
Stochastic Processes

ALAN J. MCKANE

Theory Group, School of Physics and Astronomy, University of Manchester, Manchester
M13 9PL, UK

Article Outline

Glossary

I. Definition of the Subject and It’s Importance

II. Introduction

III. Markov Chains

IV. The Master Equation

V. The Fokker-Planck Equation

VI. Stochastic Differential Equations

VII. Path Integrals

VIII. System Size Expansion

IX. Future Directions

X. Bibliography

Glossary

Fokker-Planck equation

A partial differential equation of the second order for the time evolution of the probability
density function of a stochastic process. It resembles a diffusion equation, but has an extra
term which represents the deterministic aspects of the process.

Langevin equation

A stochastic differential equation of the simplest kind: linear and with an additive Gaus-
sian white noise. Introduced by Langevin in 1908 to describe Brownian motion; many
stochastic differential equations in physics go by this name.

Markov process

A stochastic process in which the current state of the system is only determined from its
state in the immediate past, and not by its entire history.

Markov chain

A Markov process where both the states and the time are discrete and where the process
is stationary.



Master equation

The equation describing a continuous-time Markov chain.

Stochastic process

A sequence of stochastic variables. This sequence is usually a time-sequence, but could
also be spatial.

Stochastic variable

A random variable. This is a function which maps outcomes to numbers (real or integer).

I. Definition of the Subject and It’s Importance

The most common type of stochastic process comprises of a set of random variables
{x(t)}, where t represents the time which may be real or integer valued. Other types
of stochastic process are possible, for instance when the stochastic variable depends on
the spatial position r, as well as, or instead of, t. Since in the study of complex systems
we will predominantly be interested in applications relating to stochastic dynamics, we
will suppose that it depends only on t. One of the earliest investigations of a stochastic
process was carried out by Bachelier (1900), who used the idea of a random walk to
analyse stock market fluctuations. The problem of a random walk was more generally
discussed by Pearson (1905), and applied to the investigation of Brownian motion by
Einstein (1905, 1906), Smoluchowski (1906) and Langevin (1908). The example of a
random walk illustrates the fact that in addition to time being discrete or continuous, the
stochastic variable itself can be discrete (for instance, the walker moves with fixed step
size in one dimension) or continuous (for instance, the velocity of a Brownian particle).
The modelling of the process may lead to an equation for the stochastic variable, such as
a stochastic differential equation, or for an equation which predicts how the probability
density function (pdf) for the stochastic variable changes in time. Stochastic processes are
ubiquitous in the physical, biological and social sciences; they may come about through the
perception of very complicated processes being essentially random (the toss of a coin, roll
of a die, birth or death of individuals in populations), the inclusion of diverse and poorly
characterised effects external to the system under consideration, or thermal fluctuations,
among others.

II. Introduction

Deterministic dynamical processes are typically formulated as a set of rules which allow
for the state of the system at time t+ 1 (or t+ δt) to be found from the state of the sys-
tem at time t. By contrast, for stochastic systems, we can only specify the probability of
finding the system in a given state. If this only depends on the state of the system at the
previous time step, but not those before this, the stochastic process is said to be Markov.
Fortunately many stochastic processes are Markovian to a very good approximation, since
the theory of non-Markov processes is considerably more complicated than Markov pro-
cesses and much less well developed. In this article we will deal almost exclusively with
Markov processes.

The mathematical definition of a Markov process follows from the definition of the hier-
archy of pdfs for a given process. This involves the joint pdfs P (x1, t1;x2, t2; . . . ;xn, tn),
which are the probability that the system is in state x1 at time t1, state x2 at time t2,..., and
state xn at time tn, and also the conditional pdfs P (x1, t1; . . . ;xm, tm|xm+1, tm+1; . . . ;xn, tn),



which are the probability that the system is in state x1 at time t1,...,xm at time tm,given
that it was in state xm+1 at time tm+1,...,xn at time tn. These pdfs are all non-negative
and normalisable, and relations exist between them due to symmetry and reduction (inte-
gration over some of the state variables). Nevertheless, for a general non-Markov process,
a whole family of these pdfs will be required to specify the process. On the other hand,
for a Markov process the history of the system, apart from the immediate past, is forgot-
ten, and so P (x1, t1; . . . ;xm, tm|xm+1, tm+1; . . . ;xn, tn) = P (x1, t1; . . . , xm; tm|xm+1, tm+1).
A direct consequence of this is that the whole hierarchy of pdfs can be determined from
only two of them: P (x, t) and P (x, t|x′, t′). The hierarchy of defining equations then
collapses to only two:

P (x2, t2) =
∫
dx1P (x2, t2|x1, t1)P (x1, t1) (1)

and

P (x3, t3|x1, t1) =
∫
dx2P (x3, t3|x2, t2)P (x2, t2|x1, t1) , t1 < t2 < t3 . (2)

The pdf P (x, t|x′, t′) is referred to as the transition probability and Eq. (2) as the Chapman-
Kolmogorov equation. While the pdfs for a Markov process must obey Eqs. (1) and (2),
the converse also holds: any two non-negative functions P (x, t) and P (x, t|x′, t′) which
satisfy Eqs. (1) and (2), uniquely define a Markov process.

We will begin our discussion in Section III with what is probably the simplest class of
Markov processes: the case when both the state space and time are discrete. These are
called Markov chains and were first investigated, for a finite number of states, by Markov
in 1906. The extension to an infinite number of states was carried out by Kolmogorov
in 1936. If time is continuous, an analogous formalism may be developed, which will
be discussed in Section IV. In physics the equation describing the time evolution of the
pdf in this case is called the master equation and was introduced by Pauli in 1928, in
connection with the approach to equilibrium for quantum systems, and also by Nordsieck,
Lamb and Uhlenbeck in 1940, in connection with fluctuations in cosmic ray physics. The
term “master equation” refers to that fact that many of the quantities of interest can be
derived from this equation. The connection with previous work on Markov processes was
clarified by Siegert in 1949.

In many instances when the master equation cannot be solved exactly, it is useful to
approximate it by a rather coarser description of the system, known as the Fokker-Planck
equation. This approach will be discussed in Section V. This equation was used in its
linear form by Rayleigh (1891), Einstein (1905, 1906), Smoluchowski (1906, 1916), and
Fokker (1914), but it was Planck who derived the general nonlinear form from a master
equation in 1917, and Kolmogorov who made the procedure rigorous in 1931. All the
descriptions which we have mentioned so far have been based on the time evolution of the
pdfs. An alternative specification is to give the time evolution of the stochastic variables
themselves. This will necessarily involve random variables appearing in the equations
describing this evolution, and they will therefore be stochastic differential equations. The
classic example is the Langevin equation (1908) used to describe Brownian motion. This
equation is linear and can therefore be solved exactly. The Langevin approach, and its
relation to the Fokker-Planck equation is described in Section VI.

A good summary of the understanding of stochastic processes that had been gained by the
mid-1950s is given in the book edited by Wax. This covers the basics of the subject, and
what is discussed in the first six sections of this article. The article by Chandrasekhar,
first published in 1943, and reprinted in Wax, gives an extensive bibliography of stochastic
problems in physics before 1943. Since then the applications of the subject have grown



enormously, and the equations modelling these systems have correspondingly become more
complex. We illustrate some of the procedures which have been developed to deal with
these equations in the next two sections. In Section VII we discuss how the path-integral
formalism may be applied to stochastic processes and in Section VIII we describe how
master equations can be analysed when the size of the system is large. We end with a
look forward to the future in Section IX.

III. Markov Chains

The simplest version of the Markov process is when both the states and the time are
discrete, and when the stochastic process is stationary. When the states are discrete we
will denote them by n or m, rather than x, which we reserve for continuous state variables.
In this notation the two equations (1) and (2) governing Markov processes read

P (n2, t2) =
∑
n1

P (n2, t2|n1, t1)P (n1, t1) (3)

P (n3, t3|n1, t1) =
∑
n2

P (n3, t3|n2, t2)P (n2, t2|n1, t1) , t1 < t2 < t3 . (4)

A stationary process is one in which the conditional pdf P (n, t|n′, t′) only depends on the
time difference (t−t′). For such processes, when time is discrete so that t = t′+1, t′+2, . . .,

we may write P (n, t′ + k|n′, t′) as p
(k)
n n′ . The most elementary form of the Chapman-

Kolmogorov equation (4) may then be expressed as

p(2)
n m =

∑
n′
p

(1)
n n′p

(1)
n′ m . (5)

This corresponds to the matrix multiplication of p(1) with itself, and therefore p(2) is
simply (p(1))2. In the same way p(k) = (p(1))k, and from now on we drop the superscript
on p(1) and denote the matrix by P . The entries of P are non-negative, with the sum of
entries in each column being equal to unity, since∑

n

pn n′ =
∑
n

P (n, t+ 1|n′, t) = 1 . (6)

Such matrices are called stochastic matrices. From Eq. (5) it is clear that P2 is also a
stochastic matrix, and by induction it follows that Pk is a stochastic matrix if P is.

The other defining relation for a Markov process, Eq. (3), now becomes

P (n, t+ 1) =
∑
n′
pn n′P (n′, t) . (7)

This relation defines a Markov chain. It has two ingredients: the probability that the
system is in state n at time t, P (n, t) — which is usually what we are trying to determine,
and the stochastic matrix with entries pn n′ which gives the probabilities of transitions
from the state n′ to the state n. The transition probabilities are typically given; they
define the model. Note that in many texts the probability of making a transition from n′

to n is written as pn′ n, not pn n′ . If we write P (n, t) as a vector P(t), then we may write
Eq. (7) as P(t+ 1) = PP(t). Therefore,

P(t) = PP(t− 1) = PPP(t− 2) = . . . = P tP(0) , (8)

and so if the initial state of the system P(0) is given, then we can find the state of the
system at time t (P(t)) by matrix multiplication by the tth power of the transition matrix.



Examples of Markov chains

1. A one-dimensional random walk.

The most widely known example of a Markov chain is a random walk on the real
axis, where the walker takes single steps between integers on the line. The simplest
version is where the walker has to move during every time interval:

pn n′ =


p, if n = n′ + 1
q, if n = n′ − 1
0, otherwise ,

(9)

where p + q = 1. There are many variants. For instance, the walker could have a
non-zero probability of staying put, in which case pn n = r, with p+ q + r = 1. The
walk could be heterogeneous, in which case p and q (and r), could depend on n′. If
there are boundaries, the boundary conditions have to be given. The most common
two are absorbing boundaries defined by

pn+1 n = p, pn−1 n = q, (n = 2, . . . , N − 1)

p11 = 1, pNN = 1,

pn n′ = 0, otherwise , (10)

and reflecting boundaries defined by

pn+1 n = p, pn−1 n = q, (n = 2, . . . , N − 1)

p21 = p, pN N−1 = q,

p11 = q, pNN = p,

pn n′ = 0, otherwise . (11)

With absorbing boundaries (10), if we reach the state 1 or N , we can never leave
it, since we stay there with probability 1. When the boundary is reflecting, we can
never move beyond it; the only options are to move back towards the other boundary,
or stay put. Well known examples of absorbing boundaries include the gambler’s
ruin problem, where a gambler bets a given amount against the house at each time
step and can win with a probability p. Here the absorbing boundary is situated at
n = 0. Eventually he will arrive at the state n = 0, where is has no money left, and
so cannot re-enter the game. Birth/death processes will also have absorbing states
at n = 0: if n is the number of individuals at a given time, and p is the probability
of a birth and q of a death, then if there are no individuals left (n = 0), none can
be born. This condition will be automatically applied if the transition probabilities
are proportional to the number of individuals in the population.

2. The Ehrenfest urn

This Markov chain was introduced by the Ehrenfests in 1907, to illustrate the ap-
proach to equilibrium in a gas. Two containers, A and B, contain molecules of the
same gas, the sum of the number of molecules in A and B being fixed to be N . At
time t a molecule is removed at random from the containers and put into the other.
If n′ is the number of molecules in container A at a certain time, then at the next
time step the transition probabilities will be:

pn n′ =


n′

N
, if n′ = n+ 1

(1− n′

N
), if n′ = n− 1

0, otherwise .
(12)

This is clearly a heterogeneous random walk of the type (9), and another interpre-
tation of this model is as a random walk, but with a central force.



The most frequently asked question concerning Markov chains is: what is their eventual
fate; how does the system behave at large time? Clearly if it tends towards a non-trivial
stationary state, Pst(n), then from Eq. (7):

Pst(n) =
∑
n′
pn n′Pst(n

′) , (13)

and so Pst(n) is a right eigenvector of P with unit eigenvalue. It follows from the properties
of a general stochastic matrix that the eigenvalues of a stochastic matrix are such that
|λ| ≤ 1 (Gantmacher, 1959). Furthermore every stochastic matrix has an eigenvalue equal
to 1, however it may not be simple — there may be a multiplicity of unit eigenvalues. The
classification of Markov chains can be used to decide which of these possibilities is the
case. For example, Markov chains may be reducible or irreducible, and states recurrent
or transient. We shall not discuss this in detail; Feller (1968) gives a clear account of
this classification and Cox and Miller (1965) explore the consequences for the nature of
the eigenvalues. Instead we will examine a specific example, that of the Ehrenfest urn
introduced above, and focus on the explicit calculation of the eigenvalues and eigenvectors
in that case.

Suppose that Ψ(k) and Θ(k) are the right- and left-eigenvectors of P , respectively, corre-
sponding to the eigenvalue λ(k), so that Θ(k).Ψ(`) = δk `. Then, in general, and for the
Ehrenfest urn in particular,

P t
n n′ =

N∑
k=0

ψ(k)
n

(
λ(k)

)t
θ

(k)
n′ , (14)

where ψ(k)
n is the nth component of the vector Ψ(k) and similarly for the left-eigenvector.

The eigenvalues and eigenvectors for the Ehrenfest urn can be found exactly (Kac, 1947;
see also Krafft and Schaefer (1993)). The eigenvalues are λ(k) = 1−(2k/N), k = 0, . . . , N .
Thus in this case there is a single eigenvalue λ = 1. The corresponding right-eigenvector,
which gives the stationary state, is a binomial distribution:

Pst(n) = ψ(0)
n =

N !

n!(N − n)!

1

2N
. (15)

The left-eigenvector is θ(0)
n = 1 for all n. The other eigenvectors have the form θ(k)

n = akn

and ψ(k)
n = aknPst(n), where the akn are the Krawtchouk polynomials (Abramowitz and

Stegun, 1965). Clearly, a0n = 1, and the first non-trivial polynomial is a1n =
√
N [1 −

(2n/N)]. Therefore, for a suitable choice of initial conditions and using Eq. (8), the large
t behaviour of the Ehrenfest urn can be found from

P t
n n′ ≈ Pst(n)

{
1 + cn n′

(
1− 2

N

)t
}
, (16)

where cn n′ = N [1− (2n/N)][1− (2n′/N)].

IV. The Master Equation

The master equation is a Markov chain in the limit where time is continuous. To derive
it we will assume that the states are discrete (the derivation is essentially identical if they
are continuous) and write down the Chapman-Kolmogorov equation (4) in the form:

P (n, t+ ∆t|n0, t0) =
∑
n′
P (n, t+ ∆t|n′, t)P (n′, t|n0, t0) . (17)



We consider only stationary processes, so that we may take t0 = 0 without loss of gener-
ality and P (n, t+ ∆t|n′, t) is independent of t. We now assume that

P (n, t+ ∆t|n′, t) =


1− κ(n)∆t+ o(∆t), if n = n′

T (n|n′)∆t+ o(∆t), if n 6= n′ ,
(18)

where o(∆t) means that o(∆t)/∆t tends to zero as ∆t→ 0. This reasonable: after a very
short times the transition probability to stay put is unity minus a term of order ∆t and
the transition probabilities to move to any other state is of order ∆t, but this is still an
additional assumption on the process. The quantity T (n|n′) is the transition rate, and is
only defined for n 6= n′. Since

∑
n P (n, t+ ∆t|n′, t) = 1 for all n′, we have that

κ(n′) =
∑
n6=n′

T (n|n′) . (19)

Substituting Eq. (18) into Eq. (17), and making use of Eq. (19) we find that

P (n, t+ ∆t|n0, 0)− P (n, t|n0, 0)

∆t
=

∑
n′ 6=n

[T (n|n′)P (n′, t|n0, 0)]

− P (n, t|n0, 0)
∑
n′ 6=n

[T (n′|n)] +
o(∆t)

∆t
. (20)

Taking the limit ∆t→ 0 gives the master equation for how the probability of finding the
system in state n at time t changes with time:

dP (n, t)

dt
=

∑
n′ 6=n

T (n|n′)P (n′, t)−
∑
n′ 6=n

T (n′|n)P (n, t) . (21)

We have dropped the initial conditions, assuming that they are understood. It should
be noticed that an analogous analysis starting from Eq. (3), rather than Eq. (4), may be
carried out, leading to identical equations for P (n, t|n0, 0) and P (n, t). If the state space
is continuous the master equation reads

∂P (x, t)

∂t
=

∫
dx′ [T (x|x′)P (x′, t)− T (x′|x)P (x, t)] . (22)

In most applications transitions only take place between states whose label differs by one.
That is, T (n|n′) and T (n′|n) are zero unless n′ = n+ 1 and n′ = n− 1. These are called
one-step processes. For such processes the master equation takes the simpler form

dP (n, t)

dt
= T (n|n+ 1)P (n+ 1, t) + T (n|n− 1)P (n− 1, t)

− [T (n− 1|n) + T (n+ 1|n)] P (n, t) . (23)

For simplicity let us write

gn = T (n+ 1|n) and rn = T (n− 1|n) , (24)

then the master equation may be written as

dP (n, t)

dt
= rn+1P (n+ 1, t) + gn−1P (n− 1, t)− [rn + gn] P (n, t) . (25)



Examples of master equations

1. The simple birth-death process.

For a population of simple organisms, for example a colony of bacteria, it might be
reasonable to assume that the rate of birth of new bacteria is proportional to the
number present at that time, and similarly for the rate of death. This is clearly a
Markov process with gn = bn and rn = dn, where b and d are rate constants. A
variant is to include “immigrants” coming into the population from the outside at
a constant rate c, so that gn = bn+ c.

In this example gn and rn are linear in n. Such linear one-step processes can be
solved by the introduction of the generating function F (z, t) =

∑
n P (n, t)zn. This

converts the master equation (which is a differential-difference equation) into a par-
tial differential equation for F (z, t) which can be solved if the process is linear. The
simplest case of a pure death process (b = c = 0 in the above) can illustrate the gen-
eral procedure. By rescaling the time (t = τ/d), we may write the master equation
in the very simple form

dP (n, τ)

dτ
= (n+ 1)P (n+ 1, τ)− nP (n, τ) .

Multiplying this equation by zn and summing over all n ≥ 0 gives

∂

∂τ

{ ∞∑
n=0

znP (n, τ)

}
=

∞∑
n=0

(n+ 1)znP (n+ 1, τ)−
∞∑

n=1

nznP (n, τ)

=
∞∑

m=1

mzm−1P (m, τ)− z
∞∑

n=1

nzn−1P (n, τ) ,

that is,
∂F

∂τ
= (1− z)

∂F

∂z
.

A change of variable to ξ = (1 − z)e−τ and η = τ shows F to be a function of ξ
only: F (z, τ) = φ([1 − z]e−τ ). The function φ may be determined from the initial
condition. For instance, if P (n, 0) = δn N , then F (z, 0) = zN and so φ(ξ) = (1−ξ)N .
This gives the solution for F to be

F (z, τ) =
[(

1− e−τ
)

+ ze−τ
]N

.

In this case F can easily be expanded as a power series in z, and the P (n, τ) read
off, but even if this is difficult, the moments of the distribution can be readily
found by differentiation with respect to z and then setting z = 1. It should now
be clear why F is called a generating function. In the general case the partial
differential equation for F may be solved by standard methods (Sneddon, 1957).
The solution for a birth-death process without immigration is given in the book by
Reichl (1998). The solution with immigration was first given by Kendall (1948), who
also introduced the technique of the generating function as a method of solution of
the master equation.

2. The Moran model of genetic drift.

Stochastic processes occur extensively in population genetics. The simplest, and
most widely known, is a model of genetic drift introduced by Fisher (1930) and



Wright (1931), in which a population of individuals in generation t mate randomly
to produce the new generation t+1. We assume, for simplicity, that each individual
has only one gene of a particular type, and that this may exist in one of two forms
(alleles) denoted by A and B. The Wright-Fisher model is based on the sampling
of the gene pool at generation t, which consists of n genes of type A and (N − n)
genes of type B, to produce the next generation of N genes. Although this may be
formulated as a Markov chain, neither Fisher nor Wright did so; this was first carried
out by Malécot in 1944. Here we will describe a variant of the model introduced by
Moran (1958, 1962), which is a one-step process and can be formulated as a master
equation.

The Moran model does not have non-overlapping generations, as in the Wright-
Fisher model, and is more akin to a birth-death process where birth and death
are coupled. At a given time, two individuals are sampled with replacement: one
is designated the parent which is copied to create an offspring and the other is
sacrificed to make way for the new offspring. Clearly if a B (chosen with probability
(N−n)/N) is sacrificed and an A (chosen with probability n/N) is copied, this gives
a contribution to T (n+ 1|n). If the choice is that with A and B interchanged, this
gives a contribution to T (n − 1|n). The transition rates for the Moran model are
thus

T (n+ 1|n) = β
(
1− n

N

) (
n

N

)
, T (n− 1|n) = β

(
n

N

) (
1− n

N

)
, (26)

where β is a rate constant, which may be absorbed into the time t.

This may be extended in various ways. For example, mutations may be included:
A

u→ B and B
v→ A. With probability (1 − u − v) the offspring is taken to be a

copy of the parent without mutation, as previously described. For the rest of the
time (that is, with probability u + v), a mutation occurs. If the parent is an A,
the offspring becomes a B with probability u/(u+ v), and if the parent is a B, the
offspring becomes an A with probability v/(u+v). This leads to the transition rates

T (n+ 1|n) = (1− u− v)
(
1− n

N

) (
n

N

)
+ v

(
1− n

N

)
,

T (n− 1|n) = (1− u− v)
(
1− n

N

) (
n

N

)
+ u

(
n

N

)
. (27)

The master equation for the Moran model will be discussed again in the next section.

3. Competition in a single species model.

The birth-death process described in Example 1 can be generalised to more complex

ecological situations. As it stands it consists of the two processes A
d→ E and A

b→
A+A representing death and birth respectively. Here A represents an individual and
E is a null state. To model the finite resources available in a given patch, we put a
limit on the number of allowed individuals: n = 0, 1, . . . , N . We can also only allow

a birth if enough space and/or other resources are available: A + E
b→ A + A and

include competition for these resources: A + A
c→ A + E. Since the probability of

obtaining an A when sampling the patch is n/N and of obtaining an E is (N−n)/N ,
the birth term is now proportional to n(N − n)/[N(N − 1)] and the competition
term proportional to n(n− 1)/[N(N − 1)]. This gives the transition rates to be

T (n+ 1|n) =
2bn(N − n)

N(N − 1)
, T (n− 1|n) =

cn(n− 1)

N(N − 1)
+
dn

N
. (28)



This approach can be extended to more than one species, for instance competition
between and within two species (McKane and Newman, 2004) or predator-prey
interactions (McKane and Newman, 2005). In these cases the state space is multi-
dimensional: n = (n1, n2, . . .). The master equation still has the form (21), but with
n replaced everywhere by the vector n.

Whether or not a stationary state of the master equation exists depends on the nature
of the boundary conditions. There are many types of boundary conditions, but two are
particularly important. If the boundaries are reflecting, then the probability current
vanishes there. If they are absorbing, then the probability of being at the boundary is
zero. In the former case probability is conserved, in the latter case it is not, and leaks out
of the system.

So to find a non-zero pdf as t→∞ (a stationary distribution) we therefore assume that
the system lies within two reflecting boundaries. For a one-step process, the net flow of
probability from the state n to the state n + 1, is J(n, t) = gnP (n, t) − rn+1P (n + 1, t),
where J(n, t) is the probability current. The master equation (25) may be written as

dP (n, t)

dt
= J(n− 1, t)− J(n, t) .

For a stationary state, the left-hand side of this equation is zero, and the currents will be
time-independent. Therefore J(n− 1) = J(n) for all n, that is, all the currents are equal.
Since the current vanishes at the boundaries, this constant must be zero. Therefore, for
reflecting boundary conditions, rn+1Pst(n+1) = gnPst(n) for all n. If we suppose that one
boundary is at n = 0 and the other at n = N , then we have that Pst(1) = (g0/r1)Pst(0),
Pst(2) = (g1/r2)Pst(1), . . ., which implies Pst(2) = (g1g0)/(r2r1)Pst(0), . . .. Iterating, the
stationary state can be expressed as a simple product:

Pst(n) =
gn−1gn−2 . . . g0

rnrn−1 . . . r1
Pst(0) , n = 1, . . . , N . (29)

The constant Pst(0) is determined by normalisation:

N∑
n=0

Pst(n) = Pst(0) +
∑
n>0

Pst(n) = 1

⇒ (Pst(0))−1 = 1 +
N∑

n=1

gn−1gn−2 . . . g0

rnrn−1 . . . r1
. (30)

As an example, we return to the Ehrenfest urn (12), which in the language of the master
equation is defined by gn = (N − n)/N and rn = n/N (any overall rate may be absorbed
into the time, and this is irrelevant as far as the stationary state is concerned). Here
n = 0, 1, . . . , N and the molecules never go outside this range, so the boundaries are
reflecting. Applying Eqs. (29) and (30) shows that the stationary state is the binomial
distribution given by Eq. (15).

V. The Fokker-Planck Equation

The Fokker-Planck equation describes stochastic processes at a more coarse grained level
than those that we have discussed so far. It only involves continuous stochastic vari-
ables; these could be for instance the fraction of individuals or genes of a certain kind



in a population, whereas the master equation recognised the individuals or genes as dis-
crete entities. To obtain the Fokker-Planck equation we first derive the Kramers-Moyal
expansion (Kramers, 1940; Moyal, 1949).

We begin by defining the jump moments for the system:

M`(x, t,∆t) =
∫
dξ (ξ − x)` P (ξ, t+ ∆t|x, t) . (31)

We will assume that these are known, that is, they can be obtained by some other means.
They will, however, only be required in the limit of small ∆t.

The starting point for the derivation is the Chapman-Kolmogorov equation (4), with the
choice of variables analogous to that used in Eq. (17) for the discrete case:

P (x, t+ ∆t) =
∫
dx′P (x, t+ ∆t|x′, t)P (x′, t) , (32)

again dropping the dependence on the initial conditions. The integrand may be written
as

P (x, t+ ∆t|x′, t)P (x′, t) = P ([x−∆x] + ∆x, t+ ∆t|[x−∆x], t)P ([x−∆x], t)

=
∞∑

`=0

(−1)`

`!
(∆x)` ∂`

∂x`
{P (x+ ∆x, t+ ∆t|x, t)P (x, t)} ,

(33)

where ∆x = x− x′. Integrating over x′ gives for Eq. (32):

P (x, t+ ∆t) =
∞∑

`=0

(−1)`

`!

∂`

∂x`
{M`(x, t,∆t)P (x, t)} . (34)

Since P (ξ, t|x, t) = δ(ξ − x), it follows from Eq. (31), that lim∆t→0M`(x, t,∆t) = 0 for
` ≥ 1. Also M0(x, t,∆t) = 1. Bearing these results in mind, we will now assume that the
jump moments for ` ≥ 1 take the form

M`(x, t,∆t) = D(`)(x, t)∆t+ o (∆t) . (35)

Substituting this into Eq. (34), dividing by ∆t and taking the limit ∆t→ 0 gives

∂P

∂t
=

∞∑
`=1

(−1)`

`!

∂`

∂x`

{
D(`)(x, t)P (x, t)

}
. (36)

Equation (36) is the Kramers-Moyal expansion. So far nothing has been assumed other
than the Markov property and the existence of Taylor series expansions. However, in many
situations, examination of the jump moments reveal that in a suitable approximation they
may be neglected for ` > 2. In this case, we may truncate the Kramers-Moyal expansion
(36) at second order and obtain the Fokker-Planck equation:

∂P

∂t
= − ∂

∂x
[A(x, t)P (x, t)] +

1

2

∂2

∂x2
[B(x, t)P (x, t)] , (37)

where A = D(1) and B = D(2) are independent of t if the process is stationary.



To calculate the jump moments (31), it is convenient to write them in terms of the
underlying stochastic process x(t). We use the notation

〈x(t)〉x(t0)=x0 =
∫
dx xP (x, t|x0, t0) , (38)

for the mean of the stochastic variable at time t, conditional on the value of x(t) being
given to be x0 at time t0. With this notation x(t) denotes the process and the angle
brackets are averages over realisations of this process. More generally, we may define
〈f(x(t))〉 in a similar way, and in particular the jump moments are given by

M`(x, t,∆t) = 〈(x(t+ ∆t)− x)`〉x(t)=x . (39)

Examples of Fokker-Planck equations

1. Simple diffusion.

For the simple symmetric random walk, gn = 1 and rn = 1 when expressed in the
language of the master equation (after a rescaling of the time so that the rates may
taken to be equal to unity). From Eqs. (18) and (19) we find that for a one-step
stationary process,

〈(n(t+ ∆t)− n)`〉n(t)=n =


(gn − rn) ∆t+ o (∆t) , if ` is odd

(gn + rn) ∆t+ o (∆t) , if ` is even ,
(40)

and so for the symmetric random walk the odd moments all vanish, and the even
moments are equal to 2∆t + o(∆t). We now make the approximation which will
yield the Fokker-Planck equation: we let x = nL, where L is the step size, and let
L → 0. Since, for ` even, 〈(x(t+ ∆t)− x)`〉 = (2L`)∆t, if we rescale the time by
introducing τ = L2t, then all jump moments higher than the second disappear in
the limit L→ 0, and Eq. (36) becomes

∂P

∂t
=
∂2P

∂x2
. (41)

This is the familiar diffusion equation obtained from a continuum approximation to
the discrete random walk.

2. The diffusion limit of the Moran model.

For the Moran model with no mutation, we have from Eqs. (26) and (40) that the
odd moments again vanish. If we describe the process by x(t) = n(t)/N , the fraction
of the genes that are of type A at time t, then the even jump moments are given by

〈(x(t+ ∆t)− x)`〉x(t)=x =
1

N `
2x (1− x) ∆t+ o (∆t) ,

and so introducing a rescaled time τ = 2t/N2, and letting N → ∞ we obtain the
Fokker-Planck equation

∂P

∂t
=

1

2

∂2

∂x2
[x(1− x)P ] . (42)

The factor of 2 in the rescaling of the time is included so that the diffusive form
of the Moran model agrees with that found in the Wright-Fisher model (Crow and
Kimura, 1970).



Now suppose mutations are included. The transition rates are given by Eq. (27)

and lead to jump moments 〈(x(t+ ∆t)− x)`〉 ∼ N−`. So the first and second
jump moments are not of the same order, and the introduction of a rescaled time
τ = t/N , and subsequently letting N → ∞, gives a Fokker-Planck equation of
the form (37), but with B = 0 and A(x) = v − (u + v)x. This corresponds to a
deterministic process with dx/dt = v − (u + v)x (Haken, 1983). The fact that the
system tends to a macroscopic equation when N →∞ has to be taken into account
when determining the nature of the fluctuations for large N . We will discuss this
further in Section VIII.

On the other hand, suppose that the mutation rates scale with N according to
u = 2ũ/N and v = 2ṽ/N , where ũ and ṽ have a finite limit as N →∞, and where
the 2 has again been chosen to agree with the Wright-Fisher model. Now both the
first and second jump moments are of order N−2, with the higher moments falling
off faster with N . Therefore once again introducing the rescaled time τ = 2t/N2

and letting N →∞, we obtain the Fokker-Planck equation

∂P

∂t
= − ∂

∂x
[{ṽ − (ũ+ ṽ)x}P ] +

1

2

∂2

∂x2
[x(1− x)P ] . (43)

So depending on the precise scaling with N , the Moran model gives different limits
as N → ∞ (Karlin and McGregor, 1964). In the first case, the mutational effects
are strong enough that a macroscopic description exists, with fluctuations about the
macroscopic state, as discussed in Section VIII. In the second case, the mutational
effects are weaker, and there is no macroscopic equation describing the system; the
large N limit is a non-linear Fokker-Planck equation of the diffusive type.

The Fokker-Planck equation (37) for stationary processes, where A and B are functions
of x only, can be solved by separation of variables, with solutions of the form p(x)e−λt,
where λ is a constant. The equation for p(x) is then a second order differential equation
which, when boundary conditions are given, is of the Sturm-Liouville type. To specify the
boundary conditions we once again introduce the probability current, this time through
the continuity equation,

∂P (x, t)

∂t
+
∂J(x, t)

∂x
= 0 , (44)

where the probability current J(x, t) is given by

J(x, t) = A(x, t)P (x, t)− 1

2

∂

∂x
[B(x, t)P (x, t)] . (45)

Let us suppose that the system is defined on the interval [a, b]. Then if the boundaries are
reflecting, there is no net flow of probability across x = a and x = b. This implies that
J(a, t) = 0 and J(b, t) = 0. If we integrate the equation of continuity (44) from x = a
to x = b, and apply these boundary conditions, we see that

∫ b
a P (x, t)dx is independent

of time. Therefore, if the pdf is initially normalised, it remains normalised. This is
in contrast with the case of absorbing boundary conditions, defined by P (a, t) = 0 and
P (b, t) = 0. If the boundary conditions are at infinity we require that limx→±∞ P (x, t) = 0,
so that if P is well-behaved it is normalisable, and also that ∂P/∂x is well-behaved in
this limit: limx→±∞ ∂P/∂x = 0. If A or B do not diverge as x → ±∞ this implies that
limx→±∞ J(x, t) = 0. Other types of boundary conditions are possible, and we do not
attempt a complete classification here (Risken, 1989; Gardiner, 2004).



If A and B are independent of time, then from Eq. (44), the stationary state of the
system must be given by dJ(x)/dx = 0, that is, J is a constant. For reflecting boundary
conditions this constant is zero, and so from Eq. (45) the stationary pdf, Pst(x) must
satisfy

0 = A(x)Pst(x)−
1

2

∂

∂x
[B(x)Pst(x)] . (46)

This may be integrated to give

Pst(x) =
C

B(x)
exp

{
2

∫ x

dx′
A(x′)

B(x′)

}
, (47)

where C is a constant which has to be chosen so that Pst(x) is normalised.

The Fokker-Planck equation, with A independent of t and B constant, can be transformed
into the Schrödinger-like problem

−B∂ψ
∂t

= −B
2

2

∂2ψ

∂x2
+ U(x)ψ , (48)

by the transformation

P (x, t) = [Pst(x)]
1/2 ψ(x, t) , (49)

where

U(x) =
1

2
[A(x)]2 +

B

2

dA

dx
. (50)

So a one-dimensional stationary stochastic process, under certain conditions (such as
constant second jump moment) is equivalent to quantum mechanics in imaginary time,
with B taking over the role of Planck’s constant.

As an example we consider the Ornstein-Uhlenbeck process defined by

∂P

∂t
=

∂

∂x
[axP ] +D

∂2P

∂x2
, x ∈ (−∞,∞) , a > 0 . (51)

In this case, the potential (50) is given by U(x) = [a2x2 − 2aD]/2, and so the problem is
equivalent to the one-dimensional simple harmonic oscillator in quantum mechanics, but
with an energy shift. As in that problem (Schiff, 1968), the eigenfunctions are Hermite
polynomials. Specifically, the right-eigenfunctions are

pm(x) = Pst(x)
1

[2mm!]1/2
Hm(αx) , (52)

whereHm are the Hermite polynomials (Abramowitz and Stegun, 1965) and α = (a/2D)1/2.
The eigenvalue corresponding to the eigenfunction (52) is λm = am, m = 0, 1, . . . and the
left-eigenfunctions are qm(x) = [Pst(x)]

−1 pm(x). From these explicit solutions we may
calculate other quantities of interest, such as correlation functions. We note that the
eigenvalues are all non-negative and that the stationary state corresponds to λ = 0. The
left-eigenfunction for the stationary state is equal to 1. These latter results hold true for
a wide-class of such problems.



VI. Stochastic Differential Equations

So far we have described stochastic processes in terms of equations which give the time
evolution of pdfs. In this section, we will describe equations for the stochastic variables
themselves. The most well known instance of such an equation is the Langevin equation
for the velocity of a Brownian particle, and so we begin with this particular example.

Suppose that a small macroscopic particle of mass m (such as a pollen grain) is immersed
in a liquid at a temperature T . In addition to any macroscopic motion that the particle
may have, its velocity fluctuates due to the random collisions of the particle with the
molecules of the liquid. For simplicity, we confine ourselves to one-dimensional motion
— along the x−axis. Then the equation of motion of the particle may be written in the
form

m
d2x

dt2
= −αdx

dt
− dV

dx
+ F(t) . (53)

The first term on the right-hand side is due to the viscosity of the fluid and α is the
friction constant. The second term, where V (x) is a potential, represents the interaction
of the particle with any external forces, such as gravity. The final term is the random force
due to collisions with the molecules of the liquid. Clearly to complete the specification
of the dynamics of the particle we need to give (i) the initial position and velocity of the
particle, and (ii) the statistics of the random force F(t).

To make progress with these points, we imagine a large number of realisations of the
dynamics, in which the particle starts with the same initial position, x0, and velocity, v0,
but where the initial positions and velocities of the molecules in the liquid will be different.
Taking the average over a large number of such realisations will give the average position
〈x(t)〉 and velocity 〈v(t)〉 at time t, conditional on x(0) = x0 and v(0) = v0. The statistics
of the fluctuating force F(t) are assumed to be such that

(a) 〈F(t)〉 = 0, since we do not expect one direction to be favoured over the other.

(b) 〈F(t)F(t′)〉 = 2Dδ(t− t′), since we expect that after a few molecular collisions the
value that F takes on will be independent of its former value. That is, the force
F becomes uncorrelated over times of the order of a few collision times between
molecules. This is tiny on observational time scales, and so taking the correlation
function to be a delta-function is an excellent approximation. The weight of the
delta-function is denoted by 2D, where at this stage D is undetermined.

(c) F(t) is taken to be Gaussianly distributed on grounds of simplicity, but also because
by the central limit theorem it is assumed that the net effect of the large number
of molecules which collide with the pollen grain will lead to a distribution which is
Gaussian.

Since a Gaussian distribution is specified by its first two moments, conditions (a), (b) and
(c) completely define the statistics of F(t).

Finally, Eq. (53) as it stands does not define a Markov process. This is most easily seen
if we write down a discrete time version of the equation. The second derivative means
that x(t+ δt) not only depends on x(t), but also on x(t− δt). Therefore only first order
derivatives should be included in such equations if the process is to be Markov. This is
easily achieved by promoting v(t) to be a second stochastic variable in addition to x(t).



Then Eq. (53) may be equivalent written as

dx

dt
= v ,

m
dv

dt
= −αv − dV

dx
+ F(t) , (54)

which does define a Markov process. Although, as we remarked in the Introduction, we
deal almost exclusively with Markov processes in this article, the situation we have just
discussed is a good illustration of one way of dealing with processes which are presented
as being non-Markovian. The method simply consists of adding a sufficient number of
supplementary variables to the definition of the state variables of the process until it
becomes Markovian. There is no guarantee that this will be possible or require only
a small number of additional variables to be promoted in this way, but it is the most
straightforward and direct way of rendering non-Markovian processes tractable.

To begin the analysis of Eq. (54) we assume that there are no external forces and so the
term dV/dx is equal to zero. We may then write Eq. (54) as the Langevin equation

dv

dt
= −γv + F (t) ; v(0) = v0 , (55)

where γ = α/m and F (t) = F(t)/m. This implies that

〈F (t)〉 = 0 and 〈F (t)F (t′)〉 =
2D

m2
δ(t− t′) . (56)

Note that since F (t) is a random variable, solving the Langevin equation will give v(t) as
a random variable (having a known distribution). It is therefore a stochastic differential
equation. The function F is frequently called “the noise term” or simply “the noise”. It is
white noise since the Fourier transform of a delta-function is a constant — all frequencies
are present in equal amounts.

Multiplying the Langevin equation (55) by the integrating factor eγt gives

d

dt

[
v(t)eγt

]
= F (t)eγt ⇒ v(t) = v0e

−γt + e−γt
∫ t

0
dt′ F (t′)eγt′ . (57)

By taking the average of the expression for v(t) we find 〈v(t)〉 = v0e
−γt. More interestingly,

if we square the expression for v(t) and take the average, then we find

〈v2(t)〉 = v2
0e
−2γt +

D

αm

[
1− e−2γt

]
, (58)

which implies that

lim
t→∞

〈v2(t)〉 =
D

αm
. (59)

On the other hand, as t→∞, the Brownian particle will be in thermal equilibrium:

lim
t→∞

〈v2(t)〉 = v2
eq and

1

2
mv2

eq =
1

2
kT ,

where T is the temperature of the liquid and k is Boltzmann’s constant. This implies that

1

2
m

(
D

αm

)
=

1

2
kT ⇒ D = αkT . (60)



The molecules of the liquid are acting as a heat bath for the system — which in this
case is a single Brownian particle. The equation D = αkT is a simple example of a
fluctuation-dissipation theorem, and determines D in terms of the friction constant, α,
and of the temperature of the liquid, T .

Although we have presented a somewhat heuristic rationale for Eq. (54), it may be derived
in a more controlled way. A particularly clear derivation has been given by Zwanzig (1973),
where the starting point is a Hamiltonian which contains three terms: for the system, the
heat bath and the interaction between the system and the heat bath. Taking the heat
bath to be made up of coupled harmonic oscillators and the interaction term between
the system and heat bath to be linear, it is possible to integrate out the bath degrees of
freedom exactly, and be left only with the equations of motion of the system degrees of
freedom plus the initial conditions of the bath degrees of freedom. Assuming that the bath
is initially in thermal equilibrium, so that these initial values are distributed according
to a Boltzmann distribution, adds extra “noise” terms to the equations of motion which,
with a few more plausible assumptions, make them of the Langevin type.

Examples of Langevin-like equations

1. Overdamped Brownian motion.

Frequently the viscous damping force −αv is much larger than the inertial term
md2x/dt2 in Eq. (53), and so to a good approximation the left-hand side of Eq. (53)
can be neglected. Scaling time by α, we arrive at the Langevin equation for the
motion of an overdamped Brownian particle:

dx

dt
= −V ′(x) + F(t) ; x(0) = x0 , (61)

where ′ denotes differentiation with respect to x and where, due to the rescaling of
time by α,

〈F(t)〉 = 0 ; 〈F(t)F(t′)〉 = 2D̃δ(t− t′) ; D̃ =
D

α
. (62)

A particularly well-known case is when the Brownian particle is moving in the
harmonic potential V (x) = ax2/2. Then

dx

dt
= −ax+ F(t) ; x(0) = x0 . (63)

Since Eq. (63) relating x(t) to F(t) is linear, and since the distribution of F(t) is
Gaussian, then x(t) is also distributed according to a Gaussian distribution. Com-
paring with Eqs. (55) and (56), which also define a linear system, we find that
〈x(t)〉 = x0e

−at and, from Eq. (58), 〈x2(t)〉 = x2
0e
−2at + (D̃/a) [1− e−2at]. This gives

P (x, t|x0, 0) =

√
a

2πD̃ [1− e−2at]
exp

{
− a (x− x0e

−at)
2

2D̃ [1− e−2at]

}
. (64)

It is straightforward to check that this conditional pdf satisfies the Fokker-Planck
equation (51) for the Ornstein-Uhlenbeck process. Below we will show this more
directly, by starting from the Langevin equation (63) and deriving Eq. (51).

Another case of interest is when V (x) is a double-well potential, V (x) = −ax2/2
+bx4/4. If the particle is initially located near the bottom of one of the potential



wells, it will take on average a time of the order of e∆V/D to hop over the barrier
and into the well on the other side. Here ∆V is the height of the barrier that it has
to hop over (Kramers, 1940).

2. Environmental noise in population biology.

One of the simplest models of two species with population sizes N1 and N2 which
are competing for a common resource, is the two coupled deterministic ordinary
differential equations Ṅi = riNi, i = 1, 2. The growth rates, ri, depend on the
population sizes in such a way that as the population sizes increase, the ri decrease
to reflect the increased competition for resources. This could be modelled, for
instance, by taking ri = ai − biiNi − bijNj with i, j = 1, 2 and i 6= j. In reality,
external factors such as climate, terrain, the presence of other species, and indeed
any factor which has an uncertain influence on these two species, will also affect the
growth rate. This can be modelled by adding an external random term to the ri

which represents this environmental stochasticity (May, 1973). Then the equations
become

dN1

dt
= a1N1 − b11N

2
1 − b12N1N2 +N1ζ1(t)

dN2

dt
= a2N2 − b22N

2
2 − b21N2N1 +N2ζ2(t) . (65)

Since the noise terms, ζi(t) are designed to reflect the large number of coupled
variables omitted from the description of the model, it is natural, by virtue of
the central limit theorem, to assume that they are Gaussianly distributed. It also
seems reasonable to assume that any temporal correlation between these external
influences is on scales very much shorter than those of interest to us here, and that
the noises have zero mean. We therefore assume that

〈ζi(t)〉 = 0 ; 〈ζi(t)ζj(t′)〉 = 2Diδijδ(t− t′) , (66)

where the Di describe the strength of the stochastic effects. The deterministic
equations (that is, Eq. (65) without the noise terms) have a fixed point at the
origin, one on each of the N1 and N2 axes, and may have another at non-zero N1

and N2. For some values of the parameters this latter fixed point may be a saddle,
with those on the axes being stable and the origin unstable. In this situation the
eventual fate of the species depends significantly on the noise: if the combination of
the nonlinear dynamics and the noise drives the system to the vicinity of the fixed
point on the N1 axis, then species 2 will become extinct, and vice-versa.

Langevin equations with Gaussian white noise are equivalent to Fokker-Planck equations.
This can be most easily seen by calculating the jump moments (39) from the Langevin
equation. For instance, if we begin from the Langevin equation for an overdamped Brow-
nian particle (61),

∆x(t) ≡ x(t+ ∆t)− x(t) =
∫ t+∆t

t
dt′ ẋ(t′)

= −
∫ t+∆t

t
dt′ V ′(x(t′)) + η(t) , (67)

where η(t) =
∫ t+∆t
t dt′F(t′). From Eq. (62) it is straightforward to calculate the moments

of η(t): 〈η(t)〉 = 0,

〈η2(t)〉 =
∫ t+∆t

t
dt′

∫ t+∆t

t
dt′′〈F(t′)F(t′′)〉 = 2D̃∆t (68)



and, since η(t) is Gaussian, 〈ηn(t)〉 is zero if n is odd, and at least of order (∆t)2 for
n ≥ 4. This implies that

M1(x,∆t) = −V ′(x)∆t+O (∆t)2 , M2(x,∆t) = 2D̃∆t+O (∆t)2 , (69)

with all moments of order (∆t)2 or higher for ` > 2. The notation O (∆t)2 means that
the magnitude of this quantity is less than a constant times (∆t)2, for sufficiently small
nonzero (∆t)2. This is a weaker, but more specific, statement than saying it is o (∆t).
Using Eqs. (35) and (36), the Fokker-Planck equation which is equivalent to the Langevin
equation (61) is found to be

∂P

∂t
=

∂

∂x
[V ′(x)P ] + D̃

∂2P

∂x2
. (70)

From Eq. (47), the stationary pdf is Pst(x) = C exp{−V (x)/D̃} = C exp{−V (x)/kT}, as
expected.

Although in this article we have largely restricted our attention to stochastic processes
involving one variable, the construction of a Fokker-Planck equation from the Langevin
equation goes through in a similar way for an n−dimensional process x = (x1, . . . , xn).
In this case the jump moments are

〈∆xi1(t)∆xi2(t) . . .∆xi`(t)〉x(t)=x = Di1...i`(x, t)∆t+ o(∆t) , (71)

where ∆xiα = xiα(t+ ∆t)− xiα . The Fokker-Planck equation is then

∂P

∂t
=

∞∑
`=1

(−1)`

`!

∂`

∂xi1 . . . ∂xi`

{Di1...i`(x, t)P} . (72)

The Langevin equation for Brownian motion (54), without going to the overdamped limit,
serves as a simple illustration of this generalisation. Here ∆x(t) = v∆t and ∆v(t) =
−γv∆t−m−1V ′(x) ∆t+m−1η(t). This results in the Fokker-Planck equation

∂P

∂t
= − ∂

∂x
[vP ] +

∂

∂v

[{
γv +m−1V ′(x)

}
P

]
+
γkT

m

∂2P

∂v2
. (73)

This is Kramer’s equation. It has a stationary pdf Pst(x, v) = C exp{−E/kT}, where
E = mv2/2 + V (x).

We end this section by finding the Fokker-Planck equation which is equivalent to the
general set of Langevin equations of the form

ẋi = Ai(x, t) +
m∑

α=1

giα(x, t) ζα(t) ; i = 1, . . . , n , (74)

where ζα(t), α = 1, . . . ,m, is a Gaussian white noise with zero mean and with

〈ζα(t)ζβ(t′)〉 = δαβδ(t− t′) . (75)

Proceeding as in Eq. (67), but noting the dependence of the function giα on the stochastic
variable, yields

Mi(x, t,∆t) =

Ai(x, t) + θ(0)
n∑

j=1

m∑
α=1

gjα(x, t)
∂

∂xj

giα(x, t)

 ∆t+O (∆t)2 ,

Mij(x, t,∆t) =
m∑

α=1

[giα(x, t)gjα(x, t)] ∆t+O (∆t)2 , (76)



with all jump moments higher than the second being of order (∆t)2 or higher. The quan-
tity θ(0) is the value of the Heaviside theta function, θ(x), at x = 0 and is indeterminate.
This indicates that the Langevin description does not correspond to a unique Fokker-
Planck equation. This situation occurs whenever the white noise in a Langevin equation
is multiplied by a function which depends on the state variable, as in Eq. (74). For sys-
tems such as this acted upon by multiplicative noise the Langevin description has to be
supplemented by a rule which says whether the state variable in the multiplying function
(giα in Eq. (74)) is that before or after the noise pulse acts (van Kampen, 1981). If it
is taken to be the value immediately after the noise pulse acts then θ(0) = 0 (Itô rule),
whereas if it is taken to be the average of the values before and after, then θ(0) = 1/2
(Stratonovich rule). The Fokker-Planck equation is now found from Eq. (72) to be

∂P

∂t
= −

n∑
i=1

∂

∂xi

[Ai(x, t)P (x, t)] +
1

2

n∑
i,j=1

m∑
α=1

∂2

∂xi∂xj

[giα(x, t)gjα(x, t)P (x, t)] , (77)

in the Itô case and

∂P

∂t
= −

n∑
i=1

∂

∂xi

[Ai(x, t)P (x, t)] +
1

2

n∑
i,j=1

m∑
α=1

∂

∂xi

[
giα(x, t)

∂

∂xj

{gjα(x, t)P (x, t)}
]
, (78)

in the Stratonovich case.

VII. Path Integrals

While most early work on stochastic processes was concerned with linear systems, natu-
rally attention soon moved on to the many interesting systems which could be modelled
as nonlinear stochastic processes. These systems are much more difficult to analyse. For
example, a nonlinear Langevin equation cannot be solved directly, and so the averaging
procedure cannot be carried out in the same explicit way as described in Section VI.
There is however one method which is applicable to many nonlinear stochastic differential
equations of interest: the solution of these equations can be formally written down as a
path-integral, and from this correlation functions and other quantities of physical interest
can be obtained. This also has the advantage that all the formalism and approximation
schemes developed to study functional integrals over the years can be called into play.

Path-integrals are intimately related to Brownian motion and the earliest work on the
subject by Wiener (1921a, 1921b), emphasised this. If the problem of interest is formu-
lated as a set of Langevin equations, the derivation of the path-integral representation is
particularly straightforward, if rather heuristic. For clarity we begin with the simplest
case: an overdamped system with a single degree of freedom, x, acted upon by white noise.
The Langevin equation is given by Eq. (61) and the noise is defined by Eq. (62). Since
the noise is assumed to be Gaussian, Eq. (62) is a complete specification. An equivalent
way of giving it is through the pdf (Feynman and Hibbs, 1965):

P [F ]DF ∝ exp
(
− 1

4D̃

∫
dtF2(t)

)
DF , (79)

where DF is the functional measure. The idea is now to regard the Langevin equation
(61) as defining a mapping F 7→ x. The pdf for the x variable is then given by

P [x] = P [F ]|F=ẋ+V ′(x) J [x]

∝ exp
(
− 1

4D̃

∫
dt [ẋ+ V ′(x)]2

)
J [x] , (80)



where

J [x] = det

[
δF
δx

]
, (81)

is the Jacobian of the transformation. An explicit expression for the Jacobian may be ob-
tained either by direct calculation of a discretised form of the Langevin equation (Graham,
1975) or through use of the identity relating the determinant of a matrix to the expo-
nential of the trace of the logarithm of that matrix (Zinn-Justin, 2002). One finds that
J [x] ∝ exp{θ(0)

∫
dt V ′′(x)}. The quantity θ(0) is once again the indeterminate value of

the Heaviside theta function θ(x) at x = 0. Its appearance is a reflection of the fact that,
due to the Brownian-like nature of the paths in the functional integral, the nature of the
discretisation appears explicitly through this factor (Schulman, 1981). If we consistently
use the mid-point rule throughout, then we may take θ(0) = 1/2, which gives

P [x] ∝ exp
(
− 1

4D̃

∫
dt [ẋ+ V ′(x)]2 +

1

2

∫
dt V ′′(x)

)
= exp

(
−S[x]/D̃

)
. (82)

All quantities of interest can now be found from expression (82). For example, the con-
ditional probability distribution, P (x, t|x0, t0) is given by

〈δ(x− x(t))〉x(t0)=x0 =
∫

x(t0)=x0

Dx δ(x− x(t))P [x]. (83)

The expression (82) has much in common with Feynman’s formulation of quantum me-
chanics as a path-integral (Feynman, 1948). In fact another way to obtain the result is to
exploit the transformation (49) to write the Fokker-Planck equation (70) as a Schrödinger
equation in imaginary time τ = it, with a potential U(x) = (1/2)[V ′(x)]2 − D̃V ′′(x),
following Eq. (50). The action in the quantum-mechanical path-integral is

i

h̄

∫
dt

[
1

2
ẋ2 − U(x)

]
−→ 1

2D̃

∫
dτ

[
−1

2
ẋ2 − 1

2
[V ′(x)]

2
+ D̃V ′′(x)

]
, (84)

which is Eq. (82) since
∫ t
t0
dt ẋV ′(x) =

∫ x
x0
dx V ′(x) = V (x)−V (x0) does not depend on the

path, only on the end-points. The functional S[x] is analogous to the action in classical
mechanics, and is frequently referred to as such. It is also sometimes referred to as the
generalised Onsager-Machlup functional, in recognition of the original work carried out
by Onsager and Machlup, in the case of a linear Langevin equation, in 1953.

The above discussion can be generalised in many ways. For example, if the Langevin
equation for an n−dimensional process takes the form

ẋi = Ai(x) + ζi(t) , 〈ζi(t)ζj(t′)〉 = 2Dijδ(t− t′) , (85)

where ζi(t) is a Gaussian noise with zero mean and Dij is independent of x, then the
general Onsager-Machlup functional is (Graham, 1975)

S[x] =
∫
dt

1

4

∑
i,j

{ẋi − Ai(x)}D−1
ij {ẋj − Aj(x)}+

1

2

∑
i

∂Ai

∂xi

 , (86)

if the matrix Dij is non-singular. The generalisation to the situation where the noise is
multiplicative is more complicated, and is analogous to the path-integral formulation of
quantum mechanics in curved space (Graham, 1977).



VIII. System Size Expansion

In Example 2 of Section V we explicitly showed how the master equation may have
different limits when the size of the system, N , becomes large. In one case both the first
and second jump moments were of the same order (and much larger than the higher jump
moments) and so a nonlinear Fokker-Planck equation of the diffusion type was obtained
in the limit N →∞. In another case, the first jump moment scaled in a different way to
the second moment, and so the N →∞ limit gave a deterministic macroscopic equation
of the form ẋ = f(x), with finite N effects presumably consisting of 1/

√
N fluctuations

about the macroscopic state, x(t). It is the second scenario that we will explore in this
section. It can be formalised by writing

n

N
= x(t) +

ξ√
N
, (87)

and substituting this into the master equation, then equating terms of the same order in
1/
√
N . The leading order equation obtained in this way will be the macroscopic equation,

and the function f(x) will emerge from the analysis. The next-to-leading order equation
turns out to be a linear Fokker-Planck equation in the variable ξ. Higher order terms
may also be included. This formalism was first developed by van Kampen (1961) and
is usually referred to as van Kampen’s system-size expansion. We will describe it in the
specific case of a one-step process for a single stochastic variable in order to bring out the
essential features of the method.

When using this formalism it is useful to rewrite the master equation (23) using step
operators which act on an arbitrary function of n according to Ef(n) = f(n + 1) and
E−1f(n) = f(n− 1). This gives

dP (n, t)

dt
= (E − 1) [T (n− 1|n)P (n, t)] +

(
E−1 − 1

)
[T (n+ 1|n)P (n, t)] . (88)

We begin by using Eq. (87) to write the pdf which appears in the master equation (88)
as

P (Nx(t) +
√
Nξ, t) = Π(ξ, t) ⇒ Ṗ =

∂Π

∂t
−N1/2dx

dt

∂Π

∂ξ
. (89)

This gives an expression for the left-hand side of the master equation, Ṗ . To get an
expression for the right-hand side,

(a) the step operators are expanded in powers of 1/
√
N (van Kampen, 1992):

E±1 = 1± 1√
N

∂

∂ξ
+

1

2!

1

N

∂2

∂ξ2
+O

(
1

N3/2

)
, (90)

(b) T (n± 1|n) is expressed in terms of ξ and N ,

(c) P (n, t) is replaced by Π(ξ, t).

Steps (a), (b) and (c) gives the right-hand side of the master equation as a power-series

in 1/
√
N . Equating the left-hand and right-hand sides order by order in 1/

√
N (this

may require a rescaling of the time, t, by a power of
√
N), gives to leading order (the

∂Π/∂ξ cancels) an equation of the form dx/dt = f(x). This may be solved subject to the



condition x(0) = x0 = n0/N , if we take the initial condition on the master equation to be
P (n, 0) = δn,n0 . We denote the solution of this macroscopic equation by xM(t).

To next order in 1/
√
N , the Fokker-Planck equation

∂Π

∂t
= −f ′(x) ∂

∂ξ
[ξΠ] +

1

2
g(x)

∂2Π

∂ξ2
, (91)

describing a linear stochastic process is found. The functions f ′(x) and g(x) are to be
evaluated when x = xM(t), and so are simply functions of time. If the macroscopic system
tends to a fixed point: xM(t) → x∗, as t → ∞, then f ′(x) and g(x) may be replaced by
constants in order to study the fluctuations about this stationary state.

To illustrate the method we use Example 3, Section IV. Equating both sides of the master
equation in this case one finds

−N1/2dx

dt

∂Π

∂ξ
+

∂Π

∂t
=

1√
N

[f−(x)− f+(x)]
∂Π

∂ξ

+
1

2

1

N
[f−(x) + f+(x)]

∂2Π

∂ξ2
+

1

N

[
f ′−(x)− f ′+(x)

] ∂

∂ξ
[ξP ] + . . . , (92)

where the functions f−(x) and f+(x) are given by:

f−(x) = cx2 + dx , f+(x) = 2bx(1− x) . (93)

For the left- and right-hand sides to balance in Eq. (92), a rescaled time τ = t/N needs to
be introduced. Then to leading order one finds dx/dτ = f(x), where f(x) = f+(x)−f−(x).
At next to leading order Eq. (91) is found with g(x) = f+(x) + f−(x). The explicit form
of the macroscopic equation is

dx

dτ
= x (r − ax) , (94)

where r = 2b − d and a = 2b + c. Eq. (94) is the logistic equation, which is the usual
phenomenological way to model intraspecies competition.

Since the Fokker-Planck equation (91) describes a linear process, its solution is a Gaussian.
This means that the probability distribution Π(ξ, t) is completely specified by the first
two moments 〈ξ(t)〉 and 〈ξ2(t)〉. Multiplying Eq. (91) by ξ and ξ2 and integrating over
all ξ one finds

d

dt
〈ξ(t)〉 = f ′(xM(t))〈ξ(t)〉 , d

dt
〈ξ2(t)〉 = 2f ′(xM(t))〈ξ2(t)〉+ g(xM(t)) . (95)

We have chosen the initial condition to be x0 = n0/N , which implies that ξ(0) = 0.
The first equation in (95) then implies that 〈ξ(t)〉 = 0 for all t. Multiplying the second
equation by f−2(xM(t)) one finds that

〈ξ2(t)〉 = f 2(xM(t))
∫ t

0
dt′

g(xM(t′))

f 2(xM(t′))
, (96)

and so the determination of 〈ξ2(t)〉 is reduced to quadrature. The method can be applied
to systems with more than one stochastic variable and those which are not one-step
processes. Details are given in van Kampen’s book (1992).



IX. Future Directions

This article has focused largely on classical topics in the theory of stochastic processes,
since these form the foundations on which the subject is built. Much of the current work,
and one would expect future work, will be numerical in character. Some of this will begin
from a basic Markovian description in the form of reactions among chemical species —
even if the system is not chemical in nature (Example 3 of Section IV is an example). A
straightforward algorithm developed by Gillespie (1976, 1977), and since then extended
and improved (Gillespie 2001, Cao et. al. 2004), provides an efficient way of simulating
such systems. It thus provides a valuable method of investigating systems which may be
formulated as complicated multivariable master equations, which complements the meth-
ods we have discussed here. However, many current studies do not begin from a system
which can be described in this way, and there is every indication that this will be more
true in the future. For instance, in agent based models the stochastic element may be
due to mutations in characteristics, traits or behaviour, which may be difficult or impos-
sible to formulate mathematically. Such agent based models are certainly individually
based, but each individual may have different attributes and generally behave in such a
complex way that only numerical simulations can be used to explore the behaviour of the
system as a whole. Although these complex systems may be used to model more realis-
tic situations, the well-known problems associated with the large number of parameters
typically required to describe such systems, will mean that simplified versions will need
to be analysed in order to understand them at a deeper level. These simpler models are
likely to include those where the agents of a particular species are essentially identical.
In this article we have discussed how the classical equations of the theory of stochastic
processes, such as the Fokker-Planck equation, can be obtained from such models. They
will therefore form a bridge between the agent-based approaches which are expected to
become more prevalent in the future, and the analytic approaches which lie at the heart
of the theory of stochastic processes.
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