Thus, trajectories like D stay close to the critical
surface until they reach the vicinity of P_ . At the point P_ there is no well-defined direction for
the velocity; hence, the velocity can be perpendicular to the critical surface at points infinitesi-
mally close to P,

12.2. Fixed points, subspaces, and renormalization

Application to field theory

Now the problem of renormalization in quantum field theory will be discussed. The simple
topology outlined above will be used to illustrate the general ideas. It was apparent from the
original work of Gell-Mann and Low [149] that the problem of renormalization involves the
renormalization group and its fixed points. The Gell-Mann—Low approach has been reviewed
elsewhere [ 150]. What will be seen here is that a simple and general formulation of renormalized
field theory can be given in terms of the space S(ec) defined earlier.

There are actually two parts to the renormalization problem. The first part is to obtain finite
theories in the limit of an infinite cutoff. This part is very easy to discuss in terms of the space
S(o0). The second part is to obtain theories with interaction. This will be discussed later in terms
of Gaussian and non-Gaussian fixed points. It is the second part which is hard to achieve in four
space-time dimensions, as will be seen in section 13. See however supplemental references.

The renormalization problem will be introduced using a conventional approach.

Suppose one is interested in solving a ¢* interaction. To make the theory finite a cutoff A, is
introduced (as in section 10). The problem is now to obtain a finite theory in the limit A, — o°.

An interaction with cutoff A, can be converted to an interaction with unit cutoff by a change
of momentum scale, so that it becomes an interaction in S. There are two free parameters in the
interaction (the bare mass and coupling constant) so the canonical surface is two-dimensional.
The canonical surface is illustrated by the curve C in fig. 12.7.

Fig. 12.7. Renormalization trajectories
emanating from a canonical surface C of cutoff
@¢* theories. The canonical surface intersects the
critical surface at A, = e. The trajectory G
defines the renormalized theory. Trajectories
such as G are referred to as “‘renormalized”
trajectories.
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Define a “canonical curve” Hp(Ap) to be a set of dimensionless interactions ¥p in S, one for
each value of A,. If no renormalization is performed and the cutoff consists simply of a maximum
momentum (rather than the lattice cutoff of section 10), then one finds the dimensionless para-
meters in Hp(Ag) to be ro(Ag) = u3/A2 and ug(Ag) = NoAd ™ * where o and A, are the bare mass
and charge (r, and u, were defined in section 4). Define £p(A,) to be the dimensionless correlation
length for Hp(Ag). It was observed in section 10 that £p (o) must be o in order that ur be finite
and this is unlikely if no renormalization is performed.

Performing a renormalization conventionally means giving u, and Ay a Ay dependence such that
the renormalized mass ug and renormalized coupling constant are cutoff independent. In the
simple topology considered here it will turn out that it is sufficient to keep ug cutoff-independent
(see below). A procedure for accomplishing this has already been suggested in section 10. If one is
given the dimensionless parameters ry and ug, the dimensionless correlation length £ is determined
independently of Aqy: & = £(rg, ug). Next specify the desired value of ug. Now choose A, to be
Ao = uR &(ro, Up). (This is analogous to choosing the lattice spacing a to be 1/ur &b, uo, K) in
section 10.) To obtain a curve Hp(Ay) suppose one chooses a fixed value for u,. Then one can
solve the equation Ay = ug £(rq, Ug) to give ry as a function of Ag. Knowing ry(A,) one determines
u2 =ro(Ag)A and Ay = ugAd ™. Now A, = = corresponds to ro = roc(ito) Where 7o (ug) is the
value of ry on the critical surface. The renormalized mass (in physical units) is Ao/&(ro, ug) (see
section 10) and therefore pp is independently of ry by construction.

The curve Hp(Ay) is illustrated in fig. 12.7. In fig. 12.7 the canonical surface is replaced by a
curve (otherwise one would have more than two dimensions in the illustration which is impractical).
The curve Hp(Ag) is a piece of the curve C in fig. 12.7. It will now be shown that this canonical
curve defines a renormalized theory which is independent of .

Suppose one solves the renormalization group equation (12.1) with ¥ p(A,) as the initial
interaction. This gives a set of curves #(;(A,) in the space S. For illustration the curve A in fig. 12.7
is #;(4), the curve D is #,(10). Since the scale factor for rescaling #p(A,) has already been
specified, namely A,, we know the scale factor for rescaling #(;(Ap), namely e *A,.

Now observe the following. For each A, there is a value of ¢ for which #(,(A,) intersects the
surface of interactions with £ = 1. The set of such intersections defines the curve J shown in
fig. 12.7. For example, the trajectory #,(4) (A in fig. 12.7) intersects the curve J at the point Q,
in fig. 12.7. The interaction Q4 defines the same physics as the interaction #p(4). Likewise the
interaction Q, , defines the same physics as the interaction Hp (10). The only change is a scale
transformation. It is easily seen that the scale transformation is the same for both Q4 and Q,,.
The reason is that Hp(A,) was defined to have a constant correlation length in physical units
(namely pg') independent of Ag; since Q4 and Q, o define the same physics as #p(4) and ¥Hp(10)
respectively, they also generate the same physical correlation length. Since Q4 and Q, o have the
same dimensionless correlation length 1, the rescaling factor is the same for both (namely,
momenta are multiplied by ur/§ = ur).

Now let Ay = o0, In this limit Q4 and Q,, are replaced by Q. , the intersection of J with the
curve G. Q_, is a well-defined, cutoff interaction so it describes a well-defined physics including a
complete set of vacuum expectation values. Hence, the limit A, = o0 exists: there is a finite
(renormalized) theory in the limit Ay = oo.

In this formulation of renormalization one has mass renormalization (because u, depends on
Ao). There is only a trivial coupling constant renormalization (4, is held fixed instead of A,) and
the renormalized theory does not depend on u,. There is no free coupling constant in the
renormalized theory; the only free parameter in the renormalized theory is ug. The reason for
this is the simple topology assumed here; in a later section there will be examples of renormalized
theories with more free parameters. The renormalized theory associated specifically with the
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nontrivial fixed point #*, u* of section 4 is an example where the renormalized coupling constant
is fixed [156]. This is evident from sections 7 and 8; the expressions there for long range correla-
tion functions depend only on £ or r respectively. It was already shown in [150] that there could
be fixed points where the renormalized coupling constant is fixed and the unrenormalized coupling
constant is arbitrary (these were called “infra-red stable” in [150]).

There is also wavefunction renormalization in the theory. This is because the renormalized field
¢r(x) can differ at most by a finite scale factor from the Fourier transform of the spin variable
0}, in Q... This spin variable will differ by an infinite scale factor from the original spin variable o,
in H'p (o) because the trajectory from Hp(eo) to Q,, spends an infinite amount of time at the fixed
point P_. (The original spin variable g4 is likely to differ by an infinite scale factor from the
unrenormalized field: see, e.g., eq. (10.46) with a = 0 to correspond to Ay = oo; it is unlikely the
two infinite scale factors combine to make a finite factor.)

The fact that the renormalized theory does not depend on u, is a field theoretic example of
universality. One has even greater freedom: one can choose the canonical curve Hp(A,) to be
the trajectory G itself and still obtain the same renormalized theory. (This assumes one is willing
to consider curves Hp(Ag) not on the original canonical surface.)

The generalization of this result is the following. Any trajectory of the renormalization group
equation (12.1) which (like G) can be extrapolated back to the critical surface (f = —o0) without
leaving the space S defines a renormalized theory. The reason is simple: one can choose the bare
interaction Hp(A,) to be the point on the trajectory with & = Ag/ur. As long as the trajectory
extrapolates back to the critical surface, it has points with arbitrarily large £, so one can let
Ao = oo without difficulty. Any such trajectory will be called a “renormalized trajectory”. An
example of a renormalized trajectory analogous to G was discussed in section 7, and in part in
section 4 (as explained above). Conversely, any trajectory which, when extrapolated backwards,
leaves the space S before reaching the critical surface, defines a nonlocal theory of no interest.
There is no guarantee that a given renormalized trajectory can be reached starting from a given
canonical surface. In the example the trajectories leaving the canonical surface (A and D in
fig. 12.7) approach G because that is the only renormalized trajectory in the example.

‘The subspace S(=0) is the same as the set of all renormalized trajectories; thus, the set S(eo) is
simply the set of all possible renormalized interactions, in the sense that one can think of Q_, as
a renormalized interaction.

12.3. Multiple fixed points, domains, and universality

Several fixed points; domains

In practical situations there are usually more than two fixed points of the renormalization
group. The next topic is to discuss some of the complications that arise when there are several
fixed points. To illustrate this problem imagine that there are three fixed points Pae, Pge, and
Pc.. on the critical surface (fig. 12.8) in addition to Py. It will still be assumed that all trajectories
go to a fixed point as f = oo,

Fixed points can be classified according to their stability or instability. A fixed point is stable
if all trajectories in the neighbourhood approach the fixed point. P, is the only stable fixed point
in the example. Other fixed points are unstable. There are, however, degrees of instability. In the
example it is assumed that trajectories near Py.. on the critical surface (for example B in fig. 12.8)
approach Ps.. while trajectories off the critical surface go away from P,... The point Py.. is called
once unstable. Likewise, the fixed point Pc.. is once unstable, according to fig. 12.8. The fixed
point Pp.. is twice unstable: trajectories on or off the critical surface move away from Pg... This is
because (assuming there are no other fixed points) the velocity d¥(,/d# must always point towards
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Ps.. on the critical surface between Py and Pg.; the velocity cannot change direction without
going through zero.

The above discussion takes literally fig. 12.8, in which the space S is two-dimensional and the
critical surface is one-dimensional. The general definition of n-unstable fixed points for arbitrary
n in an infinite-dimensional space .S will be given later.

Fig. 12.8. Topology of the renormalization group
in a region having three fixed points PAc., PRoo
and Pro on the critical surface. PA o and PCoo
are once-unstable. PR is twice-unstable.

There are unique renormalized trajectories G, and G¢ leaving the fixed points Py » and Poe,
analogous to the unique trajectory G in fig. 12.6 or the gully G in the classical analogue. In
addition there is an infinite set of renormalized trajectories leaving the point Pg... The point Pg..
is analogous to the top of a hill in the classical analogue while Pp.. and Pc.. are analogous to
saddle points. The appropriate contour map is given in fig. 12.9. The curves Gg and Gg in both
figs. 12.8 and 12.9 are examples of trajectories leaving Pp.. .

Fig. 12.9. Contour map of the topology of fig. 12.8.

When there are several fixed points an additional problem arises. Suppose one has a canonical
surface (Cin fig. 12.8). The question is which fixed point is connected via the renormalization
group to the canonical surface. In fig. 12.8 the renormalization group trajectories leaving the
canonical surface go to either P, or Py ... In the case of an interaction on the critical surface the
trajectory goes to P ... So, the critical behavior is governed by P4 .., not Pg.. or Pc.., and
renormalization starting from the canonical surface is governed by the single renormalized
trajectory G,.

Associated with each fixed point #(* in S there is a domain D(J(*) of interactions in S. The
domain D(¥(*) is defined as the set of all initial interactions ¥, € S such that the trajectory ¥,
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starting from #( approaches J* as f > o, In fig. 12.8 the domain of P, consists of all points
above the critical surface; the domain of P5.. consists of all points on the critical surface to the
left of Pg..; the domain of Pg.. consists solely of the point Py, etc. A fixed point * is connected
to a given canonical surface C if the surface C intersects the domain D(¥*).

The dimensionality of the domain D(H*) is connected to the degree of instability of J*: if
H* is an n-unstable fixed point then the domain D(¥(*) has n fewer dimensions than S. This is
easily seen in the example of fig. 12.8. It will be equally trivial to see in general once the definition
of n-unstable has been given.

The dimensional rule for domains makes the highly unstable fixed points very elusive. Suppose
the canonical surface is a curve (the only free parameter being a temperature or bare mass). Then
the canonical surface is unlikely to intersect any domain for a twice-unstable fixed point like Pg...
This is evident in fig. 12.8. This rule holds provided that topological structures like fixed points,
the critical surface, etc. are randomly located in the space S, relative to any a priori chosen
canonical surface. An exception to this rule is in the case of symmetry; see later discussion.

In critical phenomena, critical points are classified by the number of thermodynamic parameters
that are fixed at the critical point. An ordinary ferromagnetic critical point requires the tempera-
ture 7 and the magnetic field to be fixed, so the corresponding fixed point is twice unstable. If,
as in these sections one defines the space S itself to exclude magnetic fields, then the only fixed
parameter is 7 and the fixed point is once-unstable. Thus, in the example of fig. 12.8, the points
Ps.. and Pc.. could each describe the critical behavior of an ordinary critical point. The existence
of the two fixed points would mean the existence of two distinct sets of critical exponents;
different substances (corresponding to different canonical surfaces) would separate into two
classes, each class separately showing a common critical behavior. This is still the universality
hypothesis but in a more restricted form than earlier formulations; see, e.g., [157].

There are critical points where three thermodynamic parameters are fixed instead of two. These
are called tri-critical points; see, e.g., [158]. Excluding the magnetic field again, there are two
fixed parameters. The extra thermodynamic parameter is, e.g., a concentration. The most popular
tri-critical point is in >He—%He mixtures: the two thermodynamic parameters are the *He con-
centration and the temperature. A tri-critical point corresponds to a twice-unstable fixed point
like Pp.. (excluding external fields: in the 3He—*He system there is no way in practice to imitate
the external field of magnetic systems). For dimensions near 4 the Gaussian fixed point of
section 3 is twice-unstable; Riedel and Wegner {159] have proposed that this fixed point describes
the 3He—%He tri-critical point.

In field theory, the degree of instability of a fixed point determines the number of free para-
meters in the renormalized theory associated with the fixed point. In the example discussed earlier
(fig. 12.7) there is a once-unstable fixed point and only one free parameter, namely the renorma-
lized mass ug. (The effective interaction for cutoff uge’ is uniquely determined as the point on
the trajectory G in fig. 12.7 with £ = e™’. Hence there are no other free parameters.) For a twice
unstable fixed point there is a one parameter family of renormalized trajectories; in this case the
parameter labelling these trajectories is a second parameter in the renormalized theory, in
addition to ug.

Thus the renormalized field theory associated with the nontrivial fixed point of section 4, for
d < 4, has no free coupling constants. In contrast, the fixed point discussed by Gell-Mann and
Low [149, 150] has to correspond to a twice unstable fixed point in order that there be two
free parameters (mass and charge) in the renormalized theory. (The once unstable fixed poirits
discussed here correspond to the “infra-red stable” fixed points of [150] while “twice unstable”
here corresponds to “ultraviolet stable” in [ 150].) When one produces a renormalized theory
with two free parameters such as the conventionally renormalized ¢* theory, the canonical
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surface also has to be at least two-dimensional and the canonical curve Hp(Ag) involves two
parameters depending on Ag (e.8. o(Ag), Ao(Ap)). This will not be discussed in detail; however,
see section 13. In conclusion, one needs both coupling constant renormalization (A, depending
on Ag) and a twice-unstable fixed point in order to have an arbitrary renormalized coupling
constant in the renormalized theory.

There is an argument (see [ 150]; it is omitted here for lack of space) that only fixed points of
limited instability will be relevant to elementary particles. The hypothesis, stated more precisely,
is that only stable fixed points are relevant provided the space S is restricted to interactions con-
serving a suitably chosen internal symmetry. There can be instabilities which break the symmetry
(instabilities here correspond to “generalized mass terms’ in [150]) but hopefully not too many.
This hypothesis is the basis for obtaining interactions with only a few free parameters; it sub-
stitutes for the canonical approach of considering only simple polynomial interactions.

Symmetries

The next topic is the effect of space-time or internal symmetries on the topological analysis.
This is a subject that can become arbitrarily complicated; only a few comments will be made here;
see also [160—162].

Essentially any symmetry that can be incorporated into an interaction 3 will be preserved by
the renormalization group transformation U (as defined in section 11). U preserves rotational
symmetry (Euclidean symmetry in the case of field theory). It preserves the symmetry for
04 = —04 in the absence of a magnetic field. If o, has internal components (as in a Heisenberg
ferromagnet or a field theory with isospin (see section 9)), U preserves internal rotational
symmetry. When a symmetry is possible there will be a subspace of .S of interactions which
incorporate the symmetry. There are also interactions which break the symmetry: lattice models
have cubic symmetry but not full rotational symmetry, interactions with external magnetic fields
break the symmetry a4, = —ay.

The subspaces of S of interactions preserving a symmetry are invariant to U. If one is
uninterested in interactions which break a symmetry, one can redefine S to be the subspace of
interactions which preserve the symmetry and carry out the topological analysis of this lecture
in the subspace. In fact, the space S of this section has been understood to omit interactions with
an external field.

A consequence of this must be noted. Suppose one is interested in the critical point of a ferro-
magnet without an external field. As observed above, this critical point corresponds to a once
unstable fixed point in a space S which preserves the symmetry o, = —0g. In the larger space S’
of all interactions the same fixed point could be highly unstable; there is no guarantee that it is
just twice unstable, as claimed earlier. Further instabilities ought to imply the existence of
further thermodynamic parameters besides the external field which are fixed at the critical point.
However, setting the external field to zero means no interactions are present which break the spin
reflection symmetry: in effect, setting the external field to zero also sets the extra thermodynamic
parameters equal to zero too.

It may happen that all the fixed points in S preserve a symmetry, say rotational symmetry.
Then, even if the initial interaction violates the symmetry, the renormalized theory associated .
with the fixed points preserve the symmetry. For example, in fig. 12.7 the curve C might represent
a set of nearest neighbor interactions on a lattice with only cubic or hypercubic symmetry. The
lattice is used to ensure a positive metric; see section 10. If the curve G lies in the subspace of
complete Euclidean symmetry, then the renormalized theory will be Euclidean invariant. In order
that G lie in the Euclidean-invariant subspace Sy, it is necessary that the fixed points P_ and P,
and the trajectory G still be present when S is replaced by Sg . It is of course crucial that U itself
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preserves Euclidean symmetry: otherwise a trajectory like G is unlikely to stay inside Sg.

There is no a priori guarantee that all fixed points are in Sg or that the trajectories like G
leaving a fixed point all remain inside Sg. More generally, to achieve Euclidean invariance and
positivity simultaneously one needs to have trajectories originating with a nearest neighbor
interaction and ending in Sg. Whether this is the case has to be checked for each situation of
interest.

It seems likely that this condition can be satisfied within perturbation theory (small ©) but
this has not been carefully checked.

There can be fixed points which violate possible symmetries. A specific example with some
fixed points violating an internal rotational symmetry and others preserving it has been discussed
elsewhere [160]. The least unstable fixed points may preserve or may violate the symmetry; only
a calculation can determine which. If a fixed point violates a continuous symmetry, one can use
the symmetry transformations to construct a fixed surface from the fixed point.

Consider again the problem of renormalization. As found in section 3, there is a Gaussian fixed
point; there is also a curve like G in fig. 12.6 which contains only Gaussian interactions. In less
than four (space-time) dimensions there is also a non-Gaussian fixed point, but in four dimensions
the Gaussian fixed point is the only one known so far (see section 13). This suggests that even if
the canonical surface contains non-Gaussian interactions, the renormalized theory will be the
purely Gaussian theory defined by G, i.e., a free field theory. The ability of a canonical surface
of interacting theories to produce free field theories after renormalization is closely related to
coupling constant renormalization in perturbation theory; see, e.g., section 3 G of [150].

Thus, the serious problem of renormalization theory ind = 4 is to find renormalized theories
with interaction. The simplest way to ensure the existence of such theories would be to find a
non-Gaussian fixed point, or, at least a finite boundary for the domain of the Gaussian fixed
point; see section 13.

12.4. Fixed points and anomalous dimensions

Linearized renormalization group equations

The next topic is to discuss the renormalization group transformation near a fixed point.
Linearized equations near the fixed point will be defined. The eigenfunctions of the linearized
equations define a complete basis set of local operators (in statistical mechanics these are
Kadanoff’s local operators {157, 163]). The eigenvalues are the anomalous dimensions
(Kadanoff’s scaling indices) of the local operators. Operators with anomalous dimension less
than d are called “‘relevant’. The number of such operators is the degree of instability of the
fixed point. Operators with dimension >d are irrelevant. Operators with dimension =d are a
nuisance (they may or may not contribute to the degree of instability; they give rise to long-lived
transients (see section 7) and other complications [ 152]).

Wegner [152] gives a discussion of behavior near a fixed point going beyond the linear
approximation.

The analysis will continue to be abstract with general assumptions that have been confirmed
only by examples.

Consider a trajectory ¥, satisfying (12.1) and suppose that 3, ~ #* where H * is a fixed point.
Then one can write

¥, = H* + 61, (12.7)
where 83, is small. The perturbation 6¥, satisfies an equation
083, /ot =L - 6H; + O[6H?] (12.8)
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where O[83(?] refers to terms of second order in the coupling constants of §3(;. The operator L
is a linear operator; the operator L associated with the transformation of section 11 is given in the
Appendix. L depends on the fixed point #*. The 2 x 2 matrix M of eq. (4.32) is also an example
of an operator L.

The initial interaction 8J(, is normally the integral over all space of an energy density. It will
however be convenient to consider localized perturbations 6, also. To be general write,

536 = | g(x)Olx; 0] (12.9)

X

where g(x) is an arbitrary small function and O[x; ¢] is an arbitrary interaction density.

It is convenient to consider translation-invariant densities O[x; o]. Examples of translationally
invariant densities O{x; o] are s(x); J,, exp{—(x —»)2}s(»); Iy J{exp —(x — )% exp{—(x —2)?} x
5(¥)s(z), etc., where s(x) is the Fourier transform of o,. (For a formal definition, see the
Appendix.) In the linear approximation 6, is linear in g(x). One can write,

8K, = fg(x)O[xe"; o;1] (12.10)

X

where the argument of O is written xe™ instead of x for reasons to be explained shortly.
It is natural to look for exponential solutions of (12.8); namely, solutions

8H; = exp(—dm?) Omlo]. (12.11)
The functionals O,, must satisfy an eigenvalue equation:

~dmOmlo]l =L - Oplo]. (12.12)

Explicit examples of solutions in terms of localized functionals O,,[¢] are given in the Appendix.
The operator L is not Hermitian, which means there might also be solutions behaving like
tk exp(—d,,t) but these have not been encountered in practice and will be ignored. We assume
that the set of solutions O,, [0] are complete; i.c. any localized functional can be expressed as a
linear combination of the O,,[0] (see later for a more accurate expansion theorem).

The functionals O,, [o] are localized about the origin. One can define functionals O,, [x; o]
centered about any point x by a translation. The rule (see the Appendix) is

Omlx;01=0pld'] (12.13)

where o{, = exp(iq - x) o4. These translated densities also define solutions of the linearized
equation, in the form

83, = exp(—dut) O [xe™; a]. (12.14)

This is proven in the Appendix. The reason for the argument xe™ is that the physical location of
an interaction must be independent of ¢. The factor e™* compensates for the changing dimension-
less length scale.

Now suppose one has an arbitrary initial interaction of the form (12.9) where O[x; o] is an
arbitrary translated interaction. The operator O[0; o] can be expressed as a linear combination
of the O,, [a] (by assumption):

010;6]= 2 ¢,,0plal. (12.15)
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This immediately implies that

Olx;0)= 2 ¢pOulx;ol. (12.16)
m
Therefore the solution 63, corresponding to the initial condition is,
84, = f gx) 3 ¢ exp(=dpt) Oy [xe™; o). (12.17)
X m

Warning: in practice the expansion (12.17) is not always convergent. What does seem to be true
is that asymptotically for large ¢ the expansion (12.17) is valid. An abstract example that illustrates
this is the following. Let f(q) be a function like (1 + ¢?)™! whose Taylor series in g2 converges
only for g2 < 1. Consider the function f(ge™) for given q with g2 > 1. For ¢ = 0 the Taylor series
expansion in ¢? diverges. For sufficiently large ¢ the series is valid.

In statistical mechanics, localized perturbations arise due to local fluctuations in temperature,
chemical potential, etc.; each such fluctuation corresponds to a particular functional O[x; ¢]. In
field theory these functionals correspond to local composite operators, after renormalization. (At
first sight the typical localized operators like [y [, exp(—x* —y?)s(x)s(») do not look like the
strictly local products like $2(x) of a field theory. However, a dimensionless separation |» —v|~ 1
in 83, becomes a separation Ag' in physical units, and when A, = oo the physical separation goes
to 0.) The specific functionals O,, [x; o] correspond to Kadanoff’s local operators [157, 163]
with scaling indices d,,,. In field theory they define a basis of local scale invariant operators O,,(x)
{164];d,, is the anomalous dimension of O,, . (See below for further discussion.)

So far the analysis has assumed that #, = #(* so that §3(, is small. For a more general analysis
suppose g is the critical interaction of some system, on the critical surface in the domain of #*
but not near 3(*. Then there is a critical trajectory #(§ which approaches #(* for r > oo. Consider
small departures from the critical trajectory

K, = HE + 83C,. (12.18)

In this section 63, is assumed to be small which means (in the language of section 7) that ¢ is
either in the initial transient region where ¥(; is appreciably different from ¥* or in an inter-
mediate range of ¢ with ¥(; =~ J* and 63, still small. The “correlation length region” for very
large ¢ where 63(; is large will be ignored here. In the transient region 8, satisfies a linearized
equation but with a t-dependent operator L[¥§]. For larger t where 3; = 3(*, L[¥(5] reduces to
the operator L defined previously. There is an expansion theorem for large £: §H, satisfies (12.8)
for large ¢ and therefore has an expansion of the form (12.17) with coefficients ¢,, independent
of t.

To show that dj,, is an anomalous dimension it is useful to consider correlation functions
involving a localized perturbation O[x; o]. One can calculate correlation functions such as
Z W s(xy) .. .5(xp,) Olx; o] exp(H)) from the generating functional

Z(J';g)=Z"J exp {f}'(x)S(xH fg(x)OIx;o] + 35 1o] (12.19)

o X

with the g term treated to first order. Now define the initial interaction ¥4 to be Hg + [8(x) x
Olx; o]. Since g can be treated to first order ¥, has the form, implied by (12.7):

H, =3C* + J-g(x) S cm exp(=dmt) Op[xe™; o). (12.20)
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(If one is using the renormalization group equation of section 11, the generating functional (12.19)
is obtained by substituting #(; into eq. (11.32) of section 11.)

One 1s now led to consider correlation functions involving the local operators O,, [x; o] and
calculated using #*, for example

FEGG Xy, - Xx0) =(Z%)7Hs(xy) - .. 8(xp) Om [x; 0] exp{H*[a]}) (12.21)

where Z* is the partition function for #*. This correlation function can be shown to satisfy a
scaling law analogous to eq. (7.45) of section 7:

fE@exy, . . Xn) = exp(—ndt) exp(—dp,t) fi(xe™; xe7, .., xpe™) (12.22)

which means d,,, is the anomalous dimension of Q,, just as d is the anomalous dimension of the
spin s. The proof of (12.22) will only be sketched. One can compute f}(x; xy, . . ., x,) from the
generating functional

(Z* Us(xy) . . . s(xp) exp{:u.’*[a] + jg(x)om [x: o}}) (12.23)

with the g term treated to first order. The renormalization group equations can be integrated with
H* + [, 8(x)0,, [x; 0] =3, The result is that the above generating functional can be written

(Z*) P exp(—nd,t) (s(x,e77) ... s(xpe™) exp{JC*[o] +J. g(x) exp(=dm)Opm [xe™; al}) (12.24)

from which the result follows. [If one is working with the explicit form of the renormalization
group equations of section 11, the expression,

(s(xy) .. .s(xm) exp(3C, ) (12.25)
must be understood as a shorthand for
J d Z[j, ¥, ] (12.26)

8j(xy, 1) 8j(xpm, 1)
where Z[j, 3, ] is given by (11.32) and

jx, 0= | explig- x)ita, 0. (12.27)
q

Furthermore, one should integrate from ¢’ to £’ + t say with ¢’ large instead of O to ¢ in order to be
able to use the prescription (12.26) throughout the range of ¢. Also, the function p(#) is assumed
to be bt where b is a constant (see the Appendix); d, is given by % d — b. The function p(?) is
constructed not to change due to the perturbation fg(x) O[x, o]. This is possible because the
function p(¢) was needed only to ensure the existence of the fixed point #*; there is no need to
modify p(¢) when considering perturbations about ¥ * (except in the case that one is looking

for nearby fixed points).]

A consequence of the scaling law for correlation functions involving O,, [x; o] is that the
operators with the smallest values of d,, have the largest long range correlation functions. Long
range means |x; —x;| > | in the dimensionless units of the original interaction, i.e. long range
compared to the lattice spacing in statistical mechanics, long compared to the cutoff distance
AY in field theory. Thus, when one can write the expansion (12.20) the operator O[x; ¢] can b=
replaced by the leading operator O,, [x; o] in its expansion (i.e. the operator with lowest d,, for
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which ¢, is nonzero) in any long range correlation function. This means in the simple model of
section 4 that almost all operators O[x; o] odd in o behave like s(x) itself and almost all operators
even in o behave like the energy density (generated by fluctuations in temperature 7). This is
part of Kadanoff’s operator theory [157, 163].

Kadanoff’s operator reduction formula [163] (the operator product expansion in field theory
[164, 165]) can be derived within the framework described here. No details will be reported
here. The idea is that if one is interested in the product O, (x1;0) O (x4 0) with [x; = x,|
large, inside a correlation function with spins s(x3), s(x4), etc. very far away (|x3 — x| > |x; — x|,
etc.) then one can put the product into #, by defining

Ho =H* + f fg(xl;x2)0m,(x1;0)0m2(x2;O)- (12.28)

X, X,

This interaction is now treated to first order in g; for large ¢ one will have

=305+ | [ g x2) em®y = x3) exp(=dm) Op(x16™ 0) (12.29)

X X

which replaces the product of two operators by a sum over the basis.

The next topic is translationally invariant perturbations {152]. This means 83, has the form
(12.9) with g(x) = g independent of x. In this case one makes a change of variables x = xe’ in
(12.17) giving

8K, =g 2 cm exp{(d —dp,)t} me [x;0]. (12.30)

In-this expression the terms with d,, <d increase with ¢ while those with d,, > d decrease with ¢.
Hence the number of relevant operators O,, (d,, <d) determines the number of instabilities of
the fixed point H*. Thus one defines an n-unstable fixed point #(* as a fixed point with » relevant
operators. (If there are any nuisance operators (d,, =d) a second order calculation in g (see [152]
and section 13) is required to determine whether they count as instabilities or not.)

The part of the domain of 3(* near 3* itself is easily determined; it consists of all perturbations
not containing any relevant operators. This means the domain has n less dimensions than S.

13. Futile (so far) search for a non-trivial fixed point — ¢* field theory in 4 dimensions

It was observed in section 12 that for any fixed point #(*, there is a domain D of interactions
whose critical behavior is described by #*. It is of crucial importance both to statistical mechanics
and field theory to be able to locate boundaries of such domains.

An approximate technique for locating a domain boundary will be described here using high
temperature expansions. The technique will be developed for a particular example, namely the
problem of locating a boundary to the domain of the Gaussian fixed point in four dimensions.
(This domain will be called the ““free field domain™.) The method, with further refinement,
should be applicable to other problems involving domain boundaries.

The nature of the free field domain in four dimensions is of special interest to quantum field
theorists. Consider the problem of renormalizing the ¢* field theory. As long as the ¢* interaction,
suitably cutoff, lies in the free field domain, the renormalized field theory defined as in section 12
will have no interaction. The free field domain certainly includes the case of small bare coupling
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constants (see later); the question is whether for large coupling constants the interaction lies out-
side the free field domain and therefore perhaps in the domain of a nontrivial fixed point.

It is perfectly possible that the entire critical surface (see section 12) is within the free field
domain. Then there would be no way to obtain a renormalized ¢* theory with interaction. This
does not conflict with the existence of a renormalized perturbation theory for the ¢* interaction.
One already knows a model theory (the Lee model [166]) which has a renormalized perturbation
theory but where the only exactly defined renormalized theory is a free field theory.

(One can obtain an interacting theory for the Lee model but only as the limit of non-Hermitian
cutoff interactions. The theory obtained in this limit is the sum of the renormalized perturbation
theory. It has undesirable ghost states. The cutoff Hamiltonians of the theories discussed here are
all Hermitian (see section 10).)

The idea of fixed points and domains of fixed points is part of the old Gell-Mann—Low
renormalization group theory: see [150]. The drawback of the old approach is that it was
impossible to locate fixed points or domain boundaries, and in consequence the theory was highly
speculative. The calculations described in this paper (and particularly the proposed generalizations
of them) depend heavily on the modern approach.

The ¢* theory will be cutoff by introducing a lattice as discussed in section 10. The lattice
models of section 10 will be studied for all values of the ¢* coupling constant, i.e. for all values
of the s* coefficient w4 in the statistical mechanical analogue. The entire range 0 <1 < oe is
found to lie in the free field domain. The high temperature expansion used here allows one to
treat all values of u, small or large on an equal footing. The calculations are rough but probably
reliable. They have been partly confirmed by calculations with the approximate recursion formula
of section 6 (see the end of this section). Further studies will involve adding s¢, s®, etc. terms to
the model; with this added flexibility there is still hope of finding a domain boundary.

Jasnow and Wortis [167] have tried to show the existence of a sharp domain boundary (in
another problem) by showing that the critical exponents jump discontinuously across the
boundary. However, the high temperature expansion technique they used yields in practical
approximations only continuous variable exponents; the existence of the discontinuity is to be
inferred. In this section the renormalization group theory will be used to define a function Y(uy)
which vanishes at the boundary (if there is a boundary). Thus, there is no need to search for
discontinuities.

First, the renormalization group analysis will be described. To start with one must understand
how trajectories in the free field domain approach the Gaussian fixed point. To illustrate this a
section of the critical surface is shown in fig. 13.1. The coordinates are the s*(¢%) coupling

Po —~— u

Fig. 13.1. Topology on the critical surface
of ¢* field theory. The u axis gives the
strength of the bare u, ¢* interaction. The
w axis is an irrelevant variable. Pg is the
Gaussian fixed point. Trajectories B and

C are two typical trajectories discussed in
the text.
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constant v and an irrelevant variable w. The point Pg is the Gaussian fixed point. The initial inter-
actions have no w term and different values of ug; trajectories for different values of ¢ look like
B and C in fig. 13.1. Near Pg they are found to be close to a unique trajectory A. This will be
explained later.

If the free field domain has a boundary, then the simplest topological configuration is shown
in fig. 13.2: there is a twice unstable fixed point Pg and the boundary of the free field domain is
itself the domain of Py. The trajectory A can now be defined as the trajectory A connecting Pg
to Pi. If the boundary intersects the canonical surface (the u axis in this case), then the trajectories
from the canonical surface look like D in fig. 13.2 as they approach the boundary.

w
Pg
A
Free Fieid boundary
Domain
D
8 C
P I Up Ug*8Ug Uoc u
w

Fig. 13.2. The simplest topology in the presence of a
second fixed point Pg. The vertical line W is the gate
discussed in the text. u, . is the smallest value of u
such that a trajectory does not go to Pg.

The crucial feature of trajectories like D is that they spend a lot of time near the fixed point Py
and therefore do not pass the “gate” W (see fig. 13.2) until very large 7. For any initial value u,
of u, define tw (1¢) as the time at which the trajectory starting at u, passes the gate W. The gate
will be placed very close to the Gaussian fixed point, for convenience.

It is easily seen that regardless of the topology, fw (i) = o if u, approaches the boundary of
the free field domain. The reason is the following. Let uy increase. When u, reaches the boundary
the trajectory leaving 1, changes discontinuously: instead of going to Pg, it stays on or beyond the
boundary. But unless the differential equation defining the trajectories is pathological, only the
t = o limit of a trajectory can change discontinuously. Hence, the time to pass the gate W goes
to oo as u, approaches the boundary. This fact will be used to determine whether a boundary
exists.

Now define,

Yue) = [drw(1e)/dug) ™. (13.1)

For tw(uy) to be infinite at ug = uy. while finite for smaller values of u,, the derivative
drw(ig)/duy must be infinite at wg = ug., which means ¥(uy.) must be zero. (The function Y(u,)
is thus analogous to the original Y function of Gell-Mann and Low in that the existence of a zero
of Y(uy) at some non-zero value of uy, makes possible a non-trivial renormalized theory: see
[150].) Special attention is required to discuss the point u, = o in general. However, in this case
it will become obvious that uy = oo is inside the free field domain.

It will be seen below that (1) is never zero and that at u, = oo, { is negative. Therefore,
tw (o) does not go to oo for finite u, and is decreasing for large u,. Therefore, the entire v, axis is
contained within the free field domain.
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First it will be shown that there is a unique trajectory A which is approached for large by ail
trajectories originating close to Pg. “Close to Pg”” means « and w are small and the perturbation
theoretic form of the renormalization group equations is adequate. From section 4, with d = 4,
the iterative equation for u; (eq. (4.27), neglecting r;) is

U+, =u — 9cuf. (13.2)
Rewritten as a differential equation, this reads,

du,/dt = —9cu}, (13.3)
whose solution is,

1
= 13.4

YT —tg)c (13.4)
where 7, is a constant. Thus u, = O for ¢ = oo like 1/¢. In contrast, a typical equation for an
irrelevant variable might be, in lowest nontrivial order,

%‘:—‘—=—2w,+u3. (13.5)
With u, already known, the solution of this equation is easily obtained:

t
w; =wg exp(—2f) + f exp{—2(r — £,)} uz dr,. (13.6)

0

The only parameter that affects the location of the trajectory is wy; changing r;, only changes the
origin of ¢ along a trajectory. For large ¢ the w, term is completely negligible compared to the
second term; hence, except for terms of order exp(—2¢), all trajectories near Pg (on the critical
surface) are the same.

The next step is to discuss trajectories which originate very close to the critical surface but not
on it. From this analysis a formula for y(u,) will be obtained which can be calculated from a high
temperature expansion.

If initially a trajectory is extremely close to the critical surface, then only for very large ¢ will
it depart appreciably from the critical surface. Therefore, the trajectory will first come very close
to the trajectory A and very close to Pg, but before reaching Pg it leaves the critical surface. The
relevant variables near Pg are r and u; possible trajectories leaving the critical surface are shown in
fig. 13.3 (B and C). (The parameter r was introduced in section 3. Its initial value r is related to
the bare mass u, of the $? theory expressed in units of the cutoff: see sections 3 and 10.)

Let the correlation length of the initial interaction be £3. One can vary &, independently of uy;
the value of &, is varied by varying ro — roc(ug) Where roc(ug) is the value of r4 on the critical
surface.

The function tw(u4) can be generalized to a function fw (i, £y) by extending the gate W off
the critical surface, as shown in fig. 13.3.

Now a function Y(ug, £¢) will be defined which is equal to Y(u,) for £, = o=. If &4 is very large
twug + 6ug) — tw(ug) is only weakly dependent on £, so that it can be replaced by tw(ug + Sug,
£o + 88y — twlug, &), and 8%, can be chosen to make the calculation simple. Consider the
trajectories corresponding to (ug, &) and (ug + buy, £y + 8&9) — called B and C in fig. 13.3.

The trajectories B and C as shown in fig. 13.3 are distinct beyond the gate. It is convenient to
make them coincide; to do this one adjusts 6&, until B and C meet where they cross the line
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£ = 1. Then the trajectories will coincide in the entire region past the gate W. The reason is that
specifying #(; at one point determines the entire trajectory ;. Actually one cannot make the
trajectories coincide exactly on the surface £ = 1, because the values of irrelevant variables like w
will be slightly different for the two trajectories. In the region before the gate W where u is not
small, the irrelevant variables are important and B and C differ appreciably. This was already
illustrated in fig. 13.1.

Fig. 13.3. The behavior of renormalization
group trajectories (B and C) near Pg; and
slightly off the critical surface.

The time difference rw(ug + Sug, o + 880) — tw(uy, &) is unchanged by moving along the
common trajectory from the gate W to the line £ = 1. Thus the time difference can also be
written £,(ug + fug, o + 88o) — 1,(uy, £o) Where £,(uy, &) is the time the trajectory crosses the
surface with £ = 1. Now the time £, (u,, £,) is known in terms of &, since to have §;, = e &, =1,
one must have

t1(uo, £o0) = In &,. (13.7)
Therefore, the time difference is,

twlug + 8ug) — tw(ug) = In(€o + 8&5) —In &. (13.8)

Let the value of u when ¢ = £,(ug, &) be u (U, &). The two trajectories B and C will coincide
on the surface &£ = 1 if «, is the same for both trajectories. Hence 6§, is to be chosen to keep u,
constant. Therefore, one defines ¥/ (u,, &) as the derivative,

W(uo, §0) = [d In £o/duql, 17" (13.9)

where £, changes with u, such that u;(u,, &) is held fixed. One has Y(u,, &) = Y(ug) for &y = o

>

Vo) = lim_[dIn £o/duol, ™. (13.10)

The fact that uy must vary as &, varies in order to keep u, fixed is an example of coupling
constant renormalization. In this example there is a one parameter family of trajectories passing
the surface £ = 1 and labelled by the constant u;; u; is closely related to the renormalized
coupling constant (see below). As one varies the initial correlation length &, of a trajectory
(which is analogous to varying A, in section 12) one must also vary u, in order that u, stay fixed;
see section 12.

The next step is to set up a high temperature expansion for Y (uy, &,). The high temperature
expansions are defined for statistical mechanical models on a lattice. It was explained in section 10
that these lattice models define quantum field theories. The statistical mechanical language will be
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sed here. The initial interaction on the lattice is the same one discussed in section 10,
¥, = ‘ UL . 13.11
o—KZansnu 32&, Uy 2 Sn (13.11)
n i n n

rith K, b, and u, being free parameters. The function Y(u,, &) will be obtained from the spin-
pin correlation function in the presence of an external field A:

L, (h, K, ug) ={spsq exp(—Ho) exp(hZ, sp N/{exp(—H ) exp(hZ s, ) (13.12)

vhere
( >zInI _L ds,,.

Che high temperature expansion is an expansion of I',(h, K, u,) in powers of K. This expansion
1as been discussed extensively (see, e.g., [168]) and will not be reviewed here. The method of
‘asnow and Wortis [ 167] was used to calculate the expansion of I',(k, X, uy) to ninth order in
. The calculation was done (by K.W.) on a computer. There exist programs [169, 170] which
;alculate to 12th order in K. When one expands in powers of K, each term involves integrals of
‘he form,

I1 fds,,,P[sm] exp {—2 2 s2—uy X si+h 2 s,,} (13.13)

where P[s, ] is a product of spins. This integral is the product of separate integrals, one for each
attice site; an integral at a lattice site has the form

f ds s exp{—3 b s* — ugs* + hs}. (13.14)

These integrals were calculated numerically to high precision by the computer.

One is free to make a scale change s, = {s, in the integrals; the only effect is to make a scale
change in T, (I, = ¢2T,) and this will not affect the calculation of Y(ug, &) defined below.
Because of this freedom it is unnecessary to calculate for all values of K, b, and u4. The normali-
zation condition

sbtup=1 (13.15)

was used in the numerical calculation. The spin-spin correlation function was calculated for the
values of u, shown in table 13.1. It was calculated as an expansion in both K and A.

Table 13.1
uo KC L u, KC
0 0.25 5 0.4218
0.25 0.329 7.5 0.4000
0.5 0.3637 10 0.3794
1 0.4004 20 0.3362
2 0.4276 40 0.3152

3 0.4322 ] 0.3000
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The function ¥(u,, £,) must now be expressed in terms of the spin-spin correlation function.
First, change variables from &, to K. The correlation length &, is a function of K (for fixed )
and goes to o when K = K (u4) where K (1) is the critical value of K. So ¢y will be considered
as a function of uy and K (Y (ue, K)), and the original function ¢(u,) is,

Y(ug) = Y(ug, Kcl(itg)). (13.16)

The definition of £, to be used here is the “‘effective range of correlation’ introduced in
section 3 (eq. (3.30)),

£ =—d1n 1, (0, K, us)/dg?|, - (13.17)
where,
Ty(h, K, uo) = 2 exp(iq- n) Ty(h, K, uq). (13.18)
n

To calculate ¢ from eq. (13.10) one needs to know how to keep u;(uq, &) fixed. To do this one
needs a quantity which is calculable in terms of I'4 (4, K, uy) but which depends only on u;.

Consider the effective interaction JC,I where a renormalization group trajectory intersects the
surface &£ = 1. This effective interaction is fixed once u,(uy, o) is determined. Thus, any quantity
which depends only on H; will in fact depend only on u;. The formula for I'; for # = 0 in terms
of }; is therefore

[(0, K, ug) = exp(=dty) $*(uy, K, t1)F,(q exp(ty), u;) (13.19)
where,
Fy(q, uy) = Z7'(oq0q, exp(¥; )/8%(q + q), (13.20)

Z, is the partition function for ¥(; , and {(u,, K, #,) is the spin renormalization factor. (See
eqs. (7.15) and (7.25).) Since exp(f,) is &,, one has (d = 4 in this section),

Tq(0, K, uo) = &0 $*(uo, K, 1) Fo(§0q, uy). (13.21)

The derivative 92I,(h, K, uy)/0h?|, - o is a four spin correlation function (with disconnected
graphs removed); it is easily seen to have the form

0°I" - .
ﬁ(o’ K, up) = £ (uo, K, £ Fal$0q, uy). (13.22)

(Eqgs. (13.21) and (13.22) are true only for large &,: if ©, is of order 1 and &, is not large then u,
is also of order 1. Then ¥, depends on irrelevant variables as well as u, ; therefore F;, and £,
depend on other variables besides £5q and u,. This is of no importance here since the equations
are needed only for large &,.)

From eqs. (13.21) and (13.22) it follows that the quantity

3%r,
e

ug = £o° (0, K, ug)/[To(0, K, 1)) 72 (13.23)

depends only on «;, namely

ur = Fa4(0, uy)/[F,(0, uy)1?. (13.24)
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(This ug is not the same as the ug of section 9, but they have a similar role — both act as
renormalized coupling constants.) It is easy to verify that for small u,, F4(0, u,) is linear in u;
while F,(0, u,) is a constant. Hence, ug is linear in u, to a first approximation. Therefore, holding
ug fixed will hold u, fixed.

The formula for Y(ue, K) is now,

W(tto, K) = [3 In £o/dutgl, )" (13.25)

Since the high temperature expansion gives ug (K, ugy) and £o(K, ug), this formula requires a
change of variable from K to ug. The derivative can be expressed in terms of derivatives with u,
and K as independent variables: one obtains,

dug falngy dug_2lnfy m}*
aK auO aK _B'F auO )

Y(ue, K) = (13.26)

Eq. (13.26) was used to obtain the expansion of Y(uy, K) in terms of K. This power series was
obtained for each of the values of ©y shown in table 13.1. (The computer calculation was designed
to calculate 01", /0ug (4, K, ug) as well as Ty(h, K, ug).)

In order to compute Y(uy, K.) one must know the critical value K .(uy) of K. A standard pro-
cedure [168] for determining K. was used. Consider I'4 (0, K, u,) for g = 0. This is the suscepti-
bility x. For given u,, suppose

=

Xx=T6(0,K,u5)= 3 gk’ (13.27)
I1=0

At the critical point the susceptibility diverges (reflecting the onset of spontaneous magnetization).
Thus K, is the radius of convergence of the series in K, unless there are complex singularities closer
to the origin. However, all the known coefficients q; are positive (for / < 9) which suggests that

the leading singularity occurs for positive K. Then K is given by,

K. =llim a;_1/ay. (13.28)

The ratios a; _ y/a; are quoted in table 13.2 for u, = 20. The extrapolation procedures of ref. [168]
were used to obtain precise values for K .(u); the error should be less than one percent. The
results are quoted in table 13.1.

Table 13.2

1 a l/“l by u ! a ]/a{ by

0 - 931.88 S 0.328 860892
1 0.283 4743.8 6 0.331 —2857774
2 0.321 —-18402 7 0.331

3 0.323 70212 8 0.332

4 0.328 —24969 9 0.332

The power series for Y(u,, K) is not rapidly convergent at K = K (u,) so, following an
established statistical mechanical practice [168], the sum of the series has been computed by the
Padé¢ approximant method. This series for Y(u,, K) starts with a K2 term, so the Padé method
was applied to [{/(uo, K)/K?]. The procedure is.to calculate a “Padé table” at K = K. The [M, N
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entrant in the table is calculated as follows. For a given u,, let the series expansion for Y (uy, K)
be,

K™ 2Y(uy, K) = E b K. (13.29)
I=0

(The constants b; for u, = 20 are listed in table 13.2; it turns out that one can calculate b; only
for1 <6, given I’y to order K?.) One takes the series to order M + N and expresses it for small K

as a ratio of polynomials of order M and N respectively in K, with an error of order KM +VN +1.
M+N M N
S bK'=| 3 k||| X dK'|+OKMNTL, (13.30)
1 =0 1=0 1=0

Given the constants by, this formula determines the M + 1 constants ¢; and N + 1 constants d;
except for a scale factor. Finally, the entrant [M, N} in table 13.3 is,

M N
[Z c;Ké}/{z d,Kg]. (13.31)
1=0 =0

Table 13.3
N=0 1 2 3 4 N

M=0 —-1.073

1 1.546 ~-2.891

2 -0.719 -4.119 -3.624

3 0.836 -3.983 -3.994 -3.870

4 -0.536 —4.854 —4.097 -2.949 —4.205

S 0.607 —4.356 —4.518 —4.792 —4.438 —4.342

6 —0.448 -5.093 ~4.632 -4.806 ~4.806 -3.321

(These numbers calculated for K. = 0.3328 not 0.3362, by mistake.)

All the entries with M + N < 6 were calculated: the Padé table for u, = 20 is shown in table 13.3.
The numbers shown are the approximants for 1000 K2/y/(uq, K.) for uy = 20. The standard lore
[168] about the Padé table is essentially that: (1) the {M, 0] and [0, N| approximants cannot

be trusted, (2) entries near the middle of a row are better than near the outside, and (3) there are
generally a few “‘bad eggs’ — numbers which make no sense compared to nearby entries. Naturally,
the entries near the bottom (M + N large) are better than those near the top. Applying these rules
to table 13.3, one concludes that

1000 K2/y(20, K.)=-5 (13.32)

with a large error, say 20 percent. There seems to be little chance that ¢(20, K.) is 0.

The function ¥(u,) calculated by these procedures is sketched in fig. 13.4 (plotted against
x =uy/(1 + up)). The function goes to infinity for ug = S and thereafter is negative and finite.
From the equation

d i
ﬂ o) = U(ug)

du,
one sees that tw(u,) increases as u, increases; it reaches a maximum at 4, = 5 and then decreases

(13.33)
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for uy > 5. The calculation would have to have a very large error in order that fy(u) go to o for
either a finite or infinite u,. This is not to say an infinite value of tw(u,) is ruled out completely;
the Padé approach is risky even when 7 terms in the series in K are known.
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Fig. 13.4. The function ¥ whose computation is
discussed in the text.

The conclusion of this calculation is that the u, axis on the critical surface in the space of
initial interactions lies inside the free field domain. It remains to be seen whether the addition
of ¢%, ¢ terms, etc., to the initial interaction can take one outside the free field domain. Such
terms can be studied by the same techniques. One would also like to study more complicated
gradient terms ($2V $2, etc.) but these terms couple different lattice sites in the lattice models
and are harder to study.

The behavior of the ¢* theory in four dimensions was also studied using the approximate
recursion formula of section 6. The following was found: For u, less than about 0.4, the effective
interaction Q;(») for large [ behaved as r;y? + u;¥? with u; small (of order 1/I). For a large but
fixed /, the behavior of u; versus u, was roughly as shown in fig. 13.5: increasing to a maximum
value and then decreasing, until at uy = 0.4, u; goes negative.

Uio

RN

RAN Yo

Fig. 13.5. The behavior of u,, as a function
of u, according to the approximate
recursion formula.

A negative value of u; means exp{—Q;(y)} goes to o for y = oo, unless there are y® terms or
higher to stabilize {;; this means one has to study the behavior of Q;(v) for large y, which the
author did not do.

The expected size of y; for large but fixed /, is related to the gate-passing time tw(ug). The time
tw(u,) is the time for which u, takes on a preassigned value. Since u, decreases as ¢ increases then
if tw(up) increases with u,, it follows that u; for fixed / shouid aiso increase with ug; if tw(ug)
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decreases as u, increases, then u; should also decrease. Hence, the rise and fall of ; in fig. 13.5 is
consistent with the high temperature expansion result that fw(u,) first increases, then decreases.

Because of the many approximations that go into the approximate recursion formula, there is no
significance to the fact that the maximum of fw(u) occurs for uy = 5 while the maximum of u;

occurs for ug < 0.4,

The result from the recursion formula that u; becomes negative for uy > 0.4 is not confirmed
by the high temperature expansion results. It will be shown below that if the effective coupling
u; becomes negative for finite ¢ for u, greater than a “critical” value ug,, then ¥(uq,) is zero, and
V(up) is zero, and Y(uy) < O for ug slightly less than wug,. In terms of fy(u), this means
tw(ug) > —o° as ug > uy,. The high temperature expansion result for ¢ (fig. 13.4) shows no
evidence for such a zero.

To show that y(uq,) is zero, consider first the case uy < uy,. In this case u, behaves
asymptotically for large ¢ as [(¢ — #y)] ! (eq. (13.4)) where ¢, depends on u,. It is easy to see that
to(uy) differs only by a constant from #w (uy). This is because for ¢ = tw(uy), 4, is equal to the
value of u at the gate W which is independent of u,. Therefore, tw(ug) — t4(140) is independent of
ug. Hence,

d 1
i, ()= Vo)

du,
Now, for u, to decrease as u, increases for fixed ¢, #, must be decreasing; for u; to be zero at
Uy = Ugy, to(Uor) must be —oo and hence Y(uy,) must be zero.

The high temperature expansion method is probably more accurate than the recursion formula.
Thus it seems likely that ¥(u) is never zero and the entire positive u, axis lies in the free field
domain.

14. Concluding remarks

In statistical mechanics the renormalization group ideas and the € expansion provide a frame-
work for a more accurate understanding of critical phenomena than Landau theory (or mean field
theory). The Landau theory is the first stage in the description of a critical point; the renormali-
zation group and € expansion provide a second stage. Whether more stages are needed is not known
at present.

This report has emphasized principles rather than specific applications. Many topics not men-
tioned here are discussed in the current literature. References were given in section 1.

The relevance of the theory of renormalization in field theory presented here is less clear. It is
intended for use in a theory of strong interactions where standard perturbation theoretic
renormalization theory could be mrrelevant. The exact renormalization group of section 11 pro-
vides a basis for the non-Lagrangian formulation of broken scale invariance and current algebra
[164] (although not all of the general assumptions of [164] have been derived as yet from the
exact equations).

The problems discussed in detail in this review are rather remote from the day-to-day problems
of strong interactions. Partly this is because only the high temperature phase in statistical
mechanics was discussed. One can expect that in the near future the behavior of super-fluid *He
and the Heisenberg ferromagnet below 7, will be investigated in detail using the new methods.
These low temperature phases both involve a broken continuous symmetry. The theory of these
phases is likely to show an uncanny similarity to the theory of broken SU(3) x SU(3).
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Perhaps the most fundamental problem in strong interactions is to construct constituent
models of hadrons. For example one would like to know whether the observed mass spectrum
can be obtained as bound states of interacting quarks or other constituents. Is the renormalization
group of use here?

At present one does not even know how to study constituent models. Feynman graph .
expansions assume that all particles are elementary and other approaches are too phenomeno-
logical to be relevant here.

The analogy with phase transitions suggests that the place to start is to think in terms of
phases. In the ferromagnetic models discussed in this paper there are three phases, one high
temperature phase and two low temperature phases. For each phase there is a “phase domain™
in the space S of interactions: the interactions in a given phase domain belong to the same phase
although their detailed properties vary considerably. For example, the correlation length ¢ varies
from O to e within each phase domain. The analogy to field theory suggests that spaces of field
theoretic interactions also divide into phase domains; only some of these domains are easily
discussed by Feynman graphs.

The problem is, therefore, to study the possible phases of interacting constituents, to see if
any phase resembles the qualitative features of strong interactions. To characterize a phase it is,
fortunately, not necessary to study it near the critical point where there is a large correlation
length. It is often sufficient to study it in a high or low temperature limit. In field theoretic
language this means one can study strongly cutoff field theories. Furthermore, one can use a non-
covariant cutoff, in particular a lattice cutoff, It was shown in section 12 how a theory can
become covariant near the critical point. (The argument is not guaranteed to work but thisis a
risk one has to take.) With the simplication of a strong non-covariant cutoff maybe one can
develop honest methods for solving strongly coupled constituent models and learn what phases
are possible. The renormalization group is not involved here because one does not have to study
theories with large £.

Many questions arise which were not discussed here. Fermions have not been discussed at all.
The relation of the new renormalization theory to perturbation theoretic renormalization has
been scarcely mentioned. What connections or implications, if any, the renormalization group
has for bound states and scattering amplitudes has not been discussed. The idea of field theories
ind < 4 with anomalous dimensions has not been adequately discussed. Hopefully these questions
will be investigated in the near future.
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Appendix: Simple solutions of the exact renormalization group equations

In this Appendix the free field (Gaussian) fixed point and some of the local ‘‘operators”
O [x; s] associated with the fixed point will be computed for the exact renormalization group
equations of section 11. The linearized transformation which determines the operators Oy, [x; 5]
and anomalous dimensions d,, will be derived in general.

Suppose the initial interaction ¥, is pure Gaussian:

Ho=—1% {w(q)oq 0_gq- (A.1)

Then the effective interaction ¥(, is also pure Gaussian. The differential equation for u,(q, 1),
eq. (11.19), can be written

% uy(qe’, 1) = 2[% +2q° e“} us(ge’, 1) [1—uy(qe’, 1)) (A.2)
The initial condition is

uy(q, 0) = w(q)- (A.3)
The differential equation is separable and easily solved; one obtains

1 1 dp 2 21
— =2) |5+ : .

jduz{u2+1_u2} 2[[dt 2q% ! dt (A.4)

This gives
us(ge, 1) _ wiq)

= 2021
T, D) T —w@ P {20(r) + 2¢%(e?' — 1)} (A.5)

(assuming that p(0) = 0). Solving for u, gives,

w(ge™ (A.6)

428 D= e + (1 - w(ge D] exp{-2p() — 24 + 277}’

To obtain a fixed point one wants to be at a critical point. Since the correlation function I'(g)
for the interaction ¥, is 1/w(q), a critical point occurs if w(0) = 0. So let

w(q) = q* + O(q*) (A.7)

for small g. Then to a first approximation for large ¢ and fixed g,
q2 e—2t
e™* + exp[—2p(2) — 29*)

Uy(g, ) = 7 (A.8)

For this to approach a fixed function u3(q) as f = o° one wants
p(t)y=t+c (A.9)

for large ¢, where c is a constant. Then
2

_ q
u;(Q) - qz + [e—2C] exp(_2q2)'

(A.10)
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Other choices for p(¢) lead to ¢ dependence or nonlocal behavior for u,(q, ) for large ¢.
Nonlocality in position space results from singularities or sudden changes in u,(q, ) as a function
of q. If p(t) > t, for large ¢, for example, then u,(q, t) = 1 except at very small g, where

u,(0, t) = 0. So there is an abrupt change in u,(g, ) at very small g, violating locality. If p(¢) <t
for large 7, then

uy(q, 1)~ q* exp(2q*) exp{2p(t) — 21} (A.11)

for large ¢ and fixed g and there is no fixed point. So (A.9) is the only acceptable choice. Different
choices for ¢ give different values for the term of order g2 in u,(q, t). To satisfy the normaliza-
tion condition

u3(q) =q* + O(q*) (A.12)

one must choose ¢ = 0.

The fixed point is independent of the size of g*, q°, etc., terms in w(q); the coefficients of g*,
q°%, etc., in w(q) are irrelevant variables.

From eq. (11.31) one obtains the renormalization parameter:

£(0) = exp{(d + 2)t/2}. (A.13)
Comparing with eq. (7.35) one obtains
dy=5(d—2) (A.14)

which is the canonical dimension for a scalar field. The form (A.13) for {(¢) is consistent with
the renormalization parameter ¢ obtained in section 3, there it was found that { =2'*9/2 fora
change in the cutoff by a factor 2. The cutoff e™ changes by a factor 2 when ¢ = ¢ + In 2, which
in turn increases {(¢) by a factor 2! +9/2,

It is interesting to look directly at the equation for a fixed point function u$(q). If
uy(q, t) = u¥(q) is independent of ¢, then dp/d¢ must also be a constant, say dp/df = b. From
eq. (11.19) the equation for u$(q) is

0=—q- Vui(g) +2(b +2¢>us(1 —u). (A.15)
Assume that u$(q) depends only on |q|. Then

q duf/dq =2(b + 2¢*)uz(1 —u3) (A.16)
which is an ordinary separable differential equation, with the general solution

w @)/ {1 —uz(9)} =679 exp(29?) (A.17)
where (3 is an arbitrary constant; this gives

u3(q) =q** [{q*® + B exp(—2¢*)}. (A.18)

This reduces to the previous result for b = 1 and 8 = exp(—2c). However, it now appears that there
is a fixed point function for any value of b; why should one choose b = 1? If b is not an integer,
then u$(q) is not analytic in the components of the vector g at ¢ = 0. In consequence, the inter-
action in coordinate space is nonlocal. Thus, solutions which are not analytic for g = 0 can be
rejected. The solutions with integer b are genuine fixed points, but now they form a discrete set.
On examination one finds that these fixed points correspond to initial interactions w(q) behaving
as q2P for small gq. (For b = 0, the fixed point has £ = 0; for b > 0, £ is .) There is no case where
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an initial interaction function w(q) analytic at g = O gives a fixed point nonanalytic in q. Thus, it
is consistent to exclude all nonanalytic functions u,(q) from the space S and hence exclude the
cases with b nonintegral.

Next the exact eigenvalue equations for anomalous dimensions will be derived for an
arbitrary fixed point ¥*. We first consider trajectories of the form

H; =3* + O, [0] exp(—dm?) (A.19)

where O,,[0] is a localized functional of ¢ treated in first order. ‘“‘Localized” means in principle
that O,, (0] depends on the Fourier transform s(x) of o4 only over a finite region of x. In
practice it means that if O0,,[ag] is expanded in powers of o, then

Onlol = [vi@og +% [ [02(a1 a)06,00,+ ... (A.20)
4, q, q.
where v,(q4), v2(4,, q2), etc., are analytic in ¢, and g, for real values of the components of ¢,
and q, (and free of momentum conservation §-functions, in particular).
Given any localized operator Oy, [o] a translated operator O,, [x; ¢] can be defined as

Om[x; 0] =0p[0] (A.21)
where
og = exp(ig - x)oq (A.22)

(see below for justification) and it will then be shown that
H, =3*+ 0, [xe™"; 0] exp(—dmt) (A.23)

is also a trajectory for any x.
Substituting the form (A.19) into the differential equation for ¥,, and keeping only terms to
first order in O,,, one obtains the fixed point equation for J(* and an eigenvalue equation for dp,:

8H*[o]

* * 2 * *
0= J(goq +q- quq) + f(b +2g%) {5“ EiS + 5K L8
2 2 60g4 p

80, 80_4 80 804 9 8o,

(A.24)

where b = dp/df must be a constant;

26K* 80y , 520m ao,,,}
So0_q 80 B0480.4 7 8o
(A.25)

where we have kept the fixed point value b for dp/d¢ (see section 12). When O,, is expanded in
powers of ¢ (see A.20), one gets the following equations:

~dnOnto)= [(Goqra-vq0) G to1+ [ r2gn]

—dmy(@) = A1 o)+ | B +2¢D)3(qs, 42, —a2) (A.26)
q,

where A, is the operator
AL =—qy Vg, —3d+(b+2gD)1 —2ui(qy)] (A.27)

(operators A, will also be used; they are obtained by substituting g, forq, in 4,)
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—dmv2(q1, q2) = (A, + A,) - v2(q,, q2) + f (b +2g3)v4(q1, 92. 43, —93)
q,

—dmv3(qy, 92, 43) = (A, + A, + A3) - v5(41. 92, 43)
+2[b+2(q, +q, +43)*)v1(q1 + q2 + q3)ui(qy. 92, 93, —4: — 42 — q3)

+ f(b +2q%3)vs(q4, 92, 93, 94, —q4) (A.28)
q,

etc.

Suppose one has solutions 3(* and O,,[o] of egs. (A.24) and (A.25). Now the translated
operators Oy, [x, 0] will be defined. The definition of a translated operator is that

Omlx; 01 =0,(0;0') (A.29)
if
sy +x)=s5'(y) (A.30)
where
s0)= [exptia-vrog,  s0)= | expta- v}, (A31)
q q

Eq. (A.31) implies that o = exp(iq - x) g4. Finally, define 0,, [0; 0] to be Oy, [0].
The operator Oy, [x, o] satisfies the equation

VeOmlx. 01 = [iqog32mx, 01, (A.32)
q Oq

The proof of this is straightforward. From eq. (A.29)

VeOnlx, 0] = flqoq ITA 710;0'] (A.33a)
q

gg’” [x; o] = exp(iq - x) [0 ] (A.33b)

fiq Oq %Q— [x;0] = fiq Oq %71 [0;0']. (A.33c)

q q

Comparing eqgs. (A.33a) and (A.33c) gives eq. (A.32). Another useful result is that
H*[o] =3*[o']. (A.34)
This follows from momentum conservation. From this equation it follows that

?‘—*[ol = explig - x) 5“, (o). (A.35)
q
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With these results.it will now be shown that eq. (A.23) defines a solution of the renormalization
group equation to first order in Op,. If this is true, one must have

—dmOp [xe™ 0]l —xe™ - Vy 0 v; 0]y = x exptn)

283C* 50, . 80, 80
80 80+q  50g80_q 9 b0, }
(A.36)

This equation can be verified using eqs. (A.25), (A.32) and (A.35). Only the cancellation of the
VyOp [y; 0] term will be demonstrated explicitly; one has

d 60 -
= ;(qu“LCI'Vqu)‘B*Gf‘[ ef0]+ f(b+22)

y=xexp(-t) ~ flq xe Uq 5 r 710;0']. (A.37)
q

—xe "V, 0, y; o]l

One also has (withy =xe™)

50 . 60 ,
fq-vqoq-a—ﬂbz;o] fq'(\7‘,oq)exp(1q-y)5 7 [0;0']
q Oq q Ogq

1 BOm I . 1 60m 1

= Ja vaop 221001~ [q- 0y 221001, (A.38)
7 -4 dog p 9 dag

The v,,0,, term is cancelled by the second term (f; g - D).

As"an example of solutions of the eigenvalue equatlon for dm, consider the Gaussian fixed
point (u}(q) given by eq. (A.18) withc=0;u} =u}( =...=0;and b = 1). It is convenient to
define an auxiliary function y(q) satisfying

g- V(@)= {1+ +2¢) 1 = 2u$ (@)1} ¥(g). (A.39)
A solution of this equation is,

¥(q) = exp(—q*)/{q* + exp(—2q*)}. (A.40)

Consider now the equations for v,, v,, etc. One can easily see that there are solutions with only
v, Or v, non-zero; but, if v3 or v, are non-zero, then v, or v, are also non-zero. The simplest case
is if only v;(q) is non-zero. The equation for v,(g) then can be written,

{~dm +q- Vg +3(d—2)} [o1(@)/¥(9)] =0. (A.41)
This equation has the general solution,

vi(@)/¥(q) = 1qPf(§) (A.42)
where p is

p=dn—3d~2) (A.43)

and f(§) is an arbitrary function of the unit vector 4 (§ = q/1q/).
One now demands that v,(q) be analytic at g = 0. This condition means that p must be a

positive integer or zero (if p is odd then f(§) must be odd in g, e.g., f(§) = §; where §; is an
arbitrary component of §). Thus, the possible eigenvalues d,,, are

dp=5d—-2)+p (p=0) (A.44)
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and the first few eigenfunctions are

dpy =5(d—2): v1m(q) = V(@)
dm=3d—-2)+1: vim(@) = qiv(q) (any i) (A.45)
dm=5d=-2)+2 vim(q) = qigj¥(q) (any i orj)

etc.

Construction of solutions with v,, v3, or v4 nonzero is now straightforward (one continues to
use the function Y(q) to simplify the equations). The complete set of eigenvalues d,,, when
vy, Uj—2, etc., are nonzero is found to be d,, = l(% (d — 2)) + p with p an integer (positive or 0).
This is in agreement with the known canonical dimensions for a scalar field theory in dimension d.

A word of warning: some of the local operators Oy, [x; o] are equivalent to zero, in the follow-
ing sense. All the n-spin correlation functions (s(x;) . . . s(x,)On [x; 0] exp(# *)) vanish unless x
is equal to one of the x;. An example is the operator [, q* ¥(q) o4 which in field theoretic
language turns out to be the operator V2¢ which vanishes (because a theory described by the
Gaussian fixed point is a zero mass free field theory).
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Recent references

This supplement lists more papers on the renormalization group; most of these appeared after
the list of references from section 1 [1-94] was completed This list is surely incomplete; we
apologize to authors whose work is omitted.

Ref. [1] is an elementary lecture on the renormalization group ideas. S. Ma [2] reviews the
renormalization group for large n (n is the number of components of s). Jegerlehner and Shroer
[3] review abstract quantum field theory ideas applied to the critical point. Suzuki [4] discusses
expansion techniques.

Refs. [5—7] present different formulations of the exact renormalization group.

Niemeyer and Van Leeuwen [8] have formulated and approximately solved a non-perturbative
renormalization group transformation for the two dimensional Ising model. They obtain results
accurate to about 1%.

Refs. [9—13] are concerned with the € expansion constructed by field theoretic techniques,
such as the Callan—Symanzik equations. Parisi [ 14] applies the Callan— Symanzik equations
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directly in 3 dimensions. Fisher and Aharony {15] compute the spin-spin correlation function
using the € expansion. (Lebowitz and Penrose [16] prove the exponential decay of correlations
away from 7,.) The € expansion is obtained from skeleton graph methods in [17, 18]. The
equation of state is computed in [19, 20] (independently of previous references [48, 49]). Refs.
[21—-24] are also concerned with the € expansion. Ref. [25] reports a calculation on the
approximate recursion formula.

Refs. [26—29] are concerned with the n = oo limit and 1/n expansion. Doniach [26] studies
the especially interesting case of d near 2. Critical point dynamics are considered in [30—33].
Refs. [34—37] provide an extensive study of dipolar interactions. Anisotropic interactions
(either crystal field terms or directional anisotropies) are considered in [38—45]. A structural
transition is discussed in {46]. Long range interactions are considered in [47—49].

Surface effects within the € expansion are discussed by Lubensky and Rubin [50]. Aharony
[51]discusses a compressible lattice. Tricritical phenomena are considered in [S2—54] and [44].
The properties of systems with n = —2 are reported in [S5—56]. The relation of n = 0 to self-
avoiding walks is discussed in [57,58]. The Gaussian model on a lattice is discussed in [59].
Conformal invariance at the critical point (see prior ref. [19]) is discussed in [60, 61].

The behavior of the Potts model at the critical point is puzzling. See prior ref. [39] and refs.
[62—64].

The Kondo problem (in its simplest form) has recently been solved by modern renormalization
group techniques: see [65].

Ref. [66] is concerned with wave function renormalization. Parisi [67] obtains a relation
between anomalous dimensions of tensor operators (see section 9) and the anomalous dimension
of ¢. The € expansion in field theory is discussed in[68—71]. The 1/n expansion is applied to
field theory in [71].

The idea of asymptotic freedom in quantum field theory is reported in [72—74] (asymptotic
freedom refers to theories with free field behavior at short distances but non-trivial interactions
at long distances). Two dimensional electrodynamics is discussed in [75].

The renormalization group is formulated in a parton-like language in [76] where the conse-
quences of anomalous dimensions for tensor operators are explained intuitively.

Extensions of the Callan Symanzik and Gell-Mann—Low approach to calculate finite mass
corrections at short distances are discussed in [77, 78].

The € expansion is applied to the Gribov Reggeon calculus in [79,80]. A static modelin 2 + €
dimensions is discussed in [81].
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