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1 Classical vs. stochastic thermodynamics

Stochastic thermodynamics provides a conceptual framework for describing a large class of
soft and bio matter systems under well specified but still fairly general non-equilibrium condi-
tions. Typical examples comprise colloidal particles driven by time-dependent laser traps and
polymers or biomolecules like RNA, DNA or proteins manipulated by optical tweezers, mi-
cropipets or AFM tips. Three features are characteristic for such systems: (i) the source of
non-equilibrium are external mechanical forces or unbalanced chemical potentials; (ii) these
small systems are inevitably embedded in an aqueous solution which serves as a heat bath of
well defined temperatureT ; (iii) fluctuations play a prominent role.
As the main idea behind stochastic thermodynamics, notionslike applied work, exchanged heat
and entropy developed in classical thermodynamics about 200 years ago are adapted to this
micro- or nano-world. Specifically, the stochastic energetics approach introduced a decade ago
by Sekimoto [1] is combined with the observation that entropy can consistently be assigned to
a single fluctuating trajectory [2].
For a juxtaposition of classical and stochastic thermodynamics we consider for each a paradig-
matic experiment. For the classical compression of a gas or fluid in contact with a heat reservoir
of temperatureT (see Fig. 1), the first law

W = ∆V + Q (1)

expresses energy conservation. The workW applied to the system either increases the internal
energyV of the system or is dissipated as heatQ = T∆Sm in the surrounding medium, where
∆Sm is the entropy change of the medium.
The second law

∆Stot ≡ ∆S + ∆Sm ≥ 0 (2)

combined with the first law leads to an inequality

Wdiss ≡ W − ∆F ≥ 0 (3)

expressing the fact that the work put in is never smaller thanthe free energy difference∆F
between final and initial state. This difference, the dissipated workWdiss, is zero only if the
process takes place quasistatically.
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Fig. 1: Typical experiment in classical thermodynamics: Startingfrom an initial position atλ0,
an external control parameter is changed according to a protocolλ(τ) during time0 ≤ τ ≤ t
to a final positionλt. This process requires workW while the system remains in contact with a
heat bath at temperatureT .
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(a) (b)

Fig. 2: Typical experiment in stochastic thermodynamics: The two ends of an RNA molecule
are attached to two beads (yellow) which can be manipulated by micropipets. By pulling these
beads, the hairpin structure of the RNA can be unfolded leading to force extension curves. For
slow pulling (blue) these curves are almost reversible whereas for medium pulling speed (green)
and large pulling speed (red) the curves show pronounced hysteresis which is a signature of non-
equilibrium. In all cases, the overlay of several traces shows the role of fluctuation; adapted
from [3].

Fig. 3: Measured distributions for dissipative workWdiss. The three panels correspond to
different extensions whereas the colours refer to different pulling speeds; adapted from [3].

A similar experiment on a nano-scale, the stretching of RNA,is shown in Fig. 2. Two conceptual
issues must be faced if one wants to use the same macroscopic notions to describe such an
experiment. First, how should work, exchanged heat and internal energy be defined on this
scale. Second, these quantities do not acquire sharp valuesbut rather lead to distributions, as
shown in Fig. 3.
The occurrence of negative value of the dissipated workWdiss is typical for such distributions.
The quest to quantify and understand these events which seemto be in conflict with too nar-
row an interpretation of the second law lies at the origin of stochastic thermodynamics which
got started by two originally independent discoveries. First, the (detailed) fluctuation theorem
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dealing with non-equilibrium steady states provides a symmetry between the probability for ob-
serving asymptotically a certain entropy production and the probability for the corresponding
entropy annihilation [4–7]. Second, the Jarzynski relation expresses the free energy difference
between two equilibrium states as a non-linear average overthe non-equilibrium work required
to drive the system from one state to the other in a finite time [8–11]. Within stochastic thermo-
dynamics both of these relations can easily be derived and the latter shown to be a special case
of a more general relation [2].
The purpose of these lecture notes is to introduce the principles of stochastic thermodynamics
using simple systems in a systematic way and to sketch a few examples following the exposition
in [12]. No attempt is made to achieve a comprehensive historical presentation. Several (mostly)
review articles can provide complementary and occasionally broader perspectives [13–25].

2 Principles

2.1 Stochastic dynamics

In this section, three equivalent but complementary descriptions of stochastic dynamics, the
Langevin equation, the Fokker-Planck equation, and the path integral, are introduced [26–28].
We start with the Langevin equation for the overdamped motionx(τ) of a “particle” or “system”

ẋ = µF (x, λ) + ζ (4)

whereF (x, λ) is a systematic force andζ thermal noise with correlation

〈ζ(τ)ζ(τ ′)〉 = 2Dδ(τ − τ ′) (5)

whereD is the diffusion constant. In equilibrium,D and the mobilityµ are related by the
Einstein relation

D = Tµ (6)

whereT is the temperature of the surrounding medium with Boltzmann’s constantkB set to
unity throughout the paper to make entropy dimensionless. In stochastic thermodynamics, one
assumes that the strength of the noise is not affected by the presence of a time-dependent force.
The range of validity of this crucial assumption can be tested experimentally or in simulations
by comparing with theoretical results derived on the basis of this assumption.
The force

F (x, λ) = −∂xV (x, λ) + f(x, λ) (7)

can arise from a conservative potentialV (x, λ) and/or be applied to the particle directly as
f(x, λ). Both sources may be time-dependent through an external control parameterλ(τ) varied
from λ(0) ≡ λ0 to λ(t) ≡ λt according to some prescribed experimental protocol . To keep the
notation simple, we treat the coordinatex as if it were a single degree of freedom. In fact, all
results discussed in the following hold for an arbitrary number of coupled degrees of freedom
for whichx andF become vectors andD andµ (possiblyx-dependent) matrices [29].
Equivalent to the Langevin equation is the corresponding Fokker-Planck equation for the prob-
ability p(x, τ) to find the particle atx at timeτ as

∂τp(x, τ) = −∂xj(x, τ)

= −∂x (µF (x, λ)p(x, τ) − D∂xp(x, τ)) (8)
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wherej(x, τ) is the probability current. This partial differential equation must be augmented
by a normalized initial distributionp(x, 0) ≡ p0(x). It will become crucial to distinguish the
dynamical solutionp(x, τ) of this Fokker-Planck equation, which depends on this giveninitial
condition, from the solutionps(x, λ) for which the right hand side of (8) vanishes at any fixedλ.
The latter corresponds either to a steady state for a non-vanishing non-conservative forcef 6= 0
or to equilibrium forf = 0, respectively.
A third equivalent description of the dynamics is given by assigning a weight

p[x(τ)|x0] = exp

[

−

∫ t

0

dτ [(ẋ − µF )2/4D + µ∂xF/2]

]

(9)

to each path or trajectory, as derived in Appendix A. Path dependent observables can then be
averaged using this weight in a path integral which requiresa path-independent normalization
such that summing the weight (9) over all paths is 1.

2.2 First law

Following Sekimoto within his stochastic energetics approach [1], we first identify the first-law-
like energy balance

dw = dV + dq (10)

for the Langevin equation (4). The increment in work appliedto the system

dw = (∂V/∂λ) λ̇ dτ + f dx (11)

consists of two contributions. The first term arises from changing the potential (at fixed particle
position) and the second from applying a non-conservative force to the particle directly. If
one accepts these quite natural definitions, for the first lawto hold along a trajectory the heat
dissipated into the medium must be identified with

dq = Fdx. (12)

This relation is quite physical since in an overdamped system the total force times the displace-
ment corresponds to dissipation. Integrated along a trajectory of given length one obtains the
expressions

w[x(τ)] =

∫ t

0

[(∂V/∂λ)λ̇ + fẋ] dτ and q[x(τ)] =

∫ t

0

F ẋ dτ (13)

and the first law

w[x(τ)] = q[x(τ)] + ∆V = q[x(τ)] + V (xt, λt) − V (x0, λ0) (14)

on the level of a single trajectory.
In a recent experiment [30], the three quantities applied work, exchanged heat and internal en-
ergy were inferred from the trajectory of a colloidal particle pushed periodically by a laser trap
against a repulsive substrate, see Fig. 4. The measured non-Gaussian distribution for the ap-
plied work shown in Fig. 5 indicates that this system is driven beyond the linear response regime
since it has been proven that within the linear response regime the work distribution is always
Gaussian [31]. Moreover, the good agreement between the experimentally measured distri-
bution and the theoretically calculated one indicates thatthe assumption of noise correlations
being unaffected by the driving is still valid in this regimebeyond linear response.
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Fig. 4: Experimental illustration of the first law. A colloidal particle is pushed by a laser
towards a repulsive substrate. The (almost) linear attractive part of the potential depends lin-
early (see insert) on the laser intensity. For fixed laser intensity, the potential can be extracted
by inverting the Boltzmann factor. If the laser intensity ismodulated periodically, the potential
becomes time-dependent. For each period (or pulse) the workW , heatQ and change in internal
energy∆V can be inferred from the trajectory using (10-11). Ideally,these quantities should
add up to zero for each pulse, while the histogram shows the small (δ <

∼ 1kBT ) experimental
error; adapted from [30].

Fig. 5: Work distribution for a fixed trajectory length for the experiment shown in Fig. 4. The
grey histogram are experimental data, the red curve shows the theoretical prediction with no
free fit paramters. The non-Gaussian shape proves that the experimental condition probe the
regime beyond linear response. The insert shows that the work distribution obeys the detailed
fluctuation theorem introduced in Section 3.2 below; adapted from [30].
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2.3 Entropy production

For a refinement of the second law on the level of single trajectories, we need to define the cor-
responding entropy as well which turns out to have two contributions. First, the heat dissipated
into the environment should be identified with an increase inentropy of the medium

∆sm[x(τ)] ≡ q[x(τ)]/T. (15)

Second, one defines as a stochastic or trajectory dependent entropy of the system the quantity [2]

s(τ) ≡ − ln p(x(τ), τ) (16)

where the probabilityp(x, τ) obtained by first solving the Fokker-Planck equation is evaluated
along the stochastic trajectoryx(τ). Since introducing this stochastic entropy in the main new
concept within this approach, we first discuss some of its properties.

• Relation to non-equilibrium ensemble entropy
Obviously, for any given trajectoryx(τ), the entropys(τ) depends on the given initial
datap0(x) and thus contains information on the whole ensemble. Indeed, upon averaging
with the given ensemblep(x, τ), this trajectory-dependent entropy becomes the usual
ensemble entropy

S(τ) ≡ −

∫

dx p(x, τ) ln p(x, τ) = 〈s(τ)〉. (17)

Here and throughout the manuscript the brackets〈...〉 denote the non-equilibrium average
generated by the Langevin dynamics from some given initial distributionp(x, 0) = p0(x).

• Relation to thermodynamics in equilibrium
It is interesting to note that in equilibrium, i.e. forf ≡ 0 and constantλ, the stochastic
entropys(τ) obeys the well-known thermodynamic relation between entropy, internal
energy and free energy

s(τ) = (V (x(τ), λ) −F(λ))/T, (18)

along the fluctuating trajectory at any time with the free energy

F(λ) ≡ −T ln

∫

dx exp[−V (x, λ)/T ]. (19)

• Invariance under coordinate transformations
The entropy as defined in (16) has the formal deficiency that strictly speakingln p(x(τ), τ)
is not defined sincep(x, τ) is a density. Apparently more disturbingly, this expression is
not invariant under non-linear transformations of the coordinates. In fact, both deficien-
cies which also hold for the ensemble entropy (17) are related and can be cured easily as
follows by implicitly invoking the notion of relative entropy [12].

A formally proper definition of the stochastic entropy starts by describing the trajectory
using canonical variables. After integrating out the momenta, for a system withN parti-
cles with Cartesian positions{xi}, one should define the entropy as

s({xi(τ)}) ≡ − ln[p({xi(τ)}, τ)λ3N
T ] (20)
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whereλT is the thermal de Broglie length. If one now considers this dynamics in other
coordinates{yi}, one should use

s({yi(τ)}) ≡ − ln[p({yi(τ)}, τ) det{∂y/∂x}λ3N
T ]. (21)

This correction with the Jacobian ensures that the entropy both on the trajectory as well
as on the ensemble level is independent of the coordinates used to describe the stochastic
motion. Of course, this statement is no longer true if the transformation from{xi} to {yi}
is not one to one. Indeed, if some degrees of freedom are integrated out the entropy does
and should change. For ease of notation, we will in the following keep the simple form
(16).

• Equations of motion
The rate of change of the entropy of the system (16) is given by[2]

ṡ(τ) = −
∂τp(x, τ)

p(x, τ) |x(τ)

−
∂xp(x, τ)

p(x, τ) |x(τ)

ẋ (22)

= −
∂τp(x, τ)

p(x, τ) |x(τ)

+
j(x, τ)

Dp(x, τ) |x(τ)

ẋ −
µF (x, λ)

D |x(τ)
ẋ.

The first equality identifies the explicit and the implicit time-dependence. The second one
uses the Fokker-Planck equation (8) for the current. The third term in the second line can
be related to the rate of heat dissipation in the medium (15)

q̇(τ) = F (x, λ)ẋ = T ṡm(τ) (23)

using the Einstein relationD = Tµ. Then (22) can be written as a balance equation for
the trajectory-dependent total entropy production

ṡtot(τ) = ṡm(τ) + ṡ(τ) = −
∂τp(x, τ)

p(x, τ) |x(τ)

+
j(x, τ)

Dp(x, τ) |x(τ)

ẋ. (24)

The first term on the right hand side signifies a change inp(x, τ) which can be due to a
time-dependentλ(τ) or, even at fixedλ, due to relaxation from a non-stationary initial
statep0(x) 6= ps(x, λ0).

Upon averaging, the total entropy production rateṡtot(τ) has to become positive as re-
quired by the second law. This ensemble average proceeds in two steps. First, we condi-
tionally average over all trajectories which are at timeτ at a givenx leading to

〈ẋ|x, τ〉 = j(x, τ)/p(x, τ). (25)

Second, with
∫

dx∂τp(x, τ) = 0 due to probability conservation, averaging over allx
with p(x, τ) leads to

Ṡtot(τ) ≡ 〈ṡtot(τ)〉 =

∫

dx
j(x, τ)2

Dp(x, τ)
≥ 0, (26)

where equality holds in equilibrium only. Averaging the increase in entropy of the medium
along similar lines leads to

Ṡm(τ) ≡ 〈ṡm(τ)〉 = 〈F (x, τ)ẋ〉/T (27)

=

∫

dxF (x, τ)j(x, τ)/T. (28)
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Hence upon averaging, the increase in entropy of the system itself becomesṠ(τ) ≡
〈ṡ(τ)〉 = Ṡtot(τ) − Ṡm(τ). On the ensemble level, this balance equation for the averaged
quantities can also be derived directly from the ensemble definition (17) [32].

• Integral fluctuation theorem (IFT)
The total entropy change along a trajectory follows from (15) and (16)

∆stot ≡ ∆sm + ∆s (29)

with
∆s ≡ − ln p(xt, λt) + ln p(x0, λ0) . (30)

It obeys a remarkable integral fluctuation theorem (IFT) [2]

〈e−∆stot〉 = 1 (31)

which can be interpreted as a refinement of the second law〈∆stot〉 ≥ 0. The latter follows
from (31) by Jensen’s inequality〈exp x〉 ≥ exp〈x〉. This integral fluctuation theorem
for ∆stot is quite universal since it holds for any kind of initial condition (not only for
p0(x0) = ps(x0, λ0)), any time-dependence of force and potential, with (forf = 0) and
without (for f 6= 0) detailed balance at fixedλ, and any length of trajectoryt.

As shown in Appendix B, the IFT for entropy production (31) follows from a more gen-
eral fluctuation theorem which unifies several relations previously derived independently.
Based on the concept of time-reversed trajectories and time-reversed protocol [6,11,17],
it is easy to prove the relation [2]

〈exp[−∆sm] p1(xt)/p0(x0)〉 = 1 (32)

for any functionp1(x) with normalization
∫

dx p1(x) = 1. Here, the initial distribution
p0(x) is arbitrary. By using the first law (14), this relation can also be written in the form

〈exp[−(w − ∆V )/T ] p1(xt)/p0(x0)〉 = 1 (33)

with no reference to an entropy change.

The arguably most natural choice for the functionp1(x) is to take the solutionp(x, τ)
of the Fokker-Planck equation at timet which leads to the IFT (31) for the total entropy
production. Other choices lead to similar relations originally derived differently among
which the Jarzynski relation is the most famous and useful.

2.4 Jarzynski relation

The Jarzynski relation (JR) originally derived using Hamiltonian dynamics [8]

〈exp[−w/T ]〉 = exp[−∆F/T ] (34)

expresses the free energy difference∆F ≡ F(λt) − F(λ0) between two equilibrium states
characterized by the initial valueλ0 and the final valueλt of the control parameter, respectively,
as a non-linear average over the work required to drive the system from one equilibrium state
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to another. At first sight, this is a surprising relation since on the left hand side there is a non-
equilibrium average which should in principle depend on theprotocolλ(τ), whereas the free
energy difference on the right hand side is a pure equilibrium quantity.
Within stochastic thermodynamics the JR follows, a posteriori, from the more general relation
(33), by specializing to the following conditions: (i) There is only a time-dependent poten-
tial V (x, λ(τ)) and no non-conservative force(f ≡ 0), (ii) initially the system is in thermal
equilibrium with the distribution

p0(x) = exp[−(V (x, λ0) −F(λ0))/T ]. (35)

Plugging this expression with the free choicep1(x) = exp[−(V (x, λt) − F(λt))/T ] into (33),
the JR indeed follows within two lines. It is crucial to note that its validity does not require that
the system has relaxed at timet into the new equilibrium. In fact, the actual distribution at the
end will bep(x, t).
As an important application, based on a slight generalization [33], the Jarzynski relation can be
used to reconstruct the free energy landscape of a biomoleculeG(x) wherex denotes a “reaction
coordinate” like the end-to-end distance in forced proteinfolding as reviewed in [20]. Indeed,
the experiment on unfolding RNA described in the introduction [3] has been one of the first
real-world test of the Jarzynski relation.
In this context, it might be instructive to resolve some confusion in the literature concerning an
earlier relation derived by Bochkov and Kuzolev [34, 35]. For a system initially in equilibrium
in a time-independent potentialV0(x) and for0 ≤ τ ≤ t subject to an additional space and
time-dependent forcef(x, τ), one obtains from (33) the Bochkov-Kuzolev relation (BKR)

〈exp[−w̃/T ]〉 = 1 (36)

with

w̃ ≡

∫ xt

x0

f(x, λ(τ))dx (37)

by choosingp1(x) = p0(x) = exp[−(V0(x) − F0)/T ]. Under these conditions,̃w is the work
performed at the system. Since this relation derived much earlier by Bochkov and Kuzovlev
[34,35] looks almost like the Jarzynski relation there havebeen both claims that the two are the
same and some confusion around the apparent contradiction thatexp[−w/T ] seems to be both
exp[−∆F/T ]) or 1. The present derivation shows that the two relations are different since they
apply a priori to somewhat different situations. The JR as discussed above applies to processes
in a time-dependent potential, whereas the BKR as discussedhere applies to a process in a
constant potential with some additional force. If, however, in the latter case, this explicit force
arises from a potential as well,f(x, τ) = −V ′

1(x, τ), there still seems to be an ambiguity. It can
be resolved by recognizing that in this case the work entering the BKR (36)

w̃ =

∫

dxf = −

∫

dxV ′
1(x) = −∆V1 + w (38)

differs by a boundary term from the definition of workw given in eq. (11) and used throughout
this paper. Thus, if the force arises from a time-dependent but conservative potential both the
BKR in the form〈exp[−w̃/T ]〉 = 1 and the JR (34) hold. The connection between the two
relations can also be discussed within a Hamiltonian dynamics approach [36]. Further relation
that can be derived from the IFT (32) can be found in Ref. [12].
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2.5 Optimal finite-time processes

So far, we have discussed relations that hold for any protocol λ(τ). For various applications it is
important to know an optimal protocolλ∗(τ). In this section we investigate the optimal protocol
λ∗(τ) that minimizes the mean work required to drive such a system from one equilibrium state
to another in afinite time t [37]. The emphasis on a finite time is crucial since for infinite time
the work spent in any quasi-static process is equal to the free energy difference of the two states.
For finite time the mean work is larger and will depend on the protocolλ(τ). A priori, one might
expect the optimal protocol connecting the given initial and final values to be smooth as it was
found in a case study within the linear response regime [38].In contrast, it turns out that for
genuine finite-time driving the optimal protocol involves discontinuities both at the beginning
and the end of the process.
As an instructive example [37], we consider a colloidal particle dragged through a viscous fluid
by an optical tweezer with harmonic potential

V (x, τ) = (x − λ(τ))2 /2. (39)

For notational simplicity, we setT = µ = 1 in this section by choosing natural units for energies
and times. The focus of the optical tweezer is moved according to a protocolλ(τ). The optimal
protocolλ∗(τ) connecting given boundary valuesλ0 = 0 andλt in a time t minimizes the
dimensionless mean total work

W [λ(τ)] ≡

∫ t

0

dτλ̇

〈

∂V

∂λ
(x(τ), λ(τ))

〉

(40)

which we express as a functional of the mean position of the particle u(τ) ≡ 〈x(τ)〉 as

W [λ(τ)] =

∫ t

0

dτλ̇(λ − u) =

∫ t

0

dτ(u̇ + ü)u̇

=

∫ t

0

dτu̇2 +
[

u̇2
]t

0
/2. (41)

Here, we have used
u̇ = (λ − u) (42)

which follows from averaging the Langevin equation (4). TheEuler-Lagrange equation cor-
responding to (41),̈u = 0, is solved byu(τ) = mτ , whereu(0) = 0 is enforced by the
initial condition. Eq. (42) then requires the boundary conditions u̇(0) = λ0 − u(0) = 0 and
u̇(t) = λt − mt which can only be met by discontinuities inu̇ at the boundaries which corre-
spond to jumps inλ. Note that these “kinks” do not contribute to the integral inthe second line
of (41). The yet unknown parameterm follows from minimizing the mean total work

W = m2t + (λt − mt)2/2 (43)

which yieldsm∗ = λt/(t + 2). The minimal mean workW ∗ = λ2
t/(t + 2) vanishes in the

quasi-static limitt → ∞. The optimal protocol then follows from (42) as

λ∗(τ) = λt(τ + 1)/(t + 2), (44)

for 0 < τ < t. As a surprising result, this optimal protocol implies two distinct symmetrical
jumps of size

∆λ ≡ λ(0+) − λ0 = λt − λ(t−) = λt/(t + 2) (45)
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at the beginning and the end of the process. A priori, one might have expected a continuous
linear protocolλlin(τ) = λtτ/t to yield the lowest work but the explicit calculation yields

W lin = (λt/t)
2(t + e−t − 1) > W ∗ (46)

for any t > 0, with a maximal valueW lin/W ∗ ≃ 1.14 at t ≃ 2.69. A further case study
and more general consideration indeed show that such jumps at the beginning and end of the
protocol are generic [37].
This approach of optimizing protocols can be extended to cyclic processes. Specifically, one
can ask for the optimal protocol to achieve maximum power forstochastic heat engines [39]
or in models for molecular motors, combining mechanical steps with chemical reactions given
a finite cycle time. This perspective demonstrates that thisoptimization problem in stochastic
thermodynamics has not only a broad fundamental significance. Its ramifications could ulti-
mately also lead to the construction of “optimal” nano-machines.

3 Non-equilibrium steady states

3.1 Characterization

Non-equilibrium does not necessarily require that the system is driven by time-dependent po-
tentials or forces as discussed so far. A non-equilibrium steady state (NESS) is generated if
time-independent but non-conservative forcesf(x) act on the system. Such systems are char-
acterized by a time-independent or stationary distribution

ps(x) ≡ exp[−φ(x)]. (47)

As a fundamental difficulty, there is no simple way to calculateps(x) or, equivalently, the “non-
equilibrium potential”φ(x). In one dimension, it follows from quadratures but for more degrees
of freedom, setting the right hand side of the Fokker-Plank equation (8) to zero represents a
formidable partial differential equation. Physically, the complexity arises from the fact that
detailed balance is broken, i.e. non-zero stationary currents arise. In technical terms, broken
detailed balance means

p(x2(t
′)|x1(t))p

s(x1) 6= p(x1(t
′)|x2(t))p

s(x2) (48)

where the first factor on both sides represents the conditional probability. In genuine equilib-
rium, the equal sign holds withpeq(x) replacingps(x). Equivalently, in a genuine NESS, one
has a non-zero stationary current (in the full configurationspace)

js(x) = µF (x)ps(x) − D∂xp
s(x) ≡ vs(x)ps(x) (49)

with the mean local velocity
vs(x) = 〈ẋ|x〉. (50)

This local mean velocityvs(x) is the average of the stochastic velocityẋ over the subset of
trajectories passing throughx. Since it entersjs(x), it can thus be regarded as a measure of the
local violation of detailed balance.
This current leads to a mean entropy production rate (26)

σ ≡ 〈∆stot〉/t =

∫

dx
js(x)2

Dps(x)
. (51)

Even though the stationary distribution and currents can not be calculated in general, an exact
relation concerning entropy production can be derived.
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3.2 Detailed fluctuation theorem

In a NESS, the (detailed) fluctuation theorem

p(−∆stot)/p(∆stot) = exp[−∆stot] (52)

expresses a symmetry of the probability distributionp(∆stot) for the total entropy production
accumulated after timet in the steady state. This relation has first been found in simulations
of two-dimensional sheared fluids [4] and then been proven byGallavotti and Cohen [5] using
assumptions about chaotic dynamics. A much simpler proof has later been given by Kurchan [6]
and Lebowitz and Spohn [7] using a stochastic dynamics for diffusive motion. Strictly speaking,
in all these works the relation holds only asymptotically inthe long-time limit since entropy
production had been associated with what is called entropy production in the medium here. If
one includes the entropy change of the system (30), the DFT holds even for finite times in the
steady state [2]. This fact shows again the benefit of the definition of an entropy along a single
trajectory.
While the DFT for (medium) entropy production has been tested experimentally for quite a
number of systems, see e.g. [40–45], a first test including the system entropy has recently been
achieved for a colloidal particle driven by a constant forcealong a periodic potential, see Fig. 6
[46]. This experimental set-up constitutes the simplest realization of a genuine NESS. The
same set-up has been used to test other recent aspects of stochastic thermodynamics like the
possibility to infer the potentialV (x) from the measured stationary distribution and current [47]
or a generalization of the Einstein relation beyond the linear response regime [48,49] discussed
below.
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Fig. 6: a) Colloidal particle driven by a non-conservative forcef(λ) along a potentialV (x, λ)
to generate a NESS. b) Corresponding histograms of the totalentropy productionp(∆stot) for
different lengths of trajectories and two different strengths of the applied forcef . The inserts
show the total potentialV (x) − fx in the two cases; adapted from [46].
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The DFT for total entropy production holds even under the more general situation of periodic
drivingF (x, τ) = F (x, τ+τp), whereτp is the period, if (i) the system has settled into a periodic
distributionp(x, τ) = p(x, τ+τp), and (ii) the trajectory lengtht is an integer multiple ofτp. For
the distribution of workp(W ), a similar DFT can be proven provided the protocol is symmetric
λ(τ) = λ(t−τ), the non-conservative force zero, and the systems starts inequilibrium initially.
For such conditions, the DFT for work was recently tested experimentally using a colloidal
particle pushed periodically by a laser trap against a repulsive substrate [30], as shown in the
insert of Fig. 5 above.

3.3 Generalized Einstein relation and generalized fluctuation-dissipation-
theorem

In a NESS, the relation between fluctuation, response to an external perturbation and dissipation
is more involved than in equilibrium. The main principle canbe understood by discussing the
well-known Einstein relation. First, for a free particle ina thermal environment, the diffusion
constantD0 and the mobilityµ0 are related by

D0 = Tµ0 . (53)

If this diffusion is modelled by a Langevin equation the strength of the noise becomes alsoD0

as introduced in section 2.1. For notational simplicity, wehave ignored the subscript “0” in
all but the present section of these lecture notes. Second, if the particle is not free but rather
diffuses in a potentialV (x), the diffusion coefficient

D ≡ lim
t→∞

[〈x2(t)〉 − 〈x(t)〉2]/(2), (54)

and the effective mobility

µ ≡
∂〈ẋ〉

∂f
(55)

which quantifies the response of the mean velocity〈ẋ〉 to a small external forcef still obey
D = Tµ for any potentialV (x). Note that with this notationD < D0 for any non-zero
potential, since it is more difficult to surmount barriers bythermal excitation. Third, one can
ask how the relation between the diffusion coefficient and mobility changes in a genuine NESS
as shown in the set-up of Fig. 6a. Both definitions (54) and (55) are then still applicable if in the
latter the derivative is taken at non-zero force. Using path-integral techniques, one can derive a
generalized Einstein relation of the form [48]

D = Tµ +

∫ ∞

0

dτ I(τ), (56)

with
I(τ) ≡ 〈[ẋ(t + τ) − 〈ẋ〉][vs(x(t)) − 〈ẋ〉]〉 . (57)

The “violation” functionI(τ) correlates theactualvelocity ẋ(t) with the local mean velocity
vs(x) introduced in (50) subtracting from both theglobal mean velocity〈ẋ〉 =

∫

vs(x)ps(x) =
2πRjs that is given by the net particle fluxjs along the ring of radiusR. In one dimension for a
steady state, the current must be the same everywhere and hencejs is a constant. The offsett is
arbitrary because of time-translational invariance in a steady state. Since in equilibrium detailed
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Fig. 7: Experimental test of the generalized Einstein relation (56) for different driving forces
f , using the set up shown in Fig. 6. The open bars show the measured diffusion coefficientsD.
The stacked bars are mobilityµ (grey bar) and integrated violationI (hatched bar); adapted
from [46].

balance holds and thereforevs(x) = 〈ẋ〉 = 0, the violation (57) vanishes and (56) reduces to
the equilibrium relation.
For an experimental test of the non-equilibrium Einstein relation (56), trajectories of a single
colloidal particle for different driving forcesf were measured and evaluated [46]. Fig. 7 shows
the three terms in (56) for five different values of the driving force in the set-up shown in Fig. 6a.
Their sum is in good agreement with the independently measured diffusion coefficient directly
obtained from the particles trajectory using (54). For verysmall driving forces, the bead is
close to equilibrium and its motion can be described using linear response theory. As a result,
the violation integral is negligible. Experimentally, this regime is difficult to access sinceD
andµ become exponentially small and cannot be measured at reasonable time scales for small
forces and potentials as deep as40 T . For very large driving forces, the relative magnitude of the
violation term becomes smaller as well. In this limit, the imposed potential becomes irrelevant
and the spatial dependence of the local mean velocity, whichis the source of the violation term,
vanishes. The fact that the violation term is about four times larger than the mobility proves
that this experiment indeed probes the regime beyond linearresponse. Still, the description of
the colloidal motion by a Markovian (memory-less) Brownianmotion with drift as implicit in
the analysis remains obviously a faithful representation since the theoretical results are derived
from such a framework.
For an even broader perspective, it should be noted that thisgeneralized Einstein relation in
fact is the time-integrated version of a generalized fluctuation-dissipation-theorem (FDT) of the
form [48]

T
∂〈ẋ(t)〉

∂f(τ)
= 〈ẋ(t)ẋ(τ)〉 − 〈ẋ(t)vs(x(τ))〉 (58)

The left hand side quantifies the response of the mean velocity at timet to an additional force
pulse at the earlier timeτ . In equilibrium, i.e. more strictly speaking in the linear response
regime, this response function is given by the velocity-velocity correlation function which is
the first term on the right hand side. In non-equilibrium, i.e. beyond the linear response regime,
an additive second term on the right hand side contributes which involves again the crucial
mean velocityvs. Note that this formulation with an additive correction is quite different from
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introducing an effective temperatureTeff on the left hand side and ignoring this last term.
The equilibrium form of the FDT can be restored by refering the velocity to the local mean
velocity according to

v(t) ≡ ẋ(t) − vs(x(t)) (59)

for which the form

T
∂〈v(t)〉

∂f(τ)
= 〈v(t) v(τ)〉 (60)

holds even in non-equilibrium [48].
Since the generalized FDT (58) and the restoration (60) holdfor a coupled interacting sys-
tem of Langevin equations as well, the perspective of using such relations for an analysis of,
e.g., sheared colloidal suspensions arises. The main challenge is to find useful approximation
schemes for replacing the phase space variablesx(τ) andvs(x) by real space quantities like
correlation functions.

4 Stochastic dynamics on a network

4.1 Entropy production for a general master equation

For systems driven by mechanical forces described so far, the identification of a first law is
simple since both internal energy and applied work are rather clear concepts. On the other hand
the proof of both the IFT and the DFT shows that the first law does not crucially enter. In fact,
the proof of these theorems exploits only the fact that undertime-reversal entropy production
changes sign. Hence, similar relations can be derived for a much larger class of stochastic
dynamic models without reference to a first law.
We consider stochastic dynamics on an arbitrary set of states {n} where transitions between
statem andn occur with a ratewmn(λ), which may depend on an externally controlled time-
dependent parameterλ(τ), see Fig. 8. The master equation for the time-dependent probability
pn(τ) then reads [27]

∂τpn(τ) =
∑

m6=n

[wmn(λ)pm(τ) − wnm(λ)pn(τ)]. (61)

w

w

n m

nm

mn

1

2

3

4

n

τ
tτ4τ3τ2τ1

n(τ )

Fig. 8: Network with states{n, m, . . .} connected by rateswnm and trajectoryn(τ) jumping at
timesτj .
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The analogue of the fluctuating trajectoryx(τ) in the mechanical case becomes a stochastic
trajectoryn(τ) that starts atn0 and jumps at timesτj from n−

j to n+
j ending up atnt, see Fig. 8.

For any fixedλ, such networks relax into a unique steady stateps
n. Two classes of networks

must be distinguished depending on whether or not this stationary distributionps
n for fixed λ

obeys the detailed balance condition

ps
n(λ)wnm(λ) = ps

m(λ)wmn(λ). (62)

If this condition is violated, the network is in a genuine NESS. For large networks, there is no
simple way to obtain the stationary distributionpn

s . For small networks, a graphical method,
recalled in [24] is usually more helpful than solving the setof linear equation resulting from
setting the right hand side of (61) to zero.
Systems which obey detailed balance formally resemble mechanically driven systems without
non-conservative force since for the latter, at fixed potential, detailed balance holds as well.
Exploiting this analogy, one can assign a (dimensionless) internal “energy”

ǫn(λ) ≡ − ln ps
n(λ) (63)

to each state. The ratio of the rates then obeys

wnm(λ)

wmn(λ)
= exp[ǫn(λ) − ǫm(λ)] (64)

which looks like the familiar detailed balance condition inequilibrium. For time-dependent
rateswnm(λ(τ)), one can now formally associate an analogue of work in the form

w ≡

∫ t

0

dτλ̇∂λǫn(λ(t)) =
∑

j

ln
wn−

j n+

j

wn+

j n−

j

+ ǫn(t)(λt) − ǫn(0)(λ0), (65)

where the sum is over all jumps along the trajectory. Even though one should not put too much
physical meaning into this definition of work for an abstractstochastic dynamics, the analogy
helps to see immediately that the fluctuation relations quoted above for zero non-conservative
force hold for these more general systems as well [50]. Specifically, one has the “generalized”
JR (34) with∆F = 0 andT = 1. Similarly, with the identification

w̃ ≡
∑

j

[ǫnj
+(τj) − ǫnj

−(τj)] − [ǫnj
+(0) − ǫnj

−(0)] (66)

the analogue of the BKR (36) withT = 1 holds for such a master equation dynamics. The
initial state in all cases is the steady state correspondingto λ0.
For both classes of networks, one can define a stochastic entropy as [2]

s(τ) ≡ − ln pn(τ)(τ) (67)

wherepn(τ)(τ) is the solutionpn(τ) of the master equation (61) for a given initial distribution
pn(0) taken along the specific trajectoryn(τ). As above, this entropy will depend on the chosen
initial distribution.
The entropys(τ) becomes time-dependent due to two sources. First, even if the system does
not jump, pn(τ)(τ) can be time-dependent either for time-independent rates due to possible
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relaxation from a non-stationary initial state or, for time-dependent rates, due to the explicit
time-dependence ofpn(τ). Including the jumps, the change of system entropy reads

ṡ(τ) = −
∂τpn(τ)(τ)

pn(τ)(τ)
−
∑

j

δ(τ − τj) ln
pn+

j

pn−

j

(68)

≡ ṡtot(τ) − ṡm(τ). (69)

where we define the change in medium entropy to be

ṡm(τ) ≡
∑

j

δ(τ − τj) ln
wn−

j n+

j

wn+

j n−

j

. (70)

For a general system, associating the logarithm of the ratiobetween forward jump rate and back-
ward jump rate with an entropy change of the medium seems to bean arbitrary definition. Three
facts motivate this choice. First, it corresponds precisely to what in Appendix A is identified
as exchanged heat in the mechanically driven case. Second, upon averaging one recovers and
generalizes results for the non-equilibrium ensemble entropy balance in the steady state [7,51].
Specifically, for averaging over many trajectories, we needthe probability for a jump to occur
at τ = τj from nj

− to nj
+ which isp−nj

(τj)wn−

j n+

j
(τj). Hence, one gets

Ṡm(τ) ≡ 〈ṡm(τ)〉 =
∑

n,k

pnwnk ln
wnk

wkn

, (71)

Ṡtot(τ) ≡ 〈ṡtot(τ)〉 =
∑

n,k

pnwnk ln
pnwnk

pkwkn

(72)

and

Ṡ(τ) ≡ 〈ṡ(τ)〉 =
∑

n,k

pnwnk ln
pn

pk
(73)

such that the global balancėStot(τ) = Ṡm(τ) + Ṡ(τ) with Ṡtot(τ) ≥ 0 is valid. Here, we
suppress theτ -dependence ofpn(τ) andwnk(τ).

Third, following the proof given in Appendix A for the mechanically driven case, one can easily
show [2] that with this choice the total entropy production∆stot fulfills both the IFT (32) for
arbitrary initial condition, arbitrary driving and any length of trajectory. Moreover,∆stot obeys
the DFT (52) in the steady state, i.e. for constant rates. Of course, in a general system, there is
no justification to identify the change in medium entropy with an exchanged heat.

These fluctuation theorems have been illustrated in recent experiments [52, 53], using an opti-
cally driven defect center in diamond. For this system, the IFT for total entropy production and
the analogue of the Jarzynski relation for such a general stochastic dynamics [50] have been
tested, see Fig. 9 and 10 and their captions.
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Fig. 9: Effective level scheme of a defect center in diamond (left) which corresponds to a two
state system with one rate modulated sinusoidally (right).The photochromic defect center can
be excited by red light responding with a Stokes-shifted fluorescence. In additional to this bright
state the defect exhibits a nonfluorescent dark state. The transition rates a (from dark to bright)
and b (from bright to dark) depend linearly on the intensity of green and red light, respectively,

turning the defect center into an effective two-level system 0 (dark)
aGGGGBFGGGG
b

1 (bright) with con-

trollable transition ratesa andb. The system can be found in staten with probabilitypn, where
n takes either the value 0 or 1. To drive the system out of equilibrium, the rate a (from dark
to bright) was modulated according to the sinusoidal protocol a(t) = a0[1 + γ sin(2πt/tm)],
whereas the rateb is held constant. The parameters are the equilibrium ratesa0 and b, the
periodtm, and the modulation depth0 ≤ γ < 1, for the data, see Fig. 10; adapted from [52].
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Fig. 10: Measured entropy production for the single two-level system of Fig. 9 with parameters
a0 = (15.6 ms)−1, b = (21.8 ms)−1, tm = 50 ms, andγ = 0.46. (a) Transition ratea(t)
[green] and probability of the bright statep1(t) [red, circles are measured; line is the theoretical
prediction] over 4 periods. (b) Single trajectoryn(t) (c) Evolution of the system entropy. The
gray lines correspond to jumps (vertical dotted lines) of the system whereas the dark lines
show the continuous evolution due to the driving. (d) Entropy change of the medium, where
only jumps contribute. (e), (f) Examples of (e) entropy producing and (f) entropy annihilating
trajectories. The change of system entropy∆s = s(t) − s(0) [black] fluctuates around zero
without effective entropy production, whereas in (e)∆sm [red] produces a net entropy over
time. In (f)∆sm consumes an entropy of about 1 after 20 periods. (g), (h), (i)Histograms taken
from 2000 trajectories of the system (g), medium (h), and total entropy change (i). The system
entropy shows four peaks corresponding to four possibilities for the trajectory to start and end
(0 7→ 1, 1 7→ 0, 0 7→ 0, and 17→ 1); adapted from [53].
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4.2 Driven enzyme or protein with internal states
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Fig. 11: Molecular structure of the F1-ATPase and schematic reaction network for the hydroly-
sis of ATP. The position of theγ subunit relative to the membrane plane advances 120◦ in each
reaction step.

Chemical reaction networks comprise an important class forstochastic dynamics on a discrete
set of states. Non-equilibrium conditions arise whenever at least one reaction is not balanced.
For a typical example, see Fig. 11, which shows the F1-ATPase. Driven by a proton-gradient
across the membrane this membrane-bound enzyme usually synthesizes ATP. It can, however,
also hydrolyze ATP and perform work against an external load. More generally, any enzyme or
molecular motor can be considered as a system which stochastically undergoes transitions from
one statem to another staten, see Fig. 12.
In such a transition, a chemical reaction like hydrolysis may be involved which transforms one
molecule ATP to ADP and a phosphate. These three molecular species are externally maintained

w
0
nm

A1

A2

A3

A1

A2

A3

n

m

w0
mn

Fig. 12: Protein or enzyme with internal states. A forward transition (left) fromn to m involves
the chemical reactionA1 + n → m + A2 + A3 and similarly for the backward reaction (right).
The ratesw0

nm andw0
mn are the concentration-independent bare rates.
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at non-equilibrium conditions thereby providing a source of chemical energy, i.e., chemical
work, to the system. In each transition, this work will be transformed into mechanical work,
dissipated heat, or changes in the internal energy (with anycombination of positive and negative
contributions). The formalism of stochastic thermodynamics allows to identify work, heat,
and internal energy for each single transition in close analogy to the mechanically driven case
[29,54].
We consider a protein withM internal states{1, 2, ..., M}. Each staten has internal energyEn.
Transitions between these states involve some other moleculesAα, whereα = 1, . . . , NA labels
the different chemical species. A transition from staten to statem implies the reaction

∑

α

rnm
α Aα + n

wnm

⇋
wmn

m +
∑

α

snm
α Aα. (74)

Here,rnm
α , snm

α are the numbers of speciesAα involved in this transition. We assume that the
chemical potentials, i.e., the concentrationscα of these molecules are controlled or clamped
externally by chemiostats. In principle, this implies thatafter a reaction event has taken place,
the usedAα are “refilled” and the produced ones are “extracted”. This procedure guarantees
that the chemiostats undergo no entropy change.
The chemical potential for speciesα at concentrationcα quite generally reads

µα ≡ Eα + T ln cαωα (75)

which for equilibrium becomesµeq
α = Eα + T ln ceq

α ωα. Here,ωα is a suitable normalization
volume chosen such thatEα is the energy of a singleAα molecule. If theAα molecules were
an ideal monoatomic gas, we would haveωα = λ3

αe−3/2 whereλα is the thermal de Broglie
wavelength and the factore−3/2 compensates for making the kinetic energyEα = 3T/2 explicit.
Mass action law kinetics with respect to theAα molecules is a good approximation if we assume
a dilute solution ofAα molecules. The ratio between forward ratewnm and backward ratewmn

is then given by
wnm

wmn
=

w0
nm

w0
mn

∏

α

(cαωα)rnm
α −snm

α . (76)

Here, we separate the concentration dependence from some “intrinsic” or bare ratesw0
nm, w0

mn.
Their ratio can be determined by considering a hypotheticalequilibrium condition for this re-
action. In fact, if the reaction took place in equilibrium with concentrationsceq

α , we would have
the detailed balance relation

weq
nm

weq
mn

=
w0

nm

w0
mn

∏

α

(ceq
α )rnm

α −snm
α ωα =

peq
m

peq
n

= exp (−∆G/T ) , (77)

where
∆G ≡ −[En − Em +

∑

α

(rnm
α − snm

α )µeq
α ] (78)

is the equilibrium free energy difference for this reactionandpeq
m,n are the equilibrium probabil-

ities of statesm andn, respectively. Combining (75)—(78) shows that the ratio ofthe intrinsic
rates

w0
nm

w0
mn

= exp

[(

En − Em +
∑

α

(rnm
α − snm

α )Eα

)

/T

]

(79)
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involves only the energy-terms and is independent of concentrations. The ratio (76) under non-
equilibrium conditions then becomes

ln
wnm

wmn
= [En − Em +

∑

α

(rnm
α − snm

α )µα]/T ≡ (−∆E + wnm
chem) /T. (80)

The right hand side corresponds to the difference between applied chemical work

wnm
chem =

∑

α

(rnm
α − snm

α )µα (81)

(since every transformedAα molecule gives rise to a chemical workµα) and the difference in
internal energy∆E. For the first law to hold for this transition, we then have to identify the left
hand side of (80) with the heat delivered to the medium, i.e. with the change in entropy of the
medium

ln
wnm

wmn

= ∆snm
m . (82)

This identification of heat dissipated in one reaction step as the logarithm of the ratio between
forward rate and backward rate corresponds precisely to thedefinition (70) introduced for gen-
eral dynamics on a network thus proving the consistency of this approach.

4.3 Chemical reaction network

Finally, such a scheme can be extended to an arbitrary chemical reaction network which consists
of Nj reactions of the type

Nα
∑

α=1

rρ
αAα +

Nj
∑

j=1

pρ
jXj ⇋

Nα
∑

α=1

sρ
αAα +

Nj
∑

j=1

qρ
j Xj (83)

with 1 ≤ ρ ≤ Nρ labeling the single (reversible) reactions. We distinguish two types of re-
acting species. TheXj molecules(j = 1, . . . , Nj) are those species whose numbersn =
(

n1, . . . , nNj

)

can, in principle, be measured along a chain of reaction events. In practice, these
numbers should be small. TheAα molecules(α = 1, . . . , Nα) correspond to those species
whose overall concentrationscα are controlled externally by a chemiostat due to a (gener-
ally) time dependent protocolcα(τ). In principle, this implies that after a reaction event has
taken place, the usedAα are “refilled” and the produced ones are “extracted”. As above, these
chemiostats have chemical potential

µα = Eα + T ln (cαωα) (84)

whereT is the temperature of the heat bath to which both type of particles are coupled, see
Fig. 13.
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Fig. 13: Coupling of the system with speciesXj , j = (1, . . . , Nj) to theNα particle reservoirs
for speciesAα at chemical potentialµα and to a heat bath at constant temperatureT .

We assume that the reacting species have no internal degreesof freedom. However, internal
degrees of freedom as the ones introduced for a single enzymecould easily be treated within
this approach by labeling different internal states as different species and defining “reactions”
(transitions) between them.
The stochiometric coefficientsrρ

α, pρ
j , sρ

α andqρ
j enter the stochiometric matrixV with entries

vρ
j ≡ qρ

j − pρ
j (85)

and the stochiometric matrix of the reservoir speciesU with entries

uρ
α ≡ sρ

α − rρ
α. (86)

For the externally controlled concentrationscα of Aα, we use the vector notationc = (c1, . . . , cNα
).

We assume a dilute solution of reacting species in a solvent (heat bath) and therefore the transi-
tion probabilities per unit time for theNρ reactions (83) take the text book form [26,27]

wρ
+(n, c) = Ωkρ

+

∏

α

(cαωα)rρ
α

∏

j

nj !

(nj − pρ
j )!(Ω/ωj)

pρ
j

(87)

wρ
−(n, c) = Ωkρ

−

∏

α

(cαωα)sρ
α

∏

j

nj!

(nj − qρ
j )!(Ω/ωj)

qρ
j

(88)

where+ denotes a forward reaction,− denotes a backward reaction andΩ is the reaction
volume. The bare rateskρ

+,− are the transition probabilities per unit time per unit volume per
unit concentration (in terms of1/ωα and1/ωj, respectively) of every educt reactant. Note that
while wρ

+,−(n, c), in principle, can be measured experimentally, the bare rateskρ
+,− depend on

the normalizing volumesωα andωj whose unique definition requires a microscopic Hamiltonian
[55].
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The transition probabilities depend only on the current state and therefore define a Markov
process with the master equation

∂τp(n, τ) =
∑

ρ

[wρ
+(n − v

ρ, c) · p(n− v
ρ, τ) + wρ

−(n + v
ρ, c) · p(n + v

ρ, τ)]

−
∑

ρ

[wρ
+(n, c) · p(n, τ) + wρ

−(n, c) · p(n, τ)] (89)

governing the time evolution of the probability distribution p(n, τ) to havenj moleculesXj

at timeτ . Here, we have used the vector notationv
ρ = (vρ

1 , . . . , v
ρ
Nj

) for the entries of the
stochiometric matrix.
The stochastic dynamics of the networks has thus been uniquely defined. For fixed concentra-
tionscα, this network acquires a stationary state which may or may not obey detailed balance,
i.e. may or may not correspond to genuine equilibrium. The first law, entropy change of both
the medium, i.e. the heat bath, and the network can consistently be defined and various fluctu-
ation theorems be proven as detailed in [55]. So far, no experiments illustrating these concepts
using measured data are available.
The notion “stochastic thermodynamics” had been introduced two decades ago for an interpre-
tation of such chemical reaction networks in terms of thermodynamic notions on the ensemble
level [56]. From the present perspective, it seems even moreappropriate to use this term for
the refined description along the fluctuating trajectory forany stochastic dynamics. As we have
seen, both for mechanically and chemically driven systems in a surrounding heat bath, the ther-
modynamic concepts can literally and consistently be applied on this level. As a generalization
to arbitrary stochastic dynamics, analogues of work, heat and internal energy obey similar exact
relations which ultimately all arise from the behaviour of the dynamics under time-reversal.
How much closer such an approach can lead us towards a systematic understanding of non-
equilibrium phenomena in general is a question posed too early to be answered yet.
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Appendix

A Path integral representation

We first derive the path integral representation of the Langevin dynamics. We start with the
Langevin equation (4) in the form

ẋ(τ) = µF (x(τ), λ(τ)) + ζ(τ) (90)

and discretize timet ≡ iǫ (i = 0, . . . , N). Writing xi ≡ x(iǫ) andλi ≡ λ(iǫ), we get

xi − xi−1

ǫ
=

µ

2
[Fi(xi) + Fi−1(xi−1)] + ζi (91)

with Fi(xi) ≡ F (xi, λi) using the mid-point (or Stratonovich) rule. In such a discrete time
description, the stochastic noise obeys

〈ζi〉 = 0 and 〈ζiζj〉 = 2(D/ǫ)δij (92)

These correlations follow from the weight

p(ζ1, . . . , ζN) =
( ǫ

4πD

)N/2

exp

[

−
ǫ

4D

∑

i

ζ2
i

]

(93)

For the transition fromp(ζ1, . . . , ζN) to p(x1, . . . , xN |x0) we have

p(x1, . . . , xN |x0) = det

(

∂ζi

∂xj

)

p(ζ1, . . . , ζN) (94)

with the Jacobi matrix

∂ζi

∂xj
=





1
ǫ
− µ

2
F ′

1(x1) 0 . . . . . .

−1
ǫ
− µ

2
F ′

1(x2)
1
ǫ
− µ

2
F ′

2(x2) 0 . . .

. . . . . . . . . . . .



 . (95)

The Jacobi determinant becomes

det

(

∂ζi

∂xj

)

=

(

1

ǫ

)N N
∏

i=1

(1 −
ǫµ

2
F ′

i (xi))

=

(

1

ǫ

)N

exp

[

N
∑

i=1

ln(1 − ǫµF ′
i (xi)/2)

]

≈

(

1

ǫ

)N

exp

[

−

N
∑

i=1

ǫµF ′
i (xi)/2

]

. (96)

The weight for a discretized trajectory thus becomes

p(x1, . . . xN |x0) =
1

(4πDǫ)N/2
exp

[

−
1

4Dǫ

[

N
∑

i=1

(xi − xi−1 − ǫµFi(xi))
2

]

−
ǫµ

2

N
∑

i=1

F ′
i (xi)

]

.

(97)
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In the continuum limit(ǫ → 0, N → ∞, Nǫ = t fixed ) this expression becomes up to normal-
ization

p[x(τ)|x0] ≡ exp[−
1

4D

∫ t

0

[ẋ − µF (x(τ), λ(τ))]2dτ −
µ

2

∫ t

0

F ′(x(τ), λ(τ))dτ ]

≡ exp[−A[x(τ)]] (98)

with the “action”

A[x(τ)] ≡
1

D

∫ t

0

dτL(x(τ), ẋ(τ); λ(τ)) (99)

and the “Lagrange function”

L(x, ẋ, λ(τ)) ≡
1

4
(ẋ − µF )2 +

µD

2
F ′. (100)

We include the normalization into the definition of the path-integral measure writing
∫

x0

d[x(τ)] ≡ lim
ǫ→0,N→∞

ǫN=t

(

1

4πDǫ

)N/2 N
∏

i=1

∫ +∞

−∞

dxi (101)

for integration over all paths starting atx0. Thus, we have
∫

x0

d[x(τ)]p[x(τ)|x0] = 1 (102)

and, including a normalized probability distributionp0(x0) for the initial point
∫

d[x(τ)]p[x(τ)|x0]p0(x0) = 1. (103)

B Proof of the integral fluctuation theorem

For the proof of the fluctuation theorem the crucial concept is the notion of the reversed protocol

λ̃(τ) ≡ λ(t − τ) (104)

and the reversed trajectory
x̃(τ) ≡ x(t − τ) , (105)

see Fig. 14.

 0 0

λ(τ )

λ̃(τ )

x(τ )

x
x̃(τ )

λ

λt

tτ

x0

x̃0

x̃t

tτ

λ0

xt

Fig. 14: Forward trajectoryx(τ) under the forward protocolλ(τ) and reversed trajectory
x̃(τ) ≡ x(t − τ) and reversed protocol̃λ(τ) ≡ λ(t − τ).
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The weight for the reversed path under the reversed protocolis given by

p[x̃(τ)|x̃0] = exp[−Ã[x̃(τ)]] (106)

with

Ã[x̃(τ)] = A[x(τ)] +
1

T

∫ t

0

dτẋ(τ)F (x(τ), λ(τ)) (107)

from which one obtains the relation

p[x(τ)|x0]

p[x̃(τ)|x̃0]
= exp[q[x(τ)]/T ] = exp ∆sm . (108)

Thus, the more heat, i.e. entropy in the medium, is generatedin the forward process, the less
likely is the reverse process to happen. In this sense, entropy generation in the medium is
associated with broken time reversal symmetry.
The proof of the integral fluctuation theorem follows with a few lines: The normalization con-
dition for the backward paths reads

1 =

∫

d[x̃(τ)]p[x̃(τ)|x̃0]p1(x̃0) , (109)

wherep1(x̃0) is an arbitrary normalized function of̃x0. We introduce the given initial distri-
bution of the forward processp0(x0) and the weightp[x(τ)|x0] of the forward process leading
to

1 =

∫

d[x̃(τ)]
p[x̃(τ)|x̃0]p1(x̃0)

p[x(τ)|x0]p0(x0)
p[x(τ)|x0]p0(x0) (110)

The sum over all backward paths
∫

d[x̃(τ)] can be replaced with a sum over all forward paths
∫

d[x(τ)]. With relation (108) one then has

1 =

∫

d[x(τ)]

(

exp[−∆sm]
p1(xt)

p0(x0)

)

p[x(τ)|x0]p0(x0) (111)

where we have used̃x0 = xt. Since this path integral is the non-equilibrium average〈. . .〉,
we get the integral fluctuation theorem (32) quoted in the main part. The proof of the detailed
fluctuation theorem for a stationary or periodic state follows from quite similar reasoning [2,10,
17].
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