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1 Classical vs. stochastic thermodynamics

Stochastic thermodynamics provides a conceptual frameteordescribing a large class of
soft and bio matter systems under well specified but stillf@eneral non-equilibrium condi-
tions. Typical examples comprise colloidal particles eénby time-dependent laser traps and
polymers or biomolecules like RNA, DNA or proteins manigath by optical tweezers, mi-
cropipets or AFM tips. Three features are characteristicstch systems: (i) the source of
non-equilibrium are external mechanical forces or unbzddnchemical potentials; (ii) these
small systems are inevitably embedded in an aqueous solwticch serves as a heat bath of
well defined temperaturg; (iii) fluctuations play a prominent role.

As the main idea behind stochastic thermodynamics, nolikaapplied work, exchanged heat
and entropy developed in classical thermodynamics abdity2@rs ago are adapted to this
micro- or nano-world. Specifically, the stochastic enaogetpproach introduced a decade ago
by Sekimoto [1] is combined with the observation that engrogn consistently be assigned to
a single fluctuating trajectory [2].

For a juxtaposition of classical and stochastic thermodyoawe consider for each a paradig-
matic experiment. For the classical compression of a gasidrifi contact with a heat reservoir
of temperaturd’ (see Fig. 1), the first law

W=AV+Q (1)

expresses energy conservation. The widtlapplied to the system either increases the internal
energyV of the system or is dissipated as héat T'AS,, in the surrounding medium, where
AS,, is the entropy change of the medium.
The second law

ASior = AS+AS, >0 (2)

combined with the first law leads to an inequality
Wass =W — AF >0 3)

expressing the fact that the work put in is never smaller thanfree energy differencA F’
between final and initial state. This difference, the diad workWg;s, is zero only if the

process takes place quasistatically.
AN
o T O -

Fig. 1: Typical experiment in classical thermodynamics: Starfmgn an initial position at\g,

an external control parameter is changed according to ag@eot A(7) during time0 < 7 < ¢

to a final position\;. This process requires woik” while the system remains in contact with a
heat bath at temperaturg.
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Fig. 2: Typical experiment in stochastic thermodynamics: The tadsef an RNA molecule

are attached to two beads (yellow) which can be manipulayeahicropipets. By pulling these

beads, the hairpin structure of the RNA can be unfolded regatb force extension curves. For
slow pulling (blue) these curves are almost reversible whgsfor medium pulling speed (green)
and large pulling speed (red) the curves show pronounceighggs which is a signature of non-
equilibrium. In all cases, the overlay of several traceswstdhe role of fluctuation; adapted

from [3].
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Fig. 3: Measured distributions for dissipative woik .. The three panels correspond to
different extensions whereas the colours refer to diffigoeiing speeds; adapted from [3].

A similar experiment on a nano-scale, the stretching of Risl8hown in Fig. 2. Two conceptual
issues must be faced if one wants to use the same macrosaimosto describe such an
experiment. First, how should work, exchanged heat andnateenergy be defined on this
scale. Second, these quantities do not acquire sharp aleather lead to distributions, as
shown in Fig. 3.

The occurrence of negative value of the dissipated Wojk, is typical for such distributions.
The quest to quantify and understand these events which sebmin conflict with too nar-
row an interpretation of the second law lies at the origintotkastic thermodynamics which
got started by two originally independent discoveriesstr-ithe (detailed) fluctuation theorem
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dealing with non-equilibrium steady states provides a sginyrbetween the probability for ob-
serving asymptotically a certain entropy production areghobability for the corresponding
entropy annihilation [4—7]. Second, the Jarzynski refagapresses the free energy difference
between two equilibrium states as a non-linear averagetbeeron-equilibrium work required
to drive the system from one state to the other in a finite tird [L]. Within stochastic thermo-
dynamics both of these relations can easily be derived antatter shown to be a special case
of a more general relation [2].

The purpose of these lecture notes is to introduce the ptesbf stochastic thermodynamics
using simple systems in a systematic way and to sketch a famgbes following the exposition
in[12]. No attempt is made to achieve a comprehensive licstigpresentation. Several (mostly)
review articles can provide complementary and occasiphatiader perspectives [13-25].

2 Principles

2.1 Stochastic dynamics

In this section, three equivalent but complementary dpsoris of stochastic dynamics, the
Langevin equation, the Fokker-Planck equation, and theipg&tgral, are introduced [26-28].
We start with the Langevin equation for the overdamped mat{e) of a “particle” or “system”

&= pF (2, 0) +¢ (4)
whereF’(z, \) is a systematic force ardthermal noise with correlation

(C(r)¢(r)) = 2Dé(m = 7) (5)

where D is the diffusion constant. In equilibriun?) and the mobility. are related by the
Einstein relation
D=Tu (6)

whereT is the temperature of the surrounding medium with Boltznsenanstanttp set to
unity throughout the paper to make entropy dimensionlesstdchastic thermodynamics, one
assumes that the strength of the noise is not affected byréisempce of a time-dependent force.
The range of validity of this crucial assumption can be steperimentally or in simulations
by comparing with theoretical results derived on the baftkie assumption.
The force

F(z,\) = =0, V(x,\) + f(z,\) (7

can arise from a conservative potentia{=, A\) and/or be applied to the particle directly as
f(z, A). Both sources may be time-dependent through an externabtparameten(r) varied
from A(0) = A\ to \(¢) = \, according to some prescribed experimental protocol . T kiee
notation simple, we treat the coordinateas if it were a single degree of freedom. In fact, all
results discussed in the following hold for an arbitrary f@mof coupled degrees of freedom
for which x and /" become vectors anB and: (possiblyz-dependent) matrices [29].
Equivalent to the Langevin equation is the correspondirik&nPlanck equation for the prob-
ability p(z, 7) to find the particle at: at timer as

an(va) = - xj(va)
— 0, (uF(x, Nple,7) — Dlupla, 7)) ®)
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wherej(x, ) is the probability current. This partial differential ediom must be augmented
by a normalized initial distributiop(x,0) = po(z). It will become crucial to distinguish the
dynamical solutiom(x, 7) of this Fokker-Planck equation, which depends on this ginéral
condition, from the solutiop®(x, \) for which the right hand side of (8) vanishes at any fixed
The latter corresponds either to a steady state for a noishiag non-conservative forgé+ 0
or to equilibrium forf = 0, respectively.

A third equivalent description of the dynamics is given bgigsing a weight

plo(r)lan] = exp |~ [ drl(@ — wF?/AD + 0,2 ©)

to each path or trajectory, as derived in Appendix A. Patreddpnt observables can then be
averaged using this weight in a path integral which requareath-independent normalization
such that summing the weight (9) over all paths is 1.

2.2 Firstlaw

Following Sekimoto within his stochastic energetics apto[1], we first identify the first-law-
like energy balance

dw = dV + dgq (20)
for the Langevin equation (4). The increment in work apptiethe system
dw = (OV/ON) A dr + f dx (11)

consists of two contributions. The first term arises fromngiiag the potential (at fixed particle
position) and the second from applying a non-conservativeef to the particle directly. If
one accepts these quite natural definitions, for the firstttahold along a trajectory the heat
dissipated into the medium must be identified with

dg = Fdzx. 12)

This relation is quite physical since in an overdamped syt total force times the displace-
ment corresponds to dissipation. Integrated along a tajeof given length one obtains the
expressions

wla(7)] = /0 (OV/ONA + fildr  and  qla(r)] = /0 Fidr (13)
and the first law
wlz(7)] = glz(7)] + AV = qlz(7)] + V(24, \) — V (20, Ao) (14)

on the level of a single trajectory.

In a recent experiment [30], the three quantities applieckwexchanged heat and internal en-
ergy were inferred from the trajectory of a colloidal padipushed periodically by a laser trap
against a repulsive substrate, see Fig. 4. The measure@Gaossian distribution for the ap-
plied work shown in Fig. 5 indicates that this system is drieeyond the linear response regime
since it has been proven that within the linear responsen@giie work distribution is always
Gaussian [31]. Moreover, the good agreement between theriexgntally measured distri-
bution and the theoretically calculated one indicates ttatassumption of noise correlations
being unaffected by the driving is still valid in this regirbeyond linear response.
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Fig. 4. Experimental illustration of the first law. A colloidal pacte is pushed by a laser
towards a repulsive substrate. The (almost) linear atikgcpart of the potential depends lin-
early (see insert) on the laser intensity. For fixed laseemsity, the potential can be extracted
by inverting the Boltzmann factor. If the laser intensitynedulated periodically, the potential
becomes time-dependent. For each period (or pulse) the Woitkeat() and change in internal
energyAV can be inferred from the trajectory using (10-11). Ideathgse quantities should
add up to zero for each pulse, while the histogram shows tladl $6n< 1557 experimental
error; adapted from [30].
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Fig. 5: Work distribution for a fixed trajectory length for the expeent shown in Fig. 4. The
grey histogram are experimental data, the red curve showdlhoretical prediction with no
free fit paramters. The non-Gaussian shape proves that {heriexental condition probe the
regime beyond linear response. The insert shows that thk distribution obeys the detailed
fluctuation theorem introduced in Section 3.2 below; adatem [30].
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2.3 Entropy production

For a refinement of the second law on the level of single ttajexs, we need to define the cor-
responding entropy as well which turns out to have two cbatidns. First, the heat dissipated
into the environment should be identified with an increasenimopy of the medium

Asmla(T)] = qla(7)]/T. (15)
Second, one defines as a stochastic or trajectory dependesyiyeof the system the quantity [2]
s(1) = —Inp(x(7), 7) (16)

where the probability(x, 7) obtained by first solving the Fokker-Planck equation is eatdd
along the stochastic trajectory 7). Since introducing this stochastic entropy in the main new
concept within this approach, we first discuss some of itpgnties.

¢ Relation to non-equilibrium ensemble entropy
Obviously, for any given trajectory(r), the entropys(r) depends on the given initial
datapy(x) and thus contains information on the whole ensemble. Indgesh averaging
with the given ensemble(z, 7), this trajectory-dependent entropy becomes the usual
ensemble entropy

S(r) = —/dx p(z, 7)Inp(z,7) = (s(1)). (a7)

Here and throughout the manuscript the bracketsdenote the non-equilibrium average
generated by the Langevin dynamics from some given initgtidutionp(z, 0) = po(z).

¢ Relation to thermodynamics in equilibrium
It is interesting to note that in equilibrium, i.e. fgr= 0 and constanA, the stochastic
entropy s(7) obeys the well-known thermodynamic relation between @ytrinternal
energy and free energy
s(1) = (V(x(7),A) = F(\)/T, (18)

along the fluctuating trajectory at any time with the freergge

F(\) = —Tln/dx exp[—V (z,\)/T]. (19)

e Invariance under coordinate transformations
The entropy as defined in (16) has the formal deficiency thatlgtspeakindn p(x(7), 7)
is not defined since(x, 7) is a density. Apparently more disturbingly, this express®
not invariant under non-linear transformations of the damates. In fact, both deficien-
cies which also hold for the ensemble entropy (17) are relatel can be cured easily as
follows by implicitly invoking the notion of relative entpy [12].

A formally proper definition of the stochastic entropy stay describing the trajectory
using canonical variables. After integrating out the motagfor a system withV parti-
cles with Cartesian positiods; }, one should define the entropy as

s({zi(1)}) = —In[p({s(7)}, 7)AF"] (20)
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where\r is the thermal de Broglie length. If one now considers thisatyics in other
coordinateq y; }, one should use

s({yi(r)}) = —In[p({yi(7)}, 7) det {0y /0w }A}"]. (21)

This correction with the Jacobian ensures that the entrofly dn the trajectory as well
as on the ensemble level is independent of the coordinagestaslescribe the stochastic
motion. Of course, this statement is no longer true if thedfarmation from{z; } to {y; }

is not one to one. Indeed, if some degrees of freedom areraiesout the entropy does
and should change. For ease of notation, we will in the falhgvkeep the simple form
(16).

e Equations of motion
The rate of change of the entropy of the system (16) is givel2py

PET) oy PET)
R R [ R
p(l’, T) |z(7) Dp(ﬂf, T) |z(T) D |z(7)

The first equality identifies the explicit and the implicitg-dependence. The second one
uses the Fokker-Planck equation (8) for the current. Thd term in the second line can
be related to the rate of heat dissipation in the medium (15)

q(1) = F(z, )& = Tén(1) (23)

using the Einstein relatio® = T'u. Then (22) can be written as a balance equation for
the trajectory-dependent total entropy production

owler)  iwr) o0

étot(T) = ‘ém(T) + S(T) - p(x,T) |z(7) Dp(l’,T) \:v(ﬂ')x.

The first term on the right hand side signifies a change(inr) which can be due to a

time-dependenk(r) or, even at fixed\, due to relaxation from a non-stationary initial
statepo(z) # p°(z, Ao)-

Upon averaging, the total entropy production ratg(7) has to become positive as re-
quired by the second law. This ensemble average proceeds istéps. First, we condi-

tionally average over all trajectories which are at tima&t a givenr leading to

(#lz,7) = j (@, 7)/p(x, 7). (25)

Second, with[ dzd.p(z,7) = 0 due to probability conservation, averaging overaall
with p(x, 7) leads to

Siot (T) = ($400 (1)) = / da éi):?’x T)T) >0, (26)

where equality holds in equilibrium only. Averaging therease in entropy of the medium
along similar lines leads to

Su(r) = {éu(7)) = (F(2,7)2)/T (27)
= /dxF(x,T)j(x,T)/T. (28)
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Hence upon averaging, the increase in entropy of the sydteti becomesS(r) =
($(7)) = Siot(7) — S (7). ON the ensemble level, this balance equation for the agdrag
guantities can also be derived directly from the ensemidiaitien (17) [32].

¢ Integral fluctuation theorem (IFT)
The total entropy change along a trajectory follows from) @ad (16)

Asior = Asy, + As (29)
with
As = _lnp(xtv)\t)+1np(x07)\0)‘ (30)

It obeys a remarkable integral fluctuation theorem (IFT) [2]
(e A%ty =1 (31)

which can be interpreted as a refinement of the seconddasy,,) > 0. The latter follows
from (31) by Jensen’s inequalityexp ) > exp(x). This integral fluctuation theorem
for Asi. IS quite universal since it holds for any kind of initial cation (not only for
po(zo) = p*(x0, No)), any time-dependence of force and potential, with (for 0) and
without (for f # 0) detailed balance at fixel and any length of trajectony

As shown in Appendix B, the IFT for entropy production (31)dw's from a more gen-
eral fluctuation theorem which unifies several relationsipresly derived independently.
Based on the concept of time-reversed trajectories andréwversed protocol [6,11,17],
it is easy to prove the relation [2]

(exp[=Asm] pr(21) /po(w0)) =1 (32)

for any functionp; (z) with normalization| dz p;(z) = 1. Here, the initial distribution
po(z) is arbitrary. By using the first law (14), this relation casabe written in the form

{exp[—(w — AV)/T] pr(21) /po(w0)) = 1 (33)

with no reference to an entropy change.

The arguably most natural choice for the functiarix) is to take the solutiop(x, 7)

of the Fokker-Planck equation at timevhich leads to the IFT (31) for the total entropy
production. Other choices lead to similar relations omdjinderived differently among
which the Jarzynski relation is the most famous and useful.

2.4 Jarzynski relation
The Jarzynski relation (JR) originally derived using Hdomian dynamics [8]
{exp[—w/T1]) = exp[-AF/T] (34)

expresses the free energy differenkg& = F(\;) — F(\o) between two equilibrium states
characterized by the initial valug and the final value,; of the control parameter, respectively,
as a non-linear average over the work required to drive teegesyfrom one equilibrium state
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to another. At first sight, this is a surprising relation giran the left hand side there is a non-
equilibrium average which should in principle depend onghetocol \(7), whereas the free
energy difference on the right hand side is a pure equilibmuantity.

Within stochastic thermodynamics the JR follows, a posterirom the more general relation
(33), by specializing to the following conditions: (i) Theis only a time-dependent poten-
tial V(z, A(7)) and no non-conservative for¢¢ = 0), (i) initially the system is in thermal
equilibrium with the distribution

po(w) = exp[—(V(z, Ao) — F(No))/T]. (35)

Plugging this expression with the free chojgéx) = exp[—(V (z, \s) — F(\¢))/T] into (33),
the JR indeed follows within two lines. It is crucial to nokat its validity does not require that
the system has relaxed at timento the new equilibrium. In fact, the actual distributiartlae
end will bep(zx, t).

As an important application, based on a slight generatindB83], the Jarzynski relation can be
used to reconstruct the free energy landscape of a biomel@¢u) wherex denotes a “reaction
coordinate” like the end-to-end distance in forced profelding as reviewed in [20]. Indeed,
the experiment on unfolding RNA described in the introduetf3] has been one of the first
real-world test of the Jarzynski relation.

In this context, it might be instructive to resolve some cidn in the literature concerning an
earlier relation derived by Bochkov and Kuzolev [34, 35]r Bsystem initially in equilibrium
in a time-independent potenti&}(x) and for0 < 7 < ¢ subject to an additional space and
time-dependent forcé(x, 7), one obtains from (33) the Bochkov-Kuzolev relation (BKR)

(exp[-w/T]) =1 (36)

with .
@E/zﬂLMﬂME (37)

by choosingy; (z) = po(z) = exp[—(Vo(x) — Fo)/T]. Under these conditions; is the work
performed at the system. Since this relation derived mudiee&dy Bochkov and Kuzovlev
[34,35] looks almost like the Jarzynski relation there ha@en both claims that the two are the
same and some confusion around the apparent contradibtibexp[—w /7] seems to be both
exp[—AF/T]) or 1. The present derivation shows that the two relatioesidferent since they
apply a priori to somewhat different situations. The JR asulsed above applies to processes
in a time-dependent potential, whereas the BKR as discussedapplies to a process in a
constant potential with some additional force. If, howeuethe latter case, this explicit force
arises from a potential as wefi(x, 7) = —V/(x, 7), there still seems to be an ambiguity. It can
be resolved by recognizing that in this case the work erdehe BKR (36)

w:/mj:—/mw@ﬁrﬂm+w (38)

differs by a boundary term from the definition of warkgiven in eq. (11) and used throughout
this paper. Thus, if the force arises from a time-dependentdnservative potential both the
BKR in the form (exp|—w/T]) = 1 and the JR (34) hold. The connection between the two
relations can also be discussed within a Hamiltonian dyoampproach [36]. Further relation
that can be derived from the IFT (32) can be found in Ref. [12].
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2.5 Optimal finite-time processes

So far, we have discussed relations that hold for any protoeg. For various applications it is
important to know an optimal protocaf (7). In this section we investigate the optimal protocol
A*(7) that minimizes the mean work required to drive such a system bne equilibrium state
to another in dinitetime ¢t [37]. The emphasis on a finite time is crucial since for inértime
the work spent in any quasi-static process is equal to tleesinergy difference of the two states.
For finite time the mean work is larger and will depend on theqarol \(7). A priori, one might
expect the optimal protocol connecting the given initiadl &inal values to be smooth as it was
found in a case study within the linear response regime [B8Fontrast, it turns out that for
genuine finite-time driving the optimal protocol involveisebntinuities both at the beginning
and the end of the process.

As an instructive example [37], we consider a colloidal jgetdragged through a viscous fluid
by an optical tweezer with harmonic potential

V(z,7) = (z — )\(7'))2 /2. (39)

For notational simplicity, we sét = 1, = 1 in this section by choosing natural units for energies
and times. The focus of the optical tweezer is moved accgridita protocol\(7). The optimal
protocol \*(7) connecting given boundary valueg = 0 and )\, in a timet minimizes the
dimensionless mean total work

wix) = [ art (G et ) ) (o)

which we express as a functional of the mean position of thcpau(7) = (z(7)) as
t t
WIAT)] = / dr AN —u) = / dr (i + i)
0 0
t
_ /0 dri + [i2]' /2. (41)

Here, we have used
U= (A—u) (42)

which follows from averaging the Langevin equation (4). Thder-Lagrange equation cor-
responding to (41)ji = 0, is solved byu(r) = mr, whereu(0) = 0 is enforced by the
initial condition. Eq. (42) then requires the boundary dtods u.(0) = Ay — «(0) = 0 and
u(t) = A\, — mt which can only be met by discontinuitiesinat the boundaries which corre-
spond to jumps in\. Note that these “kinks” do not contribute to the integraiha second line
of (41). The yet unknown parameter follows from minimizing the mean total work

W =m2t + (A, — mt)?/2 (43)

which yieldsm* = \;/(¢t + 2). The minimal mean workV* = X\?/(¢ + 2) vanishes in the
quasi-static limit — oo. The optimal protocol then follows from (42) as

MN(T)=M(T+1)/(t+2), (44)

for 0 < 7 < t. As a surprising result, this optimal protocol implies twistohct symmetrical
jumps of size
AN=X0T) = Ao =X — A7) =\ /(L +2) (45)
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at the beginning and the end of the process. A priori, one tfighe expected a continuous
linear protocol\'"* () = )7/t to yield the lowest work but the explicit calculation yields

Whe = (N /1) (t+et —1) > W* (46)

for anyt > 0, with a maximal valugV'™/1V* ~ 1.14 att ~ 2.69. A further case study

and more general consideration indeed show that such jutrthe &eginning and end of the
protocol are generic [37].

This approach of optimizing protocols can be extended tticycocesses. Specifically, one
can ask for the optimal protocol to achieve maximum powersfochastic heat engines [39]
or in models for molecular motors, combining mechanicghstwith chemical reactions given
a finite cycle time. This perspective demonstrates thatdpisnization problem in stochastic
thermodynamics has not only a broad fundamental signifecamis ramifications could ulti-

mately also lead to the construction of “optimal” nano-maes.

3 Non-equilibrium steady states

3.1 Characterization

Non-equilibrium does not necessarily require that theesyss driven by time-dependent po-
tentials or forces as discussed so far. A non-equilibriveady state (NESS) is generated if
time-independent but non-conservative for¢¢s) act on the system. Such systems are char-
acterized by a time-independent or stationary distriloutio

p*(x) = exp[—o(z)]. (47)
As a fundamental difficulty, there is no simple way to calteid(z) or, equivalently, the “non-
equilibrium potential’s(z). In one dimension, it follows from quadratures but for moegies
of freedom, setting the right hand side of the Fokker-Plamka¢ion (8) to zero represents a
formidable partial differential equation. Physicallyetkomplexity arises from the fact that

detailed balance is broken, i.e. non-zero stationary otsrarise. In technical terms, broken
detailed balance means

p(@2(t)|z1(8))p° (21) # pla1(t)]z2(t))p" (22) (48)
where the first factor on both sides represents the conditipmobability. In genuine equilib-
rium, the equal sign holds witpf?(x) replacingp®(x). Equivalently, in a genuine NESS, one
has a non-zero stationary current (in the full configurasipace)

J°(x) = pF(z)p*(z) — DOyp*(z) = v”(2)p’(x) (49)
with the mean local velocity
v () = (&|z). (50)
This local mean velocity,(z) is the average of the stochastic velocityover the subset of
trajectories passing through Since it enterg;(z), it can thus be regarded as a measure of the

local violation of detailed balance.
This current leads to a mean entropy production rate (26)

0 = (Asier) [t = / dx é;ff(;. (51)

Even though the stationary distribution and currents cdrbaaalculated in general, an exact
relation concerning entropy production can be derived.
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3.2 Detailed fluctuation theorem

In a NESS, the (detailed) fluctuation theorem

P(—AStot) /D(AStot) = exp[—Asiot] (52)

expresses a symmetry of the probability distributidix s, ) for the total entropy production
accumulated after timein the steady state. This relation has first been found in Isitions

of two-dimensional sheared fluids [4] and then been proveG&lavotti and Cohen [5] using
assumptions about chaotic dynamics. A much simpler proofdtar been given by Kurchan [6]
and Lebowitz and Spohn [7] using a stochastic dynamics faursive motion. Strictly speaking,
in all these works the relation holds only asymptoticallythie long-time limit since entropy
production had been associated with what is called entropgyztion in the medium here. If
one includes the entropy change of the system (30), the D& lewen for finite times in the
steady state [2]. This fact shows again the benefit of the itlefirof an entropy along a single
trajectory.

While the DFT for (medium) entropy production has been tegteperimentally for quite a
number of systems, see e.g. [40—-45], a first test includiagyistem entropy has recently been
achieved for a colloidal particle driven by a constant fatmng a periodic potential, see Fig. 6
[46]. This experimental set-up constitutes the simpleatization of a genuine NESS. The
same set-up has been used to test other recent aspectstassiothermodynamics like the
possibility to infer the potentidl’ (x) from the measured stationary distribution and current [47]
or a generalization of the Einstein relation beyond thedimesponse regime [48, 49] discussed
below.

1 a)

150 -
<100
-150 -
-200
250

t=20s |

i ¥ T T
400 600 800 1000

N\

I

(@) (b)

250

400 600
total entropy production As,_ [k ]

Fig. 6: a) Colloidal particle driven by a non-conservative forfe\) along a potential/(x, \)
to generate a NESS. b) Corresponding histograms of the ¢ottabpy production(As,,) for
different lengths of trajectories and two different strdrgyof the applied forcg. The inserts
show the total potentidl’(z) — fx in the two cases; adapted from [46].
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The DFT for total entropy production holds even under theargeneral situation of periodic
driving F(z, 7) = F(x, 7+7,), wherer, is the period, if (i) the system has settled into a periodic
distributionp(x, 7) = p(z, 7+7,), and (ii) the trajectory lengthis an integer multiple of,,. For

the distribution of workpy(1V'), a similar DFT can be proven provided the protocol is symimetr
A(T) = A(t—T), the non-conservative force zero, and the systems stagtiifibrium initially.

For such conditions, the DFT for work was recently testedeexpentally using a colloidal
particle pushed periodically by a laser trap against a sppeisubstrate [30], as shown in the
insert of Fig. 5 above.

3.3 Generalized Einstein relation and generalized fluctuabn-dissipation-
theorem

In a NESS, the relation between fluctuation, response totenrea perturbation and dissipation
is more involved than in equilibrium. The main principle dagunderstood by discussing the
well-known Einstein relation. First, for a free particlearthermal environment, the diffusion
constantD, and the mobility., are related by

Dy =Tpp. (53)

If this diffusion is modelled by a Langevin equation the sgth of the noise becomes algy
as introduced in section 2.1. For notational simplicity, mae ignored the subscrip0™in
all but the present section of these lecture notes. Secbtitk particle is not free but rather
diffuses in a potentidl’(x), the diffusion coefficient

D = lim [(z*(t)) — (=(t))*]/(2), (54)

t—o00

and the effective mobility

()

— 55

T (55)

which quantifies the response of the mean velo¢ityto a small external forc¢g still obey
D = Ty for any potentialV/(x). Note that with this notatiorD < D, for any non-zero
potential, since it is more difficult to surmount barriersthgrmal excitation. Third, one can
ask how the relation between the diffusion coefficient andititg changes in a genuine NESS
as shown in the set-up of Fig. 6a. Both definitions (54) an{l €& then still applicable if in the
latter the derivative is taken at non-zero force. Using fiatbgral techniques, one can derive a
generalized Einstein relation of the form [48]

D:T;H—/OOdTI(T), (56)
0

with
I(7) = ([2(t + 1) — (@)][vs(2(2)) — (2)]) - (57)

The “violation” function/(7) correlates thectual velocity i(¢) with the local mean velocity
vs() introduced in (50) subtracting from both thwbal mean velocity(i) = [ vs(z)p*(z) =

27 Rj, that is given by the net particle flux along the ring of radiug. In one dimension for a
steady state, the current must be the same everywhere aceljhéna constant. The offsetis
arbitrary because of time-translational invariance iready state. Since in equilibrium detailed
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violation integral
mobility
o

.0+ T T T
0.04 0.06 0.08 0.10 0.12 0.14 0.16
driving force [pN]

Fig. 7: Experimental test of the generalized Einstein relation) {8 different driving forces
f, using the set up shown in Fig. 6. The open bars show the neghdiffusion coefficientd.
The stacked bars are mobilify (grey bar) and integrated violatioh (hatched bar); adapted
from [46].

balance holds and thereforg(z) = (&) = 0, the violation (57) vanishes and (56) reduces to
the equilibrium relation.

For an experimental test of the non-equilibrium Einstelatren (56), trajectories of a single
colloidal particle for different driving forceg were measured and evaluated [46]. Fig. 7 shows
the three terms in (56) for five different values of the drg/force in the set-up shown in Fig. 6a.
Their sum is in good agreement with the independently measdiffusion coefficient directly
obtained from the particles trajectory using (54). For vemyall driving forces, the bead is
close to equilibrium and its motion can be described usingdr response theory. As a result,
the violation integral is negligible. Experimentally, $hiegime is difficult to access sinde
andu become exponentially small and cannot be measured at i@asdime scales for small
forces and potentials as deeplasi’. For very large driving forces, the relative magnitude ef th
violation term becomes smaller as well. In this limit, thepimsed potential becomes irrelevant
and the spatial dependence of the local mean velocity, whittte source of the violation term,
vanishes. The fact that the violation term is about four rfager than the mobility proves
that this experiment indeed probes the regime beyond liresgonse. Still, the description of
the colloidal motion by a Markovian (memory-less) Browniantion with drift as implicit in
the analysis remains obviously a faithful representatinoesthe theoretical results are derived
from such a framework.

For an even broader perspective, it should be noted thag#nsralized Einstein relation in
fact is the time-integrated version of a generalized fluobnadissipation-theorem (FDT) of the

form [48]
8<i(t>>—i (1)) — (x(t)vs(x(T
e = (@(t)a (7)) — (@(t)vs(2(7))) (58)

The left hand side quantifies the response of the mean welaicitme¢ to an additional force
pulse at the earlier time. In equilibrium, i.e. more strictly speaking in the lineasponse
regime, this response function is given by the velocityee#l correlation function which is
the first term on the right hand side. In non-equilibrium, beyond the linear response regime,
an additive second term on the right hand side contributashninvolves again the crucial
mean velocityv;. Note that this formulation with an additive correction isitg different from
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introducing an effective temperatufg; on the left hand side and ignoring this last term.
The equilibrium form of the FDT can be restored by refering telocity to the local mean
velocity according to

v(t) = @(t) — vs(z(t)) (59)
for which the form o(u(t))
T ) (v(t)v(T)) (60)

holds even in non-equilibrium [48].

Since the generalized FDT (58) and the restoration (60) Faic coupled interacting sys-
tem of Langevin equations as well, the perspective of usualp selations for an analysis of,
e.g., sheared colloidal suspensions arises. The maireaigallis to find useful approximation
schemes for replacing the phase space varialles and vs(x) by real space quantities like
correlation functions.

4 Stochastic dynamics on a network

4.1 Entropy production for a general master equation

For systems driven by mechanical forces described so faridégntification of a first law is
simple since both internal energy and applied work are ratlear concepts. On the other hand
the proof of both the IFT and the DFT shows that the first lawsdwoa crucially enter. In fact,
the proof of these theorems exploits only the fact that utidez-reversal entropy production
changes sign. Hence, similar relations can be derived fouehntarger class of stochastic
dynamic models without reference to a first law.

We consider stochastic dynamics on an arbitrary set ofss{atg where transitions between
statem andn occur with a rateu,,, (), which may depend on an externally controlled time-
dependent parametafr), see Fig. 8. The master equation for the time-dependentpility
pn(7) then reads [27]

0rpn(7) = > [Wimn (NP (7) = Wam (N)pa (7). (61)
m#n
an

— =
@ @ An

e 41 n(r)
W mn 37 ;
| 27 |
\\\\\ : ///"/7“;\\\\ 1 : : :

— ; ; -
Q Q I T2 T3 Ty,

Fig. 8: Network with state$n, m, ...} connected by rates,,,,, and trajectoryn(r) jumping at
timesr;.
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The analogue of the fluctuating trajectoryr) in the mechanical case becomes a stochastic
trajectoryn(r) that starts at, and jumps at times; fromn;" to nj ending up atk,, see Fig. 8.

For any fixed), such networks relax into a unique steady sigte Two classes of networks
must be distinguished depending on whether or not thisostaty distributionp; for fixed A
obeys the detailed balance condition

Pr(N)wnm(A) = pi, (A)wmn(A). (62)

If this condition is violated, the network is in a genuine NEE&or large networks, there is no
simple way to obtain the stationary distributipp. For small networks, a graphical method,
recalled in [24] is usually more helpful than solving the sktinear equation resulting from
setting the right hand side of (61) to zero.

Systems which obey detailed balance formally resemble arecélly driven systems without
non-conservative force since for the latter, at fixed paagntietailed balance holds as well.
Exploiting this analogy, one can assign a (dimensionlegsjmal “energy”

en(N) = —Inp(\) (63)
to each state. The ratio of the rates then obeys

wan‘)
Wi (A)

which looks like the familiar detailed balance conditiongquilibrium. For time-dependent
ratesw,,(A(7)), one can now formally associate an analogue of work in tha for

= explen(A) — €m(N)] (64)

t
w= /0 AT AO\ER (A Zln " J+ " + €n(t) (M) — €n0) (o), (65)
where the sum is over all jumps along the trajectory. Evenghamne should not put too much
physical meaning into this definition of work for an abstrsitichastic dynamics, the analogy
helps to see immediately that the fluctuation relations egiabove for zero non-conservative
force hold for these more general systems as well [50]. 8palty, one has the “generalized”

JR (34) withAF = 0 andT" = 1. Similarly, with the identification

B =) [en,+(13) = €n, (13)] = [en,+(0) = 0, (0)] (66)
j
the analogue of the BKR (36) witlhh = 1 holds for such a master equation dynamics. The

initial state in all cases is the steady state corresportding.
For both classes of networks, one can define a stochastapgrds [2]

S(7) = = Inppin (1) (67)

wherep,,)(7) is the solutiorp, (7) of the master equation (61) for a given initial distribution
p»(0) taken along the specific trajectoryr). As above, this entropy will depend on the chosen
initial distribution.

The entropys(7) becomes time-dependent due to two sources. First, evea gytbtem does
not jump, p,(-(7) can be time-dependent either for time-independent ratestalypossible
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relaxation from a non-stationary initial state or, for thbependent rates, due to the explicit
time-dependence ¢f, (7). Including the jumps, the change of system entropy reads

: __Opa(n(7) N Pt
$(r) = pw Z 5(r — 1)1 b (68)
= S40t(7) — sm(T). (69)

where we define the change in medium entropy to be

(70)

For a general system, associating the logarithm of the batiween forward jump rate and back-
ward jump rate with an entropy change of the medium seemsda hebitrary definition. Three
facts motivate this choice. First, it corresponds pregiselwhat in Appendix A is identified
as exchanged heat in the mechanically driven case. Secpad,averaging one recovers and
generalizes results for the non-equilibrium ensembleopytbalance in the steady state [7,51].
Specifically, for averaging over many trajectories, we nibedprobability for a jump to occur
att = 7; fromn;~ ton; " whichisp, (Tj)wn;nj (7;). Hence, one gets

. . . Wk
Sm(T) = (3m(7)) = ;pnwnk In o (71)
- — /¢ _ npnwnk
Stot(T) = <Stot(7-)> - nz’kpnwnkl Wi (72)
and
S(r) = (3(r) = 3 patwn In 22 (73)
ik Pk

such that the global balanc®.:(7) = Sw(7) + S(7) with Si:(7) > 0 is valid. Here, we
suppress the-dependence qf,,(7) andw, (7).

Third, following the proof given in Appendix A for the mechiaally driven case, one can easily
show [2] that with this choice the total entropy producti@s;,; fulfills both the IFT (32) for
arbitrary initial condition, arbitrary driving and any lgih of trajectory. Moreover)\s;.; obeys
the DFT (52) in the steady state, i.e. for constant rates.oOfse, in a general system, there is
no justification to identify the change in medium entropyhnan exchanged heat.

These fluctuation theorems have been illustrated in recgr@rements [52, 53], using an opti-
cally driven defect center in diamond. For this system, Fefor total entropy production and
the analogue of the Jarzynski relation for such a generahagiic dynamics [50] have been
tested, see Fig. 9 and 10 and their captions.
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. A b
I S N “ /\
YERTIE ) 2
bright state "~ b dark state -~
y ! Y a=ay(l+Ysinwt)

Fig. 9: Effective level scheme of a defect center in diamond (léfigwcorresponds to a two
state system with one rate modulated sinusoidally (rightie photochromic defect center can
be excited by red light responding with a Stokes-shifteddkaence. In additional to this bright
state the defect exhibits a nonfluorescent dark state. Hmsition rates a (from dark to bright)
and b (from bright to dark) depend linearly on the intensitgreen and red light, respectively,

: : : a :
turning the defect center into an effective two-level systédark) <=1 (bright) with con-
b

trollable transition rates: andb. The system can be found in stateith probabilityp,,, where
n takes either the value 0 or 1. To drive the system out of dxjiuiin, the rate a (from dark
to bright) was modulated according to the sinusoidal protag(t) = ag[l + v sin(27t/t.,)],
whereas the raté is held constant. The parameters are the equilibrium rateand b, the
periodt,,, and the modulation depth< ~ < 1, for the data, see Fig. 10; adapted from [52].

(a)
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Fig. 10: Measured entropy production for the single two-level systé Fig. 9 with parameters
ap = (15.6 msy!, b = (21.8 ms)!, ¢,, = 50 ms, andy = 0.46. (a) Transition rateu(t)
[green] and probability of the bright state (¢) [red, circles are measured; line is the theoretical
prediction] over 4 periods. (b) Single trajectonyt) (c) Evolution of the system entropy. The
gray lines correspond to jumps (vertical dotted lines) of gystem whereas the dark lines
show the continuous evolution due to the driving. (d) Entropange of the medium, where
only jumps contribute. (e), (f) Examples of (e) entropy pdg and (f) entropy annihilating
trajectories. The change of system entrdpy = s(¢) — s(0) [black] fluctuates around zero
without effective entropy production, whereas in £&9,, [red] produces a net entropy over
time. In (f)As,,, consumes an entropy of about 1 after 20 periods. (g), (hiiélograms taken
from 2000 trajectories of the system (g), medium (h), aral gritropy change (i). The system
entropy shows four peaks corresponding to four possiéditor the trajectory to start and end
O—1,1~ 0,0~ 0, and 1— 1); adapted from [53].
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4.2 Driven enzyme or protein with internal states

H. Wang and G. Oster (1998). Nature 396:279-282.

Fig. 11: Molecular structure of the FATPase and schematic reaction network for the hydroly-
sis of ATP. The position of thesubunit relative to the membrane plane advances®lia@®ach
reaction step.

Chemical reaction networks comprise an important classttmrhastic dynamics on a discrete
set of states. Non-equilibrium conditions arise whenevégast one reaction is not balanced.
For a typical example, see Fig. 11, which shows th&FPase. Driven by a proton-gradient
across the membrane this membrane-bound enzyme usuathesyzes ATP. It can, however,

also hydrolyze ATP and perform work against an external.lddake generally, any enzyme or

molecular motor can be considered as a system which stacdistindergoes transitions from

one staten to another state, see Fig. 12.

In such a transition, a chemical reaction like hydrolysiga involved which transforms one

molecule ATP to ADP and a phosphate. These three molecidarespare externally maintained

o | D

0 0
wnm wmn

® /D
@ D
Fig. 12: Protein or enzyme with internal states. A forward transit{teft) fromn to m involves

the chemical reactiod; +n — m + A, + Az and similarly for the backward reaction (right).
The ratesw?, . andw?,, are the concentration-independent bare rates.
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at non-equilibrium conditions thereby providing a souréecleemical energy, i.e., chemical
work, to the system. In each transition, this work will bensBormed into mechanical work,
dissipated heat, or changes in the internal energy (witltampination of positive and negative
contributions). The formalism of stochastic thermodynzsrallows to identify work, heat,
and internal energy for each single transition in close@mato the mechanically driven case
[29, 54].

We consider a protein with/ internal state$1, 2, ..., M }. Each state has internal energy,,.
Transitions between these states involve some other mekedy, wherea =1, ..., N4 labels
the different chemical species. A transition from state statemn implies the reaction

Wmn

rimAL, +n o+ st A, (74)
Z « Z «

67

Here,r™ s2™ are the numbers of speciel, involved in this transition. We assume that the
chemical potentials, i.e., the concentratiegsof these molecules are controlled or clamped
externally by chemiostats. In principle, this implies th#ter a reaction event has taken place,
the usedA,, are “refilled” and the produced ones are “extracted”. Th@cpdure guarantees
that the chemiostats undergo no entropy change.

The chemical potential for speciesat concentratior,, quite generally reads
o = Ey + T ncow, (75)

which for equilibrium becomegé? = E, + T'In ¢¢%w,. Here,w, is a suitable normalization
volume chosen such that, is the energy of a singld,, molecule. If thed, molecules were
an ideal monoatomic gas, we would have = \3e=3/2 where )\, is the thermal de Broglie
wavelength and the facter?/? compensates for making the kinetic enefgy—= 37"/2 explicit.
Mass action law kinetics with respect to thg molecules is a good approximation if we assume
a dilute solution of4,, molecules. The ratio between forward ratg,, and backward rate,,,,,

is then given by

Wpm WY nm_

nm (Cawaya

«

nm

s (76)

Wmn w?nn

Here, we separate the concentration dependence from satriasic” or bare rates®,  w? .
Their ratio can be determined by considering a hypotheégailibrium condition for this re-
action. In fact, if the reaction took place in equilibriunmtivconcentrations:?, we would have

the detailed balance relation

w%(}n w?},m eq pm_gnm p(;r(;l
Do _ L (cCa)Ta" =", = T — exp (—AG/T), (77)
mn mn Pn

[

where
AG =—[E, — B, + Z(TZ’” — 8o o] (78)

is the equilibrium free energy difference for this reactaomlp;!,, are the equilibrium probabil-
ities of statesn andn, respectively. Combining (75)—(78) shows that the ratithefintrinsic

rates
(En — Ep+ Y (i — sgm)Ea> /T

«

(79)
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involves only the energy-terms and is independent of canagons. The ratio (76) under non-
equilibrium conditions then becomes

wnm

In [En = En+ Y _(ri™ = s0™) o] /T = (—AE + wiyn,) /T (80)

wmn -
The right hand side corresponds to the difference betwegledzhemical work

Wity = 3 (1™ = 52 o (81)

(since every transformed,, molecule gives rise to a chemical wotk) and the difference in
internal energyA E. For the first law to hold for this transition, we then havederitify the left
hand side of (80) with the heat delivered to the medium, iigh the change in entropy of the
medium

wnm

In

= As™™, (82)

wmn

This identification of heat dissipated in one reaction st&efha logarithm of the ratio between
forward rate and backward rate corresponds precisely tddfirition (70) introduced for gen-
eral dynamics on a network thus proving the consistencyisfproach.

4.3 Chemical reaction network

Finally, such a scheme can be extended to an arbitrary chéraaction network which consists
of N; reactions of the type

No N Na N;
DoAY X =) b A+ Y X, (83)
a=1 j=1 a=1 j=1

with 1 < p < N, labeling the single (reversible) reactions. We distinguiso types of re-
acting species. The&; molecules(j; = 1,...,N;) are those species whose numbers=
(n1,...,ny,) can, in principle, be measured along a chain of reactiontevémpractice, these
numbers should be small. Th&, molecules(a« = 1,..., N,) correspond to those species
whose overall concentrations, are controlled externally by a chemiostat due to a (gener-
ally) time dependent protocel, (7). In principle, this implies that after a reaction event has
taken place, the used, are “refilled” and the produced ones are “extracted”. As abtivese
chemiostats have chemical potential

to = Eo + T (cowy) (84)

whereT is the temperature of the heat bath to which both type of gagiare coupled, see
Fig. 13.
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T
Heat bath

Heat bath

Fig. 13: Coupling of the system with speci&s, j = (1,..., N;) to the N, particle reservoirs
for speciesd,, at chemical potentiak,, and to a heat bath at constant temperatiite

We assume that the reacting species have no internal degfréreedom. However, internal
degrees of freedom as the ones introduced for a single enezgald easily be treated within
this approach by labeling different internal states asediifit species and defining “reactions”
(transitions) between them.

The stochiometric coefficienig, p/, s/, andq; enter the stochiometric matri with entries

vf =qf —pf (85)
and the stochiometric matrix of the reservoir spediewith entries
ub = s —rk. (86)

For the externally controlled concentrationf A,,, we use the vector notatian= (cy, ..., cy,)-
We assume a dilute solution of reacting species in a solhestt (bath) and therefore the transi-
tion probabilities per unit time for th&/, reactions (83) take the text book form [26, 27]

nj!

whim e) = Ok [ Lo 1T o (57)
w’ (n,c) = Qk” H (cacuo[)Sg H ny! (88)

o

o i (g — @) QY w;)
where + denotes a forward reaction; denotes a backward reaction afidis the reaction
volume. The bare ratelg! _ are the transition probabilities per unit time per unit vokiper

unit concentration (in terms df/w, and1/w;, respectively) of every educt reactant. Note that
while v/ _(n, c), in principle, can be measured experimentally, the baeskdt  depend on

the normalizing volumes,, andw; whose unique definition requires a microscopic Hamiltonian
[55].
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The transition probabilities depend only on the currentestand therefore define a Markov
process with the master equation

Op(n,7) = Z[wi(n—v”,c)-p(n—vp,7)+wf(n+v",c)-p(n+v”,7‘)]

- Z [w_’i(n, C) ' p(n, T) =+ wﬁ (Il, C) : p(l’l, T)] (89)

p

governing the time evolution of the probability distribwtip(n, 7) to haven; moleculesX;

at timer. Here, we have used the vector notatioh= (v/, ... ,vf’vj) for the entries of the
stochiometric matrix.

The stochastic dynamics of the networks has thus been upidaegned. For fixed concentra-
tionsc,, this network acquires a stationary state which may or mayhey detailed balance,
i.e. may or may not correspond to genuine equilibrium. Thst faw, entropy change of both
the medium, i.e. the heat bath, and the network can contistendefined and various fluctu-
ation theorems be proven as detailed in [55]. So far, no exygats illustrating these concepts
using measured data are available.

The notion “stochastic thermodynamics” had been introdue® decades ago for an interpre-
tation of such chemical reaction networks in terms of thetymamic notions on the ensemble
level [56]. From the present perspective, it seems even i@mpeopriate to use this term for
the refined description along the fluctuating trajectoryafioy stochastic dynamics. As we have
seen, both for mechanically and chemically driven systenassurrounding heat bath, the ther-
modynamic concepts can literally and consistently be adin this level. As a generalization
to arbitrary stochastic dynamics, analogues of work, hedimternal energy obey similar exact
relations which ultimately all arise from the behaviour bétdynamics under time-reversal.
How much closer such an approach can lead us towards a systemderstanding of non-
equilibrium phenomena in general is a question posed tdy abe answered yet.
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Appendix

A Path integral representation

We first derive the path integral representation of the Laimgdynamics. We start with the
Langevin equation (4) in the form

#(1) = pk(2(7), A(1)) + ¢(7) (90)
and discretize timeé=ie (i = 0,..., N). Writing z; = x(i€) and\; = A(ic), we get

S = G (w) + Foano)] +6 (91)
with F;(z;) = F(z;, A;) using the mid-point (or Stratonovich) rule. In such a digergme
description, the stochastic noise obeys

(G) =0 and (G(;) =2(D/e)dy; (92)
These correlations follow from the weight
(€ N\ N2 € 9
(G- Cv) = <47TD> exp [—@ ZC] (93)
For the transition fronp((y, ..., (y) top(xq, . .., zx|x0) We have
IGi
p(z1, ..., xN|T0) = det . p(Ciy - CN) (94)
J
with the Jacobi matrix
o, L LF(x1) 0
8x; = | -L1—LF{(x2) L—LFj(x) O ... ]. (95)

The Jacobi determinant becomes

(m(ggz<gNﬁu—%ﬂm»
_ (%)Nexp é In(1— euF(z:) /2)]

~ (E)Nexp B gem’m)m] - (96)

The weight for a discretized trajectory thus becomes

p(z1,. .. oN|T0) = % p [ 1 [Z(xz — Ty — GME(%))2] - % ZF{(%) :

4t De)N/? P T De

1=1
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In the continuum limite — 0, N — oo, Ne = ¢ fixed ) this expression becomes up to normal-
ization

_ 1 o 2 K ! /
pla(7)|wo] = expl——7 [ [&— pF(x(7),A(7))]"dT — 5/0 F'(2(7), A(7))d7]

4D J,
= exp|—A[z(7)]] (98)
with the “action” .
1
() = 5 / drL((7), #(7); \(7)) (99)
0
and the “Lagrange function”
1 D
L(z,#,A(7)) = (& = nF)* + %F (100)
We include the normalization into the definition of the pattegral measure writing
1 N/2 N +00
/w A= (47@6) 11 /_ i (101)
for integration over all paths starting af. Thus, we have
[ dis(Olpla(r)ian) =1 (102)

and, including a normalized probability distributipg(zy) for the initial point

/ d[z(7)]plz(T)|zo]po(zo) = 1. (103)

B Proof of the integral fluctuation theorem

For the proof of the fluctuation theorem the crucial concefité notion of the reversed protocol

AM7)= At —71) (104)
and the reversed trajectory
I(r)=zt—1), (105)
see Fig. 14.
T -
1t z(7)
ot

33()7

Fig. 14: Forward trajectoryz(7) under the forward protocol(r) and reversed trajectory
Z(1) = z(t — 7) and reversed protocol(7) = A(t — 7).
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The weight for the reversed path under the reversed proitogdlen by

plE(T)| %] = exp[—A[E(7)]] (106)
with .
Ap(r)) = Ae(r)] + /O dri(7)F(2(7), \(7)) (107)
from which one obtains the relation
% = explq[x(7)]/T] = exp Asy, - (108)

Thus, the more heat, i.e. entropy in the medium, is generatdte forward process, the less
likely is the reverse process to happen. In this sense, @ngeneration in the medium is
associated with broken time reversal symmetry.

The proof of the integral fluctuation theorem follows witheavflines: The normalization con-
dition for the backward paths reads

1= / 4L ()]l () [Folpa (o) (109)

wherep; () is an arbitrary normalized function af,. We introduce the given initial distri-
bution of the forward process (z) and the weighp[z(7)|zo] of the forward process leading
to

_ S Pl (7)|Zo]p1(To) (P o

The sum over all backward pathisi[z(7)] can be replaced with a sum over all forward paths
[ d[z(7)]. With relation (108) one then has

T

1= / d[z(7)] <exp[—Asm]p1< t>) pla(r)|zo]po(ao) (111)
po(xo)

where we have used, = z;. Since this path integral is the non-equilibrium average),

we get the integral fluctuation theorem (32) quoted in thennpairt. The proof of the detailed

fluctuation theorem for a stationary or periodic state fwidrom quite similar reasoning [2, 10,

17].
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